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1  | INTRODUC TION

Gliomas are the most common and devastating type of primary 
tumors found in the central nervous system,1-3 characterized by a 
diffuse and infiltrative nature, recurrent local growth, significant 

heterogeneity between individuals and adverse clinical out-
comes.4-6 Despite standard treatments involving surgical resec-
tion, radiotherapy and chemotherapy, both tumor recurrence 
and drug resistance are still inevitable.7,8 Thus, there is an urgent 
need to further understanding the molecular mechanism behind 
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Abstract
As the core element of material and energy metabolism pathways, the biological 
functions and prognostic significance of ATP metabolism in diffuse gliomas have so 
far remained unclear. Based on comprehensive analysis of ATP metabolism-related 
gene expression profiles, we constructed an ATP metabolism-related risk signature 
to determine the role of ATP metabolism. We found that this ATP metabolism-related 
gene expression profile could divide patients into 2 robust groups with distinct clini-
cal characteristics and prognosis. Patients in the high-risk group tended to be pre-
dicted as malignant entities, indicating that the activation of ATP metabolism may 
promote the malignant progress of diffuse gliomas. Cox regression and Kaplan-Meier 
analyses suggested that this risk signature was an independent predictor for prog-
nosis. Furthermore, we constructed an individualized prognosis prediction model 
through nomogram and time-dependent receiver operating characteristic (ROC) 
curve analyses. Functional analysis suggested that, in addition to material and en-
ergy metabolism, ATP metabolism also played an essential role in the regulation of 
the tumor immune microenvironment. In brief, the ATP metabolism-related signature 
was tightly associated with regulation of the tumor immune microenvironment and 
could serve as an independent prognostic biomarker in diffuse gliomas.
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tumorigenesis and find new therapies to improve the prognosis 
for these patients.

In recent years, increasing numbers of studies have shown that 
multiple material and energy metabolic pathways are involved in 
the manifestation and progression of human cancers.9-11 ATP is a 
universal energy carrier for cells, the energy supply mechanism for 
the mutual transformation of ATP and ADP is a common feature 
of the biological world. ATP is the core element of biochemical 
systems. Multiple material and energy metabolic pathways, such 
as the tricarboxylic acid cycle, glycolysis, or oxidative phosphory-
lation (OXPHOS), are all associated with ATP metabolism. Cancer 
cells employ distinct metabolic pathways to produce more ATP 
for growth and survival.12,13 Relevant studies have demonstrated 
that high concentrations of ATP could also cause drug resistance 
in tumor cells, while ATP depletion was necessary for drug-induced 
autophagic cell death.14,15 As an important secondary messenger, 
ATP plays an essential role in many cellular processes including cell 
proliferation, apoptosis, and differentiation.16,17 In addition, extra-
cellular ATP could shape the tumor microenvironment and regulate 
immune and inflammation responses to determine tumor fate.18-21 
Thus, a deeper understanding of ATP metabolism could make an 
important step toward the individualized treatment of gliomas.

In this study, we analyzed systemically the expression profile 
of ATP metabolism-related genes listed in the Chinese Glioma 
Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) 
datasets. The results suggested that patients could be divided 
into 2 subgroups based on different clinical and molecular patho-
logical characteristics. An integrated ATP metabolism-related 
risk signature was developed to predict the survival of glioma 
patients based on the CGGA dataset, and was validated in the 
TCGA dataset. By applying Kaplan-Meier (K-M) survival curves 
and Cox regression analyses, we found that the risk signature 
was an independent prognostic biomarker. Next, an individ-
ualized prediction model was constructed using time-depen-
dent receiver operating characteristic (ROC)-time curves and 

nomogram plots to predict the 1-, 3-, and 5-y overall survival 
rates for glioma patients. Bioinformatics analyses indicated that 
the risk signature was not only closely related to the material and 

TA B L E  1   Characteristics of patients in cluster 1 and cluster 2 in 
the CGGA database

Characteristic N Cluster 1 Cluster 2 P-value

Total cases 310 169 141

Gender

Male 195 111 84 .2678

Female 115 58 57

Age (y)

≤40 133 51 82 <.0001

＞40 177 118 59

Grade

II 105 16 89 <.0001

III 67 34 33

IV 138 119 19

Subtype

Classical 70 63 7 <.0001

Mesenchymal 65 65 0

Proneural 99 28 71

Neural 76 13 63

IDH status

Mutation 160 37 123 <.0001

Wildtype 150 132 18

MGMT promoter

Methylation 134 67 67 .0009

Unmethylation 110 78 32

1p19q

Codel 36 5 31 <.0001

Non-codel 218 126 92

Variables

Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI)
P-
value

Risk score 4.804 (3.734-6.181) <.001 4.190 (2.576-6.816) <.001

Age at diagnosis 1.038 (1.023-1.054) <.001 0.995 (0.975-1.016) .660

Gender 1.181 (0.837-1.666) .345 - -

WHO grade 3.477 (2.716-4.452) <.001 1.716 (1.141-2.582) .010

TCGA subtype 1.935 (1.641-2.282) <.001 0.831 (0.619-1.115) .217

IDH mutation 
status

0.228 (0.158-0.329) <.001 1.083 (0.522-2.250) .830

MGMT 
methylation

0.528 (0.374-0.450) <.001 0.721 (0.461-1.128) .152

1p19q codeletion 0.134 (0.049-0.363) <.001 0.712 (0.243-2.085) .536

Radiotherapy 0.429 (0.296-0.622) <.001 0.446 (0.286-0.695) <.001

Chemotherapy 1.378 (0.963-1.971) .079 - -

TA B L E  2   Univariate and multivariate 
analysis of OS in CGGA sequencing 
database
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energy metabolism of glioma, but also had a significant effect 
on regulation of the tumor immune microenvironment, especially 
the T-cell-mediated immune response.

2  | MATERIAL S AND METHODS

2.1 | Datasets

In total, 310 glioma samples from the CGGA RNA-sequencing 
(RNA-seq) dataset were enrolled in our study as the discovery co-
hort. RNA-seq data and follow-up information for these samples 
were downloaded from the CGGA website (http://www.cgga.org.
cn). Details regarding establishment and management of the CGGA 
dataset were introduced in our previous study22. Similarly, 631  
glioma samples with RNA-seq data and corresponding clinical in-
formation were obtained from TCGA database (http://cance​rgeno​
me.nih.gov/) and used as the external validation. The clinical char-
acteristics of patients from these 2 datasets are summarized in 
Tables 1 and 2. This study was approved by the Institutional Review 
Boards of Beijing Tiantan Hospital.39

2.2 | Consensus clustering

Three ATP metabolism-related gene sets (ATP generation from 
ADP, ATP biosynthetic process and regulation of ATP metabolic 
process) were obtained from the Molecular Signature Database 
v5.1 (MSigDB) (http://www.broad.mit.edu/gsea/msigd​b/). A gene 
set containing 110 ATP metabolism-related genes (Table S1) was 
obtained after eliminating duplicate genes. The most variable genes 
were identified by median absolute deviation (MAD) and used for 
consensus clustering. The R package “ConsensusClusterPlus” was 
used in R language v3.4.3 for consensus clustering analysis and 
graphic generation.

2.3 | Construction of risk signature

The least absolute shrinkage and selection operator (LASSO), which 
has been proved suitable for regression analysis of high dimensional 
data, was employed to identify the optimal risk signature. The risk 
score for each glioma patients in the CGGA dataset was calculated 
according to the following formula:

F I G U R E  1   Consensus clustering for ATP metabolism-related genes in glioma patients from CGGA dataset. A, Consensus clustering 
cumulative distribution function (CDF) for k = 2 to k = 10. B, Relative change in area under CDF curve for k = 2 to k = 10. C, Consensus 
clustering matrix of 310 samples from CGGA dataset for k = 2. D, Heat map of 2 clusters defined by the top 55 variable expression genes. E, 
Kaplan-Meier (K-M) survival curve of patients in 2 clusters

http://www.cgga.org.cn
http://www.cgga.org.cn
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://www.broad.mit.edu/gsea/msigdb/
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Risk score = (exprgene1 × coefficientgene1)+ (exprgene2 +

coefficientgene2)+ ...+ (exprgene3 × coefficientgene3)
.

Then, the same formula and regression coefficients were applied 
for the validation set for risk score calculation.

2.4 | Bioinformatics analysis

Pearson correlation analysis was performed using R language v3.4.3 
(https://cran.r‑proje​ct.org/bin/windo​ws/base/old/3.4.3/) to identi-
fied the genes most closely related to risk score in the CGGA and 
TCGA RNA-seq datasets. Then, these genes were uploaded to the da-
tabase for annotation, visualization and integrated discovery (DAVID) 
website (http://david.abcc.ncifc​rf.gov/home.jsp) for Gene Ontology 
(GO) analysis and Kyoto Encyclopedia of Genes and Genomes path-
way enrichment (KEGG) analysis. Gene set enrichment analysis 
(GSEA) software (http://www.broad​insti​tute.org/gsea/index.jsp) and 
gene set variation analysis (GSVA) were carried out to detect the as-
sociation between biological processes and risk score in glioma sam-
ples.22,23 Principal component analysis (PCA) was employed based on 
whole genome expression data to detect differences within stratified 
patients using the R package “princomp.”24 A nomogram prediction 
model was constructed based on the integrated analysis of risk score 
and clinicopathologic characteristics using R package “rms.”

2.5 | Statistical analysis

Statistical analyses were conducted using R language v3.4.3 and 
SPSS v16.0. Student t test and one-way ANOVA was performed to 
compare differences among groups. Chi-square test was performed 
to detect the differences in the clinicopathologic characteristics be-
tween the 2 clusters of patients. Kaplan-Meier (K-M) curve analy-
sis was used to evaluate the survival differences between stratified 
patients. Univariate and multivariate Cox regression analyses were 
conducted to test independent prognostic factors. ROC curve analy-
sis was used to predict molecular subtype and overall survival (OS) 
time with the R package “pROC.” In this study, a 2-sided test P < .05 
was considered significant.

3  | RESULTS

3.1 | ATP metabolism-related signature identified in 
diffuse glioma

First, consensus clustering was performed to explore the association 
between ATP metabolic status and clinical outcome of glioma patients 
in the CGGA RNA-seq dataset. The optimal number of subgroups was 
evaluated using cumulative distribution function (CDF) and consensus 
matrices. The results showed that patients could be divided into 2 ro-
bust groups (Figure 1A-C). The heat map of these 2 clusters showed 

F I G U R E  2   Identification of the ATP metabolism-related signature. A, Cross-validation for tuning parameter screening in the LASSO 
regression model. B, LASSO coefficient profiles of the common genes. C, D, Heat maps of 110 ATP metabolism-related genes based on the 
risk score value in CGGA and TCGA RNA-seq datasets

https://cran.r 11project.org/bin/windows/base/old/3.4.3/
http://david.abcc.ncifcrf.gov/home.jsp
http://www.broadinstitute.org/gsea/index.jsp


     |  2329HUANG et al.

a significant difference in ATP metabolism-related gene expression 
(Figure 1D). Chi-square test was performed to further detect the dif-
ference in clinical characteristics between these 2 clusters of patients. 
The results suggested that patients in cluster 1 had the characteristics 
of older, higher grade, classical or mesenchymal subtypes, isocitrate 
dehydrogenase (IDH) wild type, O6-methylguanine-DNA methyl-
transferase (MGMT) promoter unmethylated, and 1p19q non-code-
leted. Patients in cluster 2 had completely opposite clinicopathological 
features (Table 1). Moreover, K-M curve analysis revealed that the OS 
time of patients in cluster 1 was significantly shorter than that of pa-
tients in cluster 2 (Figure 1E). Similar analyses were also performed in 
TCGA RNA-seq dataset and consistent results were obtained (Figure 
S1 and Table S2). These results indicated that the ATP metabolism 

status was closely correlated with molecular features and clinical out-
comes of patients with glioma.

In this regard, here we constructed a risk signature to evaluate 
ATP metabolic status and predict the prognosis of patients with gli-
oma. The LASSO Cox regression algorithm was performed to select 
the most valuable predictive genes with non-zero regression coeffi-
cients (Figure 2A,B). After that, an 8-gene signature was constructed 
and the risk score of each patient was calculated using the formula 
mentioned in the Materials and Methods section. In TCGA dataset, 
for validation, risk score was calculated with the same genes and 
regression coefficients. The heat maps showed an overview of cor-
relation between ATP-related gene expression and clinical charac-
teristics (Figure 2C,D).

F I G U R E  3   Association between pathologic characteristics and the ATP metabolism-related signature in the CGGA dataset. 
A-E, Distribution of the risk score in glioma patients stratified by WHO grade, isocitrate dehydrogenase (IDH) mutation status, O6-
methylguanine-DNA methyl-transferase (MGMT) promoter methylation, 1p/19q codeletion status and TCGA molecular subtypes. F, Receiver 
operating characteristic (ROC) curves predicted ATP metabolism as a biomarker of mesenchymal subtype glioma. *** P < .001, **** P < .0001
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3.2 | Association between the risk signature and 
clinicopathologic features in glioma

By examining the association between this 8-gene signature and clini-
cal features in both the CGGA and TCGA RNA-seq datasets, we found 
that the signature score was positively correlated with the World Health 
Organization (WHO) grade of the diffuse glioma (Figures 3A and S2A). 
In addition, risk score was significantly reduced in IDH-mutated, MGMT-
methylated or 1p/19q codeleted samples (Figures  3B-D and S2B-D). 
Moreover, we also found that the risk score showed a molecular subtype 
preference. Among 4 subtypes defined by TCGA network, the mesen-
chymal subtype, which is typically associated with poor clinical outcome, 
had the highest risk score (Figures 3E and S2E). To further verify this 
result, ROC curve analysis was performed. The area under curve (AUC) 
for risk scores in predicting the mesenchymal subtype in the CGGA and 
TCGA datasets were 0.901 and 0.890, respectively, (Figures  3F and 
S2F). These findings suggested that ATP metabolic status may have had 
a significant impact on the malignant progression of diffuse glioma.

3.3 | Prognostic value of the ATP metabolism-
related signature

To get an overview of this risk signature, we further evaluated the 
association among expression level of each gene, risk score, and 

patient survival. The results showed that the patients in the CGGA 
dataset with a high-risk score tended to have poor prognosis and 
higher expression of ALDOC, HTR2A, PID1, and SLC25A23 genes. 
Meanwhile, patients in the low-risk group tended to have better 
prognosis and higher expression of ATP5F1, ATP5G3, C12orf5 and 
HK2 genes (Figure 4A). After dividing the patients into 2 groups 
using the median expression of each gene, K-M curve analyses 
showed that these 8 individual genes could distinguish the prog-
nosis of the patients well (Figure S3). In addition, similar results 
were also observed in patients from TCGA dataset (Figures S4A 
and S5).

To further investigate the prognostic value of risk signature 
in diffuse gliomas, K-M curve analyses were performed for the 
CGGA dataset. The results showed that patients in the high-risk 
group tended to have shorter OS (Figure  4B). Considering the 
significant differences in clinical and pathological characteristics 
between glioblastoma multiforme (GBM) and lower-grade glioma 
(LGG), we also performed the same analyses in GBM and LGG pa-
tients respectively and achieved similar results (Figure 4C,D). In 
addition, the risk signature also showed a significant prognostic 
value in glioma patients stratified by IDH mutation, MGMT pro-
moter methylation and 1p/19q codeletion status. (Figure  4E-J). 
These findings were verified in the validation cohort, except for 
patients with GBM or IDH-mutated glioma (Figure S4B-J). In addi-
tion, univariate and multivariate Cox regression analyses showed 

F I G U R E  4   The prognostic value of the risk signature in CGGA dataset. A, Distribution of the risk score, overall survival (OS) and 
expression level of 8 genes in the risk signature. B-J, Kaplan-Meier (K-M) survival analysis of the risk signature in glioma patients stratified 
by WHO grade, isocitrate dehydrogenase (IDH) mutation status, O6-methylguanine-DNA methyl-transferase (MGMT) promoter methylation 
and 1p/19q codeletion status
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that this risk signature was an independent prognostic factor of 
patients with glioma (Tables 2 and S3). Taken together, our results 
demonstrated that the risk signature had a high prognostic value 
for patients with glioma.

3.4 | An individualized prediction model based 
on the risk signature

We performed ROC curve analysis to evaluate the prediction 
accuracy of risk score for the survival rate. The results showed 
that the risk score had high time-dependent AUC for the CGGA 
dataset (1 y: 85.71%, 3 y: 91.42%, 5 y: 93.72%) and TCGA (1 y: 
81.31%; 3 y: 84.92%, 5 y: 82.21%) datasets (Figure 5A,B). In ad-
dition, a nomogram model was constructed with the independ-
ent prognostic parameters for OS of patients. The C-indices were 
0.810 and 0.874 in the CGGA and TCGA datasets, respectively 
(Figure 5C). In addition, a calibration plot for probability of sur-
vival also showed satisfactory concordance with the prediction of 
1-, 3-, and 5-y OS in both datasets (Figure 5D,E).

3.5 | Functional annotation of the risk signature

We performed PCA to explore the differential gene expression pro-
files between high-risk and low-risk groups in the CGGA and TCGA 
datasets. The results suggested that patients in the high-risk and 
low-risk group tended to distribute differently (Figures 6A and S6A). 
To further investigate the biological feature of glioma with differ-
ent risk score, we picked genes that tightly correlated with the risk 
score (|R| > 0.5) by Pearson correlation analysis and annotated their 
functions using DAVID. GO analysis revealed that carbohydrate and 
amino acid metabolic processes, immune response, inflammatory re-
sponse, cell proliferation, and cell division were significantly enriched 
in the high-risk group. However, genes that negatively correlated 
with risk score were more enriched in normal biological processes, 
such as nervous system development, neuron cell-cell adhesion 
(Figure 6B). Furthermore, KEGG pathway analysis showed that the 
risk score was positively related to PI3K-AKT and NF-kappa B sign-
aling pathways and negatively related to MAPK and cAMP signaling 
pathways (Figure  6C). Similar results were uncovered when GSEA 
was performed (Figure 6D). To improve accuracy, the same analyses 

F I G U R E  5   An individualized prediction model for overall survival (OS) of patients with glioma. A, B, The time receiver operating 
characteristic (ROC) curve analyses to predict 1-, 3-, and 5-y OS according to risk score in CGGA and TCGA datasets. C, A nomogram 
was developed by integrating the signature risk score with the clinicopathologic features in the CGGA cohort. D, E, Calibration curves of 
nomogram for predicting OS at 1 y (blue line), 3 y (red line) and 5 y (black line) in the CGGA and TCGA datasets
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were performed in TCGA dataset as a validation. Consequently, GO 
and GSEA showed similar outcomes (Figure S6B-D). These results 
suggested that the ATP metabolic status was not only tightly associ-
ated with substance metabolism functions such as glycolysis, carbo-
hydrate, and amino acid metabolic process, but also had significant 
effects on the immune microenvironment of diffuse gliomas.

3.6 | Association between the risk signature and 
tumor immune microenvironment

To further understand the relationship between ATP metabolic sta-
tus and the tumor immune microenvironment, immune checkpoints 
were enrolled into the analysis. The CIRCOS analysis revealed that 
risk score was positively related to the expression level of immune 
check points in both TCGA and the CGGA datasets (Figures 7A-C 
and S7A-C). These results suggested that glioma patients in the high-
risk group tended to be immunosuppressed. In addition, GSVA anal-
ysis was performed in the CGGA and TCGA datasets to evaluate the 
relationship between ATP metabolic status and the T-cell immune 
response in gliomas. We found that ATP metabolism was corre-
lated positively with the T-helper 1/2 type immune response, and 
T-helper 1/2 cell cytokine production. Meanwhile, it was negatively 
correlated with the T-cell-mediated immune response to tumor cells, 
suggesting that enhanced ATP metabolism may play an inhibitory 
role in T-cell immunity to tumors in glioma. (Figures 7D and S7D). 

We also confirmed that ATP metabolism was tightly correlated with 
natural killer (NK) cell-mediated and myeloid cell-mediated immune 
responses (Figure S8).

Considering that ATP metabolism was also involved in the regula-
tion of inflammatory response in gliomas, several inflammatory genes 
were selected to identify the role of ATP metabolism in the inflamma-
tory response. The results showed that the risk score was also positively 
associated with multiple inflammatory factors, especially HLA-A, CCL2, 
and IL-6 (Figure S9), indicating that enhancement of ATP metabolism 
promoted activation of T-cell-mediated and macrophage-mediated 
inflammatory responses in glioma patients. In addition, we analyzed 7 
metagenes mentioned in our previous studies.25,26 The results showed 
that risk score was positively correlated with HCK, MHC-I, MHC-II, 
STAT1, and STAT2, while negatively associated with IgG in 2 datasets 
(Figures 7E and S7E). These findings suggested that ATP metabolism 
played a similar role to that of TIM-3 and PD-L1 in the inflammatory 
response. In brief, ATP metabolism could promote the malignant pro-
gression of glioma by shaping the tumor immune microenvironment.

4  | DISCUSSION

In recent years, metabolic disorders of cancer have attracted exten-
sive attention.9,10 Cancer cells have prodigious energetic require-
ments and need active material and energy metabolism to maintain 
survival and rapid proliferation.27 In gliomas, relevant studies proved 

F I G U R E  6   Functional analysis of the ATP metabolism-related signature in the CGGA dataset. A, Principal components analysis of whole 
gene expression data between high-risk and low-risk groups. B, C, GO and KEGG pathway analyses were performed via the DAVID website 
to explore the functional annotation of the risk signature. D, GSEA analysis was used to explore the biological functions and pathways that 
were significantly enriched in patients with high-risk score
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that abnormal regulation of multiple metabolic pathways, such as 
glycolysis, amino acid, and lipid metabolism, are involved in the oc-
currence and malignant progression of this disease.28-30 ATP me-
tabolism, as the core of these metabolic pathways, will inevitably 
have a significant impact on the biological behavior of gliomas. In 
this study, we detected the ATP metabolic status of glioma patients 
and constructed an ATP metabolism-related signature through the 
comprehensive analysis of RNA-seq data. The prognostic value of 
this risk signature was fully validated by performing K-M curve anal-
yses and Cox regression analyses in the CGGA and TCGA datasets. 
In this 8-gene signature, each individual gene could be regarded 
as a protective or risky prognostic factor for patients with glioma. 
However, compared with a single gene, a multiple-gene signature 
can evaluate ATP metabolic status more accurately and predict 
survival more robustly for glioma patients. Therefore, this ATP 
metabolism-related signature could serve as a reliable prognostic 

indicator and provide a theoretical basis for metabolism-targeted 
therapies.

ATP is more than just a universal energy currency of our body. 
It can also regulate multiple biological functions as a crucial ligand 
or secondary messenger.31 Several studies have proved that, during 
cancer formation and progression, ATP, and its main metabolite 
adenosine, are actively secreted in the extracellular environment, 
where they play an essential role as extracellular messengers.32,33 
The ATP-gated receptor P2X7, which is tightly associated with en-
hanced cancer cell survival, proliferation and metastatic potential, 
can be activated by high concentrations of extracellular ATP.34 ATP 
also fulfills a key role in tumor multidrug resistance (MDR). The ATP-
binding cassette (ABC) transporters, such as P-glycoprotein (P-gp) 
can reduce intracellular drug levels to sub-therapeutic concentra-
tions.14 This makes ATP depletion a necessary condition for drug-in-
duced autophagic cell death. In lung cancer, the synergistic effect 

F I G U R E  7   The 8-gene signature-related immune responses and inflammatory activities in gliomas in the CGGA dataset. A-C, Correlation 
of immune checkpoint members and risk signature in whole gliomas, low-grade gliomas (LGG), and glioblastoma multiforme (GBM), 
respectively. D, The relationship between the risk signature and T-cell-related immunity. GO:0042088: T-helper 1 type immune response; 
GO:0042092: T-helper 2 type immune response; GO:2000556: positive regulation of T-helper 1 cell cytokine production; GO:2000553: 
positive regulation of T-helper 2 cell cytokine production; GO:0002860: positive regulation of natural killer cell-mediated cytotoxicity 
directed against tumor cell target; GO:0002842: positive regulation of T cell-mediated immune response to tumor cell; GO:0002852: 
regulation of T cell-mediated cytotoxicity directed against tumor cell target. E, Relationship between CMTM6 and inflammatory activities. 
*** P < .001, **** P < .0001, ns: not statistically significant
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of ATP-dependent drug efflux pump and focal adhesion signaling 
pathways can lead to vinorelbine resistance.15 These results suggest 
that we should pay more attention to ATP metabolic status in the 
individualized treatment of cancers.

In the present study, bioinformatics analysis suggested that 
risk score was positively related to immune and inflammatory 
responses, indicating a tight interaction between ATP metabo-
lism and the tumor immune microenvironment in gliomas. Some 
relevant studies on this point have suggested that ATP could 
selectively increase the number of immunosuppressive cells 
in the tumor microenvironment by increasing Treg cell chemo-
taxis, rather than activating CD4+ T lymphocytes.35 As a spe-
cial paracrine signaling molecule, ATP could reduce the motility 
of T lymphocytes by inducing calcium waves.36 In addition, ATP 
can promote the recruitment of inflammatory cells to the tumor 
tissue. For example, in polymorphonuclear leukocytes and mi-
croglia, ATP and its metabolite ADP can serve as chemotactic 
agents acting at P2 receptor family members.37 Extracellular ATP 
can increase the generation of reactive oxygen species in phago-
cytic cells via P2X7R and further promote cancer malignant 
progression, invasion, and metastatic spreading.38 Angiotensin-
converting enzyme (ACE) overexpression in myeloid cells can 
promote their immune function by directly increasing oxidative 
metabolism and ATP synthesis.18 In short, ATP metabolism is 
closely related to the regulation of the tumor immune microen-
vironment and this cannot be ignored in the immunotherapy of 
glioma.

In conclusion, we analyzed comprehensively the expression 
patterns of ATP metabolism-related genes and identified an ATP 
metabolism-related signature that could evaluate ATP metabolic 
status and predict the clinical outcome of patients with diffuse 
glioma. However, more prospective cohort studies are needed to 
estimate the clinical significance of this risk signature. The specific 
molecular mechanism behind the interaction between ATP metab-
olism and the tumor immune microenvironment also needs more 
in-depth exploration and experimental verification. Our findings 
provided new insights into ATP metabolism and might be an im-
portant reference in metabolism-targeted treatments for diffuse 
glioma patients.
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