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Abstract
Diagnosing bone and soft tissue neoplasms remains challenging because of the large number of subtypes, many of which
lack diagnostic biomarkers. DNA methylation profiles have proven to be a reliable basis for the classification of brain
tumours and, following this success, a DNA methylation-based sarcoma classification tool from the Deutsches
Krebsforschungszentrum (DKFZ) in Heidelberg has been developed. In this study, we assessed the performance of their clas-
sifier on DNAmethylation profiles of an independent data set of 986 bone and soft tissue tumours and controls. We found
that the ‘DKFZ Sarcoma Classifier’ was able to produce a diagnostic prediction for 55% of the 986 samples, with 83% of
these predictions concordant with the histological diagnosis. On limiting the validation to the 820 cases with histological
diagnoses for which the DKFZ Classifier was trained, 61% of cases received a prediction, and the histological diagnosis was
concordant with the predicted methylation class in 88% of these cases, findings comparable to those reported in the DKFZ
Classifier paper. The classifier performed best when diagnosing mesenchymal chondrosarcomas (CHSs, 88% sensitivity),
chordomas (85% sensitivity), and fibrous dysplasia (83% sensitivity). Amongst the subtypes least often classified correctly
were clear cell CHSs (14% sensitivity), malignant peripheral nerve sheath tumours (27% sensitivity), and pleomorphic
liposarcomas (29% sensitivity). The classifier predictions resulted in revision of the histological diagnosis in six of our cases.
We observed that, although a higher tumour purity resulted in a greater likelihood of a prediction being made, it did not
correlate with classifier accuracy. Our results show that the DKFZ Classifier represents a powerful research tool for explor-
ing the pathogenesis of sarcoma; with refinement, it has the potential to be a valuable diagnostic tool.
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Introduction

Bone and soft tissue tumours are rare, with sarcomas, com-
prising approximately 100 different subtypes, representing
no more than 2% of all cancers. Histological assessment
has been the bedrock of tumour classification for the last

200 years [1], but advances in next-generation sequencing
technology, in combination with a greater understanding
of the mechanism of disease at a molecular level, have led
to a significant refinement of cancer classification. In addi-
tion to improving diagnostic accuracy, categories based on
molecular findings can offer additional information
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enabling clinicians to provide more informed prognoses
and discuss evidence-based treatment options with their
patients. Despite significant advances in the classification
of bone and soft tissue tumours, there remains a large
group of sarcomas with no defining molecular hallmarks,
the diagnosis of which remains based purely on morpho-
logical interpretation. Indeed, it is still not uncommon to be
unable to provide a specific diagnosis, and this contributes
to the lack of improved outcomes for patients with sarcoma
over the past 40 years [2].
DNA methylation profiles are now regularly employed

as part of the toolkit for classifying brain tumours [3,4],
the success of which prompted a similar approach to
classify sarcomas resulting in the recently published
‘Deutsches Krebsforschungszentrum (DKFZ) Sarcoma
Classifier’ [5]. This classifier was built using methylation
profiles of 1,077 reference samples representing 54 bone
and soft tissue tumour subtypes as well as common
mimics of sarcoma and normal control tissues. Based on
their initial validation cohort of 428 samples, Koelsche
et al reported that 75% of cases obtained a successful
diagnostic prediction based on their methylation profiles.
The majority of predicted methylation classes (91%)
were concordant with the original histological diagnosis,
and 9% of predictions resulting in a revised histological
diagnosis in favour of the predicted methylation class
after histological review and confirmation by relevant
molecular tests [5].
Our work and that of others on DNA methylation

profiling of sarcoma has demonstrated key insights
into specific tumour types [6–11], and has shown that
DNA methylation can add value to whole-genome and
RNA sequencing data. To enhance the benefit of the
genomes delivered from 1,200 patients with sarcoma
as part of the UK’s 100,000 Genomes Project [12], we
have undertaken methylation profiling of a significant
proportion of these patients’ samples, with the aim of
providing greater insight into the pathogenesis of sar-
coma and its mimics. Improved classification of sar-
coma should not only reap benefits in the clinical
setting, but also provide new angles from a research
perspective. To this end, we used our methylation data
set generated from 986 samples to validate the perfor-
mance of the DKFZ Sarcoma Classifier v12, hereafter
referred to as the DKFZ Classifier, the first of its kind
for these rare diseases.

Methods

Ethical approval was obtained from the Cambridgeshire
2 Research Ethics Service (reference 09/H0308/165). All

samples were collected through the UCL Biobank for
Health and Disease at the Royal National Orthopaedic
Hospital (RNOH, Stanmore, UK), which is covered by
Human Tissue Authority licence 12055: project
EC17.14. Samples included in this study were diagnosed
at the RNOH between 2003 and 2019, and were
assigned using the World Health Organization (WHO)
classification criteria available at the time of diagnosis.
Only samples with a tumour content of at least 40%
were subjected to DNA methylation analysis (Infinium
HumanMethylation450 or EPIC array; Illumina, San
Diego, CA, USA).

DNA methylation data set
DNA methylation profiling data were available from
986 samples; many of the samples were included in
other studies over the last 5 years including the
100,000 Genomes Project [6–9,13]. For details of gen-
eration of these data, see Supplementary materials and
methods. This data set comprised 929 bone and soft
tissue tumour samples (see supplementary material,
Table S1), six non-mesenchymal tumour samples, as
well as normal controls (blood and non-neoplastic bone,
nerve, and muscle, n = 51). Raw DNA methylation data
files have been deposited in the ArrayExpress database at
EMBL-EBI (www.ebi.ac.uk/arrayexpress) under acces-
sion number E-MTAB-9875.
Raw iDAT files for all 986 samples were uploaded

to the DKFZ Sarcoma Classifier (version 12) (www.
molecularsarcomapathology.org). All classifier results
consisted of a suggested methylation class with an
accompanying calibrated score. The calibrated score is
a probability of the confidence for the given methyla-
tion class assignment. As defined by Koelsche et al,
the classifier was only deemed to have made a suc-
cessful prediction if the sample obtained a calibrated
score of 0.9 or higher [5].
As the DKFZ Classifier v12 does not have a methyl-

ation class representing every soft tissue and bone
tumour type, our data set was divided into two groups:
those with a diagnosis represented by a methylation
class in the DKFZ Classifier (n = 820, henceforth
referred to as our ‘core validation samples’) and those
samples with no methylation class corresponding to
our histological diagnoses (n = 163, ‘unrepresented
samples’). We analysed the classifier performance on
both the entire data set (Figure 1A) and on the core
validation samples (Figure 1B). We included tumour
subtypes not included in the original DKFZ Classifier
as it was important to test how the classifier handled
subtypes for which it was not trained originally.
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Assessing DKFZ Classifier predictions
Based on the results of the DKFZ Sarcoma Classifier
and any additional pathology review, all cases were
divided into four main groups (Figure 1): (1) Concor-
dant: samples predicted to a methylation class matching
the histological diagnosis or which led to a revised diag-
nosis. (2) Discrepant: where the predicted methylation
class did not match the original histological diagnosis,
and following review there was either sufficient evi-
dence to reject the predicted result (discrepant with evi-
dence) or the absence of sufficient evidence such as
RNA sequencing to exclude completely the prediction
(discrepant but inconclusive). (3) False negatives: sam-
ples belonging to the core validation cohort that did not
receive a prediction and (4) True negatives: samples not
represented in the DKFZ Classifier reference set that did
not receive a prediction. Evidence employed to support
or reject a prediction included characteristic molecular
alterations, pathognomonic histological features, ana-
tomical location, and, where available, characteristic
radiological features. A detailed description of the inves-
tigation of discrepant results, tumour purity estimation,
and the statistical analysis performed can be found in
Supplementary materials and methods.

Results

Predictions are concordant with the histological
diagnosis in 88% of cases
The performance of the DKFZ Classifier was evalu-
ated against a total of 986 of our samples (935 tumour
and 51 controls), of which 3 tumour samples failed the
quality control employed in the DKFZ Classifier [5]
and were excluded from further analysis (Figure 1A
and supplementary material, Table S1).
Analysis of our entire cohort using the DKFZ Classifier

revealed that 541 of 983 (55%) samples were predicted to
belong to one of the defined methylation classes, 83%
(451/541) of which were predicted to the methylation class
corresponding to their histological diagnosis (concordant).
This included six samples where the original histological
diagnosis following pathology review was changed in
favour of the predicted methylation class (Table 1 [14,15]
and Figure 1A). Conversely, 17% of predictions (90/541
samples) were found to be discrepant: 44 of these cases
were categorised as discrepant with evidence following
further investigations which substantiated the original his-
tological diagnosis and/or rejected the predicted diagnosis.
The other 46 cases were classified as discrepant but

Figure 1. Overview of performance of the ‘DKFZ Classifier’ on the RNOH validation data set. (A) Overview of all cases in the study. (B) Overview of
cases from the core validation cohort. (A and B) Prediction: classifier result with a calibrated score ≥0.9. The calibrated score is the probability for
the given methylation class assignment. QC, quality control Concordant: samples predicted by the classifier to the methylation class corresponding
with the original or revised diagnosis. Discrepant: where the predicted methylation class did not match the original histological diagnosis, and fol-
lowing review there was either sufficient evidence to reject the predicted result (discrepant with evidence) or the absence of sufficient evidence,
such as targeted or RNA sequencing, to completely exclude the prediction (discrepant but inconclusive). ‘Represented samples’: diagnoses where
the subtype was represented by a methylation class. ‘Unrepresented samples’: diagnoses not represented in the DKFZ Classifier. (C) The estimated
tumour purity is higher in predicted (calibrated score ≥0.9) cases compared to cases not receiving a prediction (p = 0.008, Student’s t-test).
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inconclusive as the histology was not definitive for the
diagnosis, and sufficient evidence was unavailable to
exclude the prediction. The remaining 45% (442/983) of
samples did not reach the threshold score, i.e. the DKFZ
Classifier was unable to recognise these tumours
(Figure 1A).
We next limited our analysis to the core validation

set (Figure 1B); this resulted in the DKFZ Classifier
providing a prediction for 61% (499/820) of samples.
Eighty-eight percent (440/499) of these predictions
were concordant, including six cases where we revised
our diagnoses. The classifier score for 321 samples,
representing 39% of the core validation samples, was
below the 0.9 threshold and therefore these did not
receive a prediction despite having a representative
methylation class for their histological subtype.

Methylation profiles may provide misleading
diagnoses
The DKFZ Classifier results for 59 of our core valida-
tion samples were discrepant with our histological
diagnoses (Figure 1B). Sufficient evidence to support
the original diagnosis and reject the classifier predic-
tion was obtained for 31 of these cases, whereas

28 cases were classified as discrepant but inconclusive
(Figure 1B and supplementary material, Table S1).
We observed that some histological subtypes were

more frequently misclassified to specific methylation clas-
ses, including high-grade osteosarcomas (OS), 11 (5% of
OS) of which were assigned to the undifferentiated sar-
coma (‘USARC’) class despite having typical radiological
imaging of a primary bone tumour and with unequivocal
morphological evidence of osteoid deposition. Similarly,
five dedifferentiated chondrosarcomas (CHSs) with osteo-
sarcomatous differentiation (38% of dedifferentiated
CHS) were predicted to the OS high-grade methylation
class (‘OS_HG’). In all cases, the tumours also contained
a sharply defined well-differentiated cartilaginous compo-
nent, the diagnostic hallmark of a dedifferentiated CHS,
and two cases harboured IDH1 mutations (cases 360 and
382; see supplementary material, Table S1).
The DKFZ Classifier includes a ‘SARC_MPNST_

LIKE’ methylation class, a subset of malignant peripheral
nerve sheath tumours (MPNST), which retains expression
of H3K27me3. Of our 79MPNSTs submitted to the classi-
fier, 32 received a prediction. Of these, 19 exhibited the
classical histopathological features of MPNST and loss of
H3K27me3 and were correctly predicted to the ‘MPNST’
methylation class. One sample with retained H3K27me3
(case 948) and one sample with H3K27me3 loss were

Table 1. Revised diagnoses based on DKFZ Classifier results.

Case

Original
histological
diagnosis

Predicted DKFZ
methylation
class

Prediction
score

Histology review/IHC
validation

Molecular
validation Revised diagnosis

166 Myxofibrosarcoma MPNST class 0.944 H3K27me3 negative — MPNST
287 USARC DFSP class 0.999 Positive: SMA (focal), CD34

(focal)
Negative: S100, desmin,
MNF116

COL2A1-PDGFB
rearrangement
(FISH)

High-grade transformation of
a dermatofibrosarcoma
protuberans

884 Osteosarcoma SEF class 1.000 Positive: MUC4, INI1, CD99 — Sclerosing epithelioid
fibrosarcoma of bone

964 MPNST SBRCT_CIC class 0.999 — CIC-DUX4
rearrangement
(FISH)

CIC-rearranged sarcoma†

965 MPNST SBRCT_BCOR
class

1.000 BCOR positive BCOR-CCNB3
rearrangement
(PCR)

BCOR-rearranged sarcoma*

254 USARC Leiomyosarcoma
class

0.998 Pleomorphic spindle cell
tumour with areas of smooth
muscle differentiation
Positive: SMA and (focal)
caldesmon

— Leiomyosarcoma
(pleomorphic)

All cases were originally diagnosed between 2008 and 2012.
DFSP, dermatofibrosarcoma protuberans; FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; PCR, polymerase chain reaction; SBRCT_CIC, small
blue round cell tumour with CIC alteration; SBRCT_BCOR, small blue round cell tumour with BCOR alteration; SEF, sclerosing epithelioid fibrosarcoma; SMA, smooth
muscle actin.
*Recently defined sarcomas which at the time of the original diagnosis were yet to be discovered [14].
†Recently defined sarcomas which at the time of the original diagnosis were not widely recognised as distinct entities [15].
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classified as SARC_MPNST_LIKE (case 723). The
remaining 11 cases were predicted to various methyla-
tion classes, most commonly the USARC class but
also the synovial sarcoma and CIC-rearranged sarcoma
classes. Following a thorough review, these 11 cases
were still considered to represent MPNST with retained
H3K27me3 expression, a finding now well recognised
[8,16]. Evidence to support this diagnosis of MPNST
was available for 4 of 11 cases, with two tumours
arising in patients with germline NF1 alterations (cases
224 and 798) and two others associated with deep-
sited nerves (cases 811 and 960). Classifier predictions
for the remaining 7 of 11 MPNSTs were deemed dis-
crepant but inconclusive (see supplementary material,
Table S1).

Tumour purity correlates with calibrated score but
not prediction accuracy
To determine if tumour purity accounted for the failure
of the DKFZ Classifier to provide accurate prediction
methylation classes, we estimated the tumour purity in
all samples using the ‘RF-purity’ package [17] (see Sup-
plementary materials and methods). We did not observe
a difference in the tumour purity of samples given a pre-
diction matching their respective histological diagnoses
compared to those given predictions deemed to be incor-
rect (p = 0.36, Student’s t-test; Figure 1C and supple-
mentary material, Figure S1). However, predicted
samples demonstrated higher tumour purity than those
not receiving a prediction (p = 0.008, Student’s t-test;
Figure 1C). We next examined the 321 of 820 (39%)
samples that did not receive a prediction due to insuffi-
cient calibrated scores and found that 45% (144/321
samples) of those cases were still assigned to the correct
methylation class (see supplementary material,
Table S1). Furthermore, the estimated tumour purity
was higher in those samples with scores below thresh-
old, but still correctly recognised by the classifier, com-
pared to those with scores below threshold with the
classifier providing an incorrect result (p = 8e-07, Stu-
dent’s t-test; see supplementary material, Figure S2).
Notably, the tumour purity across our samples (mean:
44%, range: 26–69%) was comparable to that of the
DKFZ validation samples (mean: 47%, range: 26–
71%) [5].
Based on our tumour purity results, we investigated

if a tumour purity filtering step could increase the frac-
tion of cases being assigned a diagnostic prediction. A
tumour purity cut-off value of 0.4 was applied, and
although it raised the median number of samples that
were accurately classified for several subtypes, this
resulted in a lower number of samples that received a

prediction; furthermore, this filtering step lowered the
accuracy for specific subtypes including epithelioid
sarcoma and chondroblastoma (see supplementary
material, Table S2 and Figure S3). We also tested
whether a reduced calibrated score threshold of 0.85
would improve the DKFZ Classifier performance on
our data set. While this resulted in an increased
number of samples receiving a classifier prediction
(64% at 0.85 threshold versus 61% at 0.9), there
was no significant improvement in the proportion of
samples that were predicted correctly (87% of core
validation cohort at 0.85 threshold versus 88% at
0.9 threshold) (see supplementary material,
Table S3). We noted that DNA extracted from
formalin-fixed paraffin-embedded (FFPE) samples
(n = 320) obtained lower calibrated scores than
those obtained from fresh frozen tissue samples
(n = 645) (p = 2e-06, Student’s t-test; see supple-
mentary material, Figure S4). This translated into a
lower proportion of FFPE samples being given a
prediction compared to frozen samples (45 versus
59%, p = 0.02, Pearson’s chi-squared test). How-
ever, this difference was not related to the estimated
tumour purity (p = 0.12, Student’s t-test).

Classifier performance varies across tumour types
It was noted that specific tumour subtypes received a
prediction to the methylation class matching their histo-
logical diagnosis more often than others (Table 2 and
supplementary material, Figure S5 and Table S4); these
included mesenchymal CHSs (88% sensitivity),
chordomas (85% sensitivity), and fibrous dysplasia (83%
sensitivity) in our data set. Conversely, clear cell CHSs,
neurofibromas, and MPNSTs represented the tumour
types with the lowest number of samples predicted to the
correct methylation class (0, 14, and 25% sensitivity,
respectively). The low sensitivity achieved for these latter
two entities was largely due to the low proportion of
cases from these tumour types gaining a classifier score
above threshold. Notably, these differences in sensitivity
across tumour types were independent of tumour purity
(see supplementary material, Figures S6 and S7;
p = 0.13, Spearman’s rank correlation).
Analysis of our conventional chondrosarcomas

(CHS) resulted in 56 of 98 samples not being
predicted to a methylation class, which was partly
accounted for by the DKFZ Classifier providing four
different classes for these tumours based on IDH1/2
mutational status. For 15 of 56 tumours, the classifier
could not confidently select one of these four classes,
whereas by combining the classifier score given to
each of these four classes (a ‘CHS family score’) these
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cases would have been predicted to the correct ‘meth-
ylation family’ (see supplementary material,
Table S1), an observation also noted in the validation
performed by Koelsche et al of the DKFZ Classifier
[5]. We also identified a non-random distribution of
the methylation chip type (450K versus EPIC arrays)
associated with the different tumour types (see supple-
mentary material, Figure S8); however, an equal pro-
portion (61%) of core samples on both chip types
received a score above threshold.

Classification of pleomorphic sarcomas is rarely
improved by methylation profiling
Samples from 79 USARCs of bone and soft tissue
were included in this study (see supplementary
material, Table S1). In line with the WHO criteria,
these tumours were defined by their histological
features together with an absence of immunohisto-
chemical or molecular features indicative of a dis-
tinct entity or cell lineage [18,19]. Forty-six
(58%) of these samples received a classifier
prediction, with the majority (41/46) assigned to
the USARC methylation class and 1 sample to the
SARC_MPNST_LIKE methylation class. Seven
samples were assigned to classes representing spe-
cific sarcoma subtypes. Following review, two of
these predictions led to a revised diagnosis
(Table 1; cases 254 and 287); one was categorised
as discrepant but inconclusive and the others were
rejected based on histological and molecular evi-
dence. Conversely, 18 samples of high-grade sarco-
mas with histological and/or molecular features
indicative of distinct histotypes were given a pre-
diction to the USARC methylation class. These
predictions could be explained on the basis that the
samples represented a dedifferentiated component
of a particular sarcoma subtype, such as a
chordoma (case 758), or showed a significant
degree of pleomorphism while otherwise exhibiting
characteristic histological features in keeping with
our original histological diagnosis, for instance
high-grade conventional OS (see supplementary
material, Table S1).

A quarter of tumours not represented in the DKFZ
Classifier receive a prediction
One hundred and sixty-three samples of our sample
set, representing 21 distinct tumour subtypes (19 soft
tissue and bone tumours, 2 carcinomas), were not
represented in the DKFZ Classifier v12 (see supple-
mentary material, Table S1 and Figure S9). Twenty-
six percent (42/163) of these received a prediction
(score >0.9 threshold) to one of the existing methyl-
ation classes (Figure 2). Samples from 11 malignant
giant cell tumour of bones (GCTBs) clustered with
conventional GCTBs, a finding explained on the
basis of the shared cell of origin and the absence of
a specific class for malignant GCTB in the DKFZ
Classifier. None of the predictions of the remaining
31 samples warranted a revised diagnosis, although
it was noted that many of these samples were
assigned to a methylation class which represented a

Table 2. Overview of the main included sarcoma subtypes and
controls.

Sarcoma subtype/group

Included
in DKFZ
Classifier

Proportion
predicted to correct

methylation
class (%)

Adamantinoma (n = 19) No —

Alveolar soft part sarcoma (n = 11) Yes 81.8
Aneurysmal bone cyst (n = 13) No —

Angiosarcoma (n = 10) Yes 50.0
Blood controls (n = 20) Yes 90.0
Chondroblastoma (n = 17) Yes 58.8
Chondromyxoid fibroma (n = 14) No —

CHS, conventional (n = 97) Yes 36.1
CHS, clear cell (n = 7) Yes 14.3
CHS, mesenchymal (n = 8) Yes 87.5
Chordoma (n = 88) Yes 85.2
Epithelioid sarcoma (n = 8) Yes 62.5
Fibrous dysplasia (n = 6) Yes 83.3
Giant cell tumour of bone (n = 57) Yes 70.2
Leiomyosarcoma (n = 6) Yes 50.0
MPNST (n = 79) Yes 25.3
Myxofibrosarcoma (n = 56) Yes 42.9
Neurofibroma (n = 6) Yes 16.7
Non-ossifying fibroma (n = 13) No —

Normal bone (n = 9) No —

Normal muscle (n = 5) Yes 80.0
Normal tissue, NOS (n = 15) Yes 60.0
Osteoblastoma (n = 12) Yes 75.0
OS, high-grade central (n = 198) Yes 55.1
OS, parosteal, (n = 25) No —

OS, extraskeletal (n = 18) No —

PEComa (n = 8) No —

Phosphaturic mesenchymal tumour
(n = 7)

No —

Pleomorphic liposarcoma (n = 14) Yes 28.6
Rhabdomyosarcoma (n = 7) Yes 57.1
Undifferentiated pleomorphic
sarcoma (n = 79)

Yes 51.9

Overview of the sarcoma subtypes with more than five samples included in
this study. The full list of samples and subtypes included can be found in sup-
plementary material, Table S1. Subtypes not represented in the DKFZ Classifier
were included to demonstrate how the classifier handled subtypes for which it
was not yet trained. Dedifferentiated CHSs are included under the conven-
tional CHS category.
NOS, not otherwise specified; PEComa, perivascular epithelioid cell tumour;
CHS, chondrosarcoma.
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closely related tumour subtype for which the classi-
fier had been trained (Figure 2). For example,
parosteal and periosteal OS were classified under the
OS_HG methylation class.

Discussion

In this study, we assessed methylation data from
983 samples by employing the DKFZ methylation-based
sarcoma classifier, the most comprehensive DNA
methylation-based tool published to date on these
rare tumours [5]. We found that 61% of our samples
for which the classifier had been trained (the core val-
idation set) were given a prediction, and that our

histological diagnoses were concordant with the
assigned methylation class in 88% of these samples.
The reason for the greater number of samples failing
to meet the calibrated score threshold in our data set
(39%) compared to those in the original validation
study (25%) is unclear. Tumour purity, a recognised
potential confounder in the analysis of DNA methyl-
ation analysis [20], did not account for the differ-
ence. The non-random distribution of sarcoma types
across the two methylation chip types was similarly
unlikely to explain these differences, as the classifier
reference set includes samples run on both the 450K
and the EPIC chips and a batch adjustment for chip
type is performed as part of the classifier pipeline.
Furthermore, we found a similar proportion of cases
on both chip types receiving classification.

Figure 2. Sankey plot showing the classifier predictions of samples with a subtype not represented in the current version (v12) of the
‘DKFZ sarcoma Classifier’. (A) Case 826, (i) Haematoxylin and eosin (H&E) demonstrating high-grade spindle cell areas of a malignant
GCTB with (ii) focal loss of H3F3A G34W expression on immunohistochemistry. (B) Case 120, H&E showing typical bony trabeculae
within a low-grade parosteal OS. (C) Case 828, H&E showing a spindle cell lesion with scattered squamous islands characteristic of an
adamantinoma. (D) Case 311, (i) H&E of high-grade spindle cell lesion in a patient with a background of breast carcinoma; (ii) the lesion
showed widespread CAM5.2 immunopositivity and was subsequently diagnosed as a metastatic focus. FDY, fibrous dysplasia; HG, high
grade; IMT, inflammatory myofibroblastic tumour; MIFS, myxoinflammatory fibroblastic sarcoma; NFB(Plex), plexiform neurofibroma;
PEComa, perivascular epithelioid cell tumour; PHAT, pleomorphic hyalinising angiectatic tumour; WDLS_DDLS, well-differentiated lip-
osarcoma/dedifferentiated liposarcoma.
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Interestingly, a smaller proportion of classified sam-
ples was also noted when the DKFZ brain classifier
[3] was validated on external data sets [4,21], indi-
cating that this may be related to institution-specific
factors and the greater experience that the DKFZ
group has in sample preparation for methylation
analysis.
From a diagnostic perspective, 9% of samples

would have been misclassified in the original DKFZ
validation data set [5]. In this current study, the pro-
portion of misclassified samples was 12% (6% with
definitive molecular evidence and 6% with strong his-
tological/clinical evidence but without definitive
molecular evidence). This may partly be explained by
the Heidelberg Sarcoma Classifier reference set being
composed of ‘classical’ cases with confirmed patho-
gnomonic alterations for all entities characterised by
such a feature. The classifier was therefore trained on
a relatively narrow spectrum of cases for each sarcoma
subtype compared to those in our data set, resulting in
a greater number of discrepant results in our study.
The error rate reported for the two validation cohorts
demonstrates that there is room to optimise the Sar-
coma Classifier to the diagnostic level precision of the
brain tumour classifier [3]. Conversely, the percentage
of predictions which resulted in correction of a diagno-
sis was 9% in the original DKFZ validation study
(29/322 predicted samples) and 1.2% in our study
(6/499 predicted samples). This may reflect that the
original validation cohort included samples from a
number of centres, while in this study cases were sub-
mitted from a single specialist sarcoma centre.
We noted that the classifier performed best when

diagnosing mesenchymal CHAs, chordomas, and
fibrous dysplasia, while lower overall rates of classifica-
tion and accuracy were observed amongst sarcoma sub-
types known to be genomically complex and exhibit
high levels of tumour heterogeneity, including high-
grade OS [22,23], myxofibrosarcomas [24], pleomor-
phic liposarcomas [25], and MPNSTs [26]. It is
noteworthy that Koelsche et al found that many of these
tumours, which pathologists distinguish on the basis of
histology alone, formed a single methylation cluster [5].
Specifically, myxofibrosarcomas, undifferentiated pleo-
morphic sarcoma, and pleomorphic liposarcoma formed
a USARC cluster, supporting the concept that they may
represent the same disease, a concept also suggested by
existing genomic evidence [9,11]. The overlapping
methylation profiles of these different sarcoma subtypes
is consistent with the concept that aberrant DNA meth-
ylation patterns reflect the cell of origin of the tumour
[27]. However, this begs an explanation for their distinc-
tive histological features [18]. Could it be that these

tumours arise from cells at marginally different states of
commitment which cannot be distinguished by their
methylation profile, at least when using the Illumina
Infinium Methylation arrays, but is still reflected in their
morphology?
The diagnosis of MPNST has always been challeng-

ing because of its histological variation and the absence
of a surrogate marker for the biallelic loss of function of
NF1. Loss of H3K27me3 expression, largely specific to
high-grade MPNST, recently provided a valuable
marker for this disease [28]; however, evidence has
accumulated that a significant proportion of MPNSTs
do not exhibit this molecular alteration [8,16]. It was
therefore interesting that the DKFZ group identified a
methylation cluster of MPNSTs which retained expres-
sion of H3K27me3 (SARC_MPNST_LIKE) [10]. Our
data did not fully reproduce this finding leaving unre-
solved challenges around the classification of MPNST.
Ongoing comprehensive multi-omic studies may help
provide answers [12,29].
Tumour subtypes unrepresented in the DKFZ Clas-

sifier should not receive predictions above threshold,
but 26% of samples did obtain a classification. It is
noteworthy that these samples did not seem to be
predicted to random classes but in most instances were
classified as closely related tumour entities. It is inter-
esting to speculate that this is due to the tumours shar-
ing a cell of origin or other biological relationships
which are worthy of further study. Nevertheless, these
predictions have clinical implications which could be
detrimental for patients. For instance, distinguishing
parosteal OS from high-grade OS has important man-
agement consequences. Expanding the spectrum of
diagnoses in the classifier may allow such subtypes to
be distinguished, but this will be a major task because
of the large number of histological mimics of sarcoma.
By asking rigorous biological and clinically relevant

questions, the classification of disease has the potential
to provide novel prognostic and predictive biomarkers
as well as identify therapeutic targets. Studies of the
methylation profiles of GCTBs, dedifferentiated lip-
osarcoma, MPNST, and CHA serve as examples [6–8,
11]. In the DKFZ Classifier, benign and malignant
GCTBs cluster together; however, directed analysis of
methylation data of these subtypes not only allowed
them to be separated, but also implicated CCND1 as a
likely cancer driver gene in the malignant transforma-
tion of GCTB [7]. Second, The Cancer Genome Atlas
analysis of soft tissue sarcomas demonstrated that
dedifferentiated liposarcoma, conventionally classified
by the presence of MDM2 amplification, formed two
methylation groups which corresponded to signifi-
cantly different clinical outcomes [11]. Refinement of
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the DKFZ Classifier should allow for these clinically
significant tumour subgroups to be distinguished.
The challenges faced in determining the reasons

behind incorrect and failed classifications represent an
important limitation of machine-learning approaches,
including random forest classifiers [30] and has
resulted in considerable debate and distrust with
respect to the use of ‘black box’-type and machine-
learning models in clinical applications [31]. This has
stimulated the development of new approaches capable
of explaining various features employed in the
decision-making processes which provide a classifier
result [30,32]. However, concerns remain whether
these post hoc interpretability models are the correct
approach for clinical use [33].
A limitation of our study is the lack of comprehen-

sive multi-omic molecular interrogation for all cases,
which potentially could have provided clarification of
the nature of those tumours categorised as discrepant
but inconclusive as well as further evidence for classi-
fication of those tumours categorised as discrepant
with evidence where the evidence was based on mor-
phology and immunohistochemistry grounds. How-
ever, as a minimum, diagnoses were reached using
rigorous tests employed in the current standard of care
clinical setting. Classification of disease is an ongoing
process and will continue to be modified to reflect
what we know about clinical outcome and response to
therapies. We believe that the current version of the
classifier is most valuable at a research level and
should lead to a greater understanding of the pathogen-
esis of sarcoma. However, although, in its current
form, it can provide supportive evidence and may
prompt a diagnosis, these results still require valida-
tion. With additional work, the DKFZ has the potential
to contribute to diagnostic pathology in a more routine
setting.
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SUPPLEMENTARY MATERIAL ONLINE

Supplementary materials and methods

Figure S1. No difference in estimated tumour purity between samples predicted correctly versus those predicted incorrectly in the ‘core validation
cohort’

Figure S2. The tumour purity is higher in samples correctly classified despite having a calibration score below threshold

Figure S3. Test of tumour filtering step

Figure S4. FFPE samples obtain a lower calibrated classifier score than fresh frozen tissue samples

Figure S5. Core validation set – results by tumour type

Figure S6. Proportion of cases per subtype predicted to the correct methylation class is independent of tumour purity

Figure S7. Correlation plot showing no clear correlation between estimated tumour purity and the proportion of cases predicted correctly (sensiti-
vity) per subtype

Figure S8. Non-random distribution of the methylation chip type (450K versus EPIC arrays) associated with the different tumour types

Figure S9. t-distributed stochastic neighbour embedding (t-SNE) showing the clustering of the unrepresented samples

Table S1. Overview of RNOH samples

Table S2. Inclusion of estimate tumour purity filtering step before validating the performance of the classifier

Table S3. Testing a classifier score threshold cut-off = 0.85

Table S4. Sensitivity and precision of the different methylation classes (core validation set)

Table S5. Proportion of samples predicted to the correct methylation class (DKFZ validation and RNOH cohorts, common tumour types)
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