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Abstract: The incidence of nontuberculous Mycobacterium (NTM) lung disease is rapidly increasing;
however, its diagnosis and prognosis remain unclear while selecting patients who will respond to
appropriate treatment. Differences in DNA methylation patterns between NTM patients with good or
poor prognosis could provide important therapeutic targets. We used the Illumina MethylationEPIC
(850k) DNA methylation microarray to determine the pattern between differentially methylated
regions (DMRs) in NTM patients with good or poor prognosis (n = 4/group). Moreover, we merged
and compared 20 healthy controls from previous Illumina Methylation450k DNA methylation
microarray data. We selected and visualized the DMRs in the form of heatmaps, and enriched terms
associated with these DMRs were identified by functional annotation with the “pathfinder” package.
In total, 461 and 293 DMRs (|Log2 fold change| > 0.1 and P < 0.03) were more methylated in patients
with four poor and four good prognoses, respectively. Furthermore, 337 and 771 DMRs (|Log2 fold
change| > 0.08 and P < 0.001) were more methylated in eight NTM patients and 20 healthy controls,
respectively. TGFBr1 was significantly less methylated, whereas HLA-DR1 and HLA-DR5 were more
methylated in patients with poor prognosis (compared to those with good prognosis). LRP5, E2F1,
and ADCY3 were the top three less-methylated genes in NTM patients (compared with the controls).
The mTOR and Wnt signaling pathway-related genes were less methylated in patients with NTM.
Collectively, genes related to Th1- cell differentiation, such as TGFBr1 and HLA-DR, may be used as
biomarkers for predicting the treatment response in patients with NTM lung disease.
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1. Introduction

The incidence and importance of nontuberculous Mycobacterium (NTM) lung disease
are rapidly increasing [1,2]. NTM diseases are mainly caused by Mycobacterium avium
complex (MAC), Mycobacterium kansasii, and Mycobacterium abscessus strains [1]. NTM is
prevalent in people with damaged immune systems and requires prolonged treatment; this
treatment is accompanied by various side effects such as severe gastrointestinal distress
or hearing loss [3]. The prognosis and outcomes of patients with NTM vary based on
the genetic and immunological factors [4–6]; some cases are associated with spontaneous
resolution, whereas others are refractory despite 2–3 years of antibiotic treatment [6–9].
Therefore, there is an urgent need to develop tools to diagnose NTM at early stages and to
identify patients who will respond to appropriate treatment.

DNA methylation involves the addition of a methyl group to the DNA (frequently
at the cytosine–guanine dinucleotide (CpG) sites) [10]. DNA methylation profiles may
be altered, and they regulate the expression of genes in response to external or internal
conditions. Moreover, these profiles are modified during disease progression; thus, they can
enable disease identification. Abnormal DNA methylation induced in response to chronic
viral infections enables the viruses to evade the host immune surveillance machinery. DNA
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methylation has also been studied as a biomarker of infection-induced stress [11,12]. The
Illumina Infinium MethylationEPIC (EPIC) array enables the simultaneous measurement
of the methylation marks at more than 860,000 CpG sites in almost all RefSeq genes [13],
thereby enabling the identification of differentially methylated regions (DMRs) between
groups. In a previous study, a standard statistical significance for extracting DMR from
EPIC chip-derived data was presented; additionally, we tried to extract approximately
1000 DMRs from the two comparison groups [14]. Therefore, in the present study, we
used the EPIC array to determine the correlation between DNA methylation profiles and
disease progression in NTM. Changes in the DNA methylation patterns of promoters
and enhancers regulate gene expression; thus, investigating epigenetic mechanisms at a
genome-wide level in humans can bridge the gap between NTM susceptibility and gene
expression variation.

An epigenome-wide association study (EWAS) is an additional method used to iden-
tify effective epigenetic biomarkers, which can also be used for the identification and prog-
nosis of NTM lung disease. To date, EWAS has been performed to identify altered DNA
methylation patterns in several complex diseases, such as diabetes, obesity, schizophrenia,
and respiratory diseases [15–18]. DNA methylation patterns have been studied in Mycobac-
terium tuberculosis infection samples and have been used as biomarkers [19]. Moreover,
immune-related factors, used to predict the progression of NTM, have been identified
in NTM samples, [20]. Serum from patients with NTM has also been used to detect the
association between NTM and other diseases, such as rheumatoid arthritis, bronchiectasis,
chronic obstructive pulmonary disease, and cystic fibrosis patients [21]. Nevertheless, to
date, no EWAS has been performed for NTM prognosis or to compare the DNA methylation
patterns between patients with NTM and healthy controls. Therefore, in the present study,
we evaluated the association of the DNA methylation profiles between NTM patients with
poor or good prognoses using the EPIC platform, and merged these data with those of a
previous DNA methylation study on healthy controls without any respiratory diseases
using the Illumina 450k methylation array. Furthermore, we conducted a comprehensive
bioinformatic analysis of the DNA methylation patterns between the two data sets and
identified and visualized the DMRs. Based on these DMRs, enriched terms, such as T helper
(Th)-cell differentiation, mitophagy, spliceosome, adherens junction, diseases, or cancer
(e.g., breast cancer, thyroid cancer, and chronic myeloid leukemia), signaling pathways
(e.g., Wnt, mTOR, AMPK, notch, and sphingolipid), and cell cycle were selected to depict
the upset plots and networks.

2. Materials and Methods
2.1. Sample Collection

Eight patients with NTM, from the Division of Pulmonology, Department of Internal
Medicine, Korea University Guro Hospital, were enrolled in this study. This study was ap-
proved by the Institutional Review Board of Korea University Guro Hospital (2017GR0012).
The patients agreed to provide blood and clinical data with informed consent. All investi-
gations were conducted in accordance with the principles of the Declaration of Helsinki.
The biospecimens and data used for this study were provided by the Biobank of Korea
University Guro Hospital, located in Korea.

NTM was diagnosed in accordance with the official ATS/IDSA statement [22]. NTM
prognosis was classified as good or bad based on the treatment outcome definitions pro-
posed in an NTM-NET consensus statement [6]. Patients with cured disease were grouped
as having a good prognosis, whereas those with treatment failure were classified as having
a poor prognosis.

2.2. DNA Extraction and Methylation Microarray

DNA was isolated from all eight whole blood samples using the BioRobot EZ1 (Qiagen)
system according to the manufacturer’s instructions. We provided 1.0 µg of extracted DNA
to Macrogen, Inc. (Seoul, South Korea) for methylation microarray analysis. DNA quality
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control was confirmed using the Infinium FFPE QC Kit (Illumina, San Diego, CA, USA),
and DNA restoration was performed using the Infinium HD FFPE DNA Restore Kit
(Illumina). Bisulfite conversion was performed using the EZ-96 DNA Methylation Kit
(Zymo Research, Irvine, CA, USA), and a methylation microarray was performed using
the Infinium MethylationEPIC BeadChip Kit (Illumina, USA). The iScan system (Illumina)
was used to read the BeadChips.

Array data were exported, processed, and analyzed using Illumina GenomeStudio
version 2011.1 (Methylation Module version 1.9.0) and R version 4.0.3. Each methylation
data point was represented by fluorescent signals from methylated (M) and unmethylated
(U) alleles. Thereafter, the ratio of fluorescent signals was computed from two alleles
as β = (max(M, 0))/(|U| + |M| + 100). Raw β-values were extracted as 865,918 CpGs.
Furthermore, background correlations and dye bias equalization were made using the lumi
package in R. Beta-mixture quantile normalization was performed to reduce the assay bias
using the BMIQ package in R.

2.3. Merged Public Data Set

We used publicly available DNA methylation data from the Illumina 450k methylation
array based on samples from 446 people included in the Korean Genome and Epidemiology
Study Ansan-Ansung (KoGES-ASAS) [23]. Twenty healthy controls were included in this
cohort. Sex, age, and BMI crucially affected the NTM diagnosis and prognosis. Therefore,
we matched the healthy controls and patients based on age, sex ratio, and BMI, and selected
individuals without any respiratory diseases. We further performed ANCOVA to adjust
the age, sex, BMI, and underlying diseases for epigenetic markers. Probes common to the
450k and EPIC datasets were combined using the R “merge” function, and the ComBat
method was employed to adjust for the batch effects.

2.4. Bioinformatic Analysis and Visualization

To analyze and visualize the characteristics between the two groups, we used the
R version 4.0.3 package. Differences between the groups were identified using a t-test
and visualized using a volcano plot. |Log2 fold change| and P-value were defined as
the thresholds, which were adjusted according to the DMR patterns between the two
groups. The heatmap and hierarchical clustering plot were constructed using the pheatmap
package in R. Volcano plots of DMRs were obtained using the plot function in R with
Log2 fold change on the x-axis and the transformed –log10 P-values on the y-axis. The R
package “pathfinder” was used to select terms enriched by the identified DMRs, and these
enriched terms were depicted using upset plots and networks with the “Upset_plot” and
“term_gene_graph” functions, respectively [24].

3. Results
3.1. Clinical Characteristics

The clinical characteristics of the study groups are summarized in Table 1. All eight
patients with NTM, aged 42–78 years and who underwent treatment, were infected with
the same subtype (MAC). The mean age was similar in the two groups (59.1 ± 11.2 in
the NTM group and 65.5 ± 5.4 in the healthy control group); moreover, males comprised
62.5% of the patients in the NTM group and 65% in the healthy control group. Patients
with NTM exhibited a relatively low body mass index (BMI = 19.7 ± 3.7 kg/m2); therefore,
we matched these to patients in the healthy control group who had a similar BMI (mean
20.5 ± 1.0 kg/m2).
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Table 1. Baseline characteristics of patients with NTM and healthy controls.

NTM
n = 8

HC
n = 20

Age 59.1 ± 11.2 65.5 ± 5.4

Sex, male 5 (62.5) 13 (65)

BMI (kg/m2) 19.7 ± 3.7 20.5 ± 1.0

Smoker 2 (25) 8 (40)

Alcohol 2 (25) 3 (15)

Comorbidities

HTN 1 (12.5) 0 (0)

DM 2 (25) 0 (0)

COPD/Asthma 2 (25) 0 (0)

Heart failure 0 (0) 0 (0)
Notes: Data are presented as mean ± standard deviation for continuous variables and number (%) for cate-
gorical variables. Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; CKD,
chronic kidney disease; DM, diabetes mellitus; HTN, hypertension; HC, healthy controls; NTM, nontuberculous
Mycobacterium.

3.2. Identification of DMRs According to NTM Prognoses and between Patients and
Healthy Controls

Using |Log2 fold change| > 0.1 and P-value < 0.03 as the threshold, we visualized
DMRs between NTM patients with good and poor prognoses (n = 4 per group) using
the “pheatmap” R package. In total, 754 DMRs were identified, including 461 and 293
DMRs that were more methylated in patients with poor and good prognoses, respectively.
DMRs are listed according to their β-values and are depicted as a heatmap in Figure 1a;
furthermore, all DMRs are plotted as volcano plots in Figure 2a.

Using |Log2 fold change| > 0.08 and P-value < 0.001 as thresholds, we identified
1108 DMRs between patients with NTM and healthy controls, including 337 and 771 DMRs
that were more methylated in eight NTM patients and 20 healthy controls, respectively.
The DMRs based on the β-values of eight patients with NTM and the batch effect-adjusted
β-values of the 20 healthy controls are illustrated in the heatmap in Figure 1b; all DMRs
are plotted as volcano plots in Figure 3A.

Using these two different DMR analyses, we identified the top three target regions
for DMRs between four NTM patients with poor prognosis and four NTM patients with
good prognosis (Table S1), as well those for DMRs between eight patients with NTM and
20 healthy controls (Figure 4). Among the top three probes between the two groups of
NTM prognosis, two were located on human leukocyte antigen (HLA)-related genes, and
all these probes were located in the introns of these genes. Considering the other two loci,
the probe was located in the transforming growth factor beta receptor 1 (TGFBr1) gene.
Among the three probes identified between patients with NTM and healthy controls, two
were located in the coding sequences of LDL receptor-related protein 5 (LRP5) and E2F
transcription factor 1 (E2F1). Moreover, the intron in the region of adenylate cyclase 3
(ADCY3) revealed a less-methylated pattern in patients with NTM (compared to that in the
controls).
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Figure 1. Differential DNA methylation between the NTM prognosis groups and between patients with NTM and healthy
controls. (a) Heatmap depicting the fold change in methylation between NTM patients with good or poor prognosis.
There were 754 DMRs; the poor prognosis group (red row, PR) accounted for 461 more methylated DMRs, and the good
prognosis (blue row, GD) group accounted for 293 more methylated DMRs. Unsupervised clustering of eight samples was
observed between the prognosis groups. (b) Heatmap depicting the fold change between patients with NTM and healthy
controls. There were 1108 DMRs; the NTM patient (red column annotation bar, PR; blue column annotation bar, GD) group
accounted for 337 more methylated DMRs, and the control (green column annotation bar, GD) group accounted for 771
more methylated DMRs. Unsupervised clustering of 28 samples was observed between patients with NTM and the controls.
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Figure 2. Enriched terms and functional enrichment network of the DMRs between NTM patients with good or poor
prognosis. (a) Volcano plot illustrating DMRs (defined as a fold change in methylation >0.1 (red) or <−0.1 (green) with
P-value < 0.03) in NTM patients with poor prognosis. (b) Upset plot indicating the methylation patterns of 55 genes with 10
associated enriched terms. (c) Network plot: the color of the circles represents the methylation patterns in patients with
NTM, and the size of the enriched circles represents the number of genes involved.
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Figure 3. Enriched terms and functional enrichment network of DMRs between eight patients with NTM and the healthy controls. (A) Volcano plot of DMRs (defined as a fold change in
methylation >0.08 (red) or <−0.08 (green) with P < 0.001) in eight patients with NTM. (B) Upset plot indicating the methylation patterns of 31 genes and 10 associated enriched terms. (C)
Network plot: the color of the circles represents the methylation patterns in genes from patients with a poor prognosis, and the size of the circles represents the number of genes involved.
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derlying diseases for epigenetic markers. All P-values were <0.001. 
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Figure 4. Comparison of the levels of the top three DMRs between (a) NTM patients with good and poor prognoses, as well
as (b) between NTM patients and the healthy controls. * ANCOVA was used to adjust the age, sex, BMI, and underlying
diseases for epigenetic markers. All P-values were <0.001.

3.3. Functional Enrichment Analysis of DMRs

We visualized the differences between patients with NTM and healthy controls using
volcano plots, upset plots, and functional enrichment networks. Identification of genes
with similar methylation patterns and their enriched terms may contribute to the gaining
of a better understanding of the etiology of NTM. Therefore, we identified common genes
or enriched terms while comparing the diagnosis and prognosis. Two genes, mitotic arrest
deficient 1 Like 1 (MAD1L1) and C-terminal binding protein 2 (CTBP2), were found to
be less methylated in two enriched terms: MAD1L1 was less methylated in the enriched
term cell cycle, and CTBP2 was less methylated in the Wnt signaling pathway. Moreover,
other genes or enriched terms differed between the two groups under the two respective
conditions.

While comparing NTM patients with good or poor prognosis, it was found that HLA-
related genes were more methylated in the patients with poor prognosis (Figure 2b,c),
and that these genes were enriched for Th17-cell differentiation. Furthermore, Th17 cell
differentiation-related genes, particularly TGFBr1, were less methylated in the poor prog-
nosis group. In the network analysis, most of the enriched terms were linked to the
less-methylated genes and certain enriched terms, such as Th17-cell differentiation, were
linked to more methylated genes in patients with poor prognosis (Figure 2c).

While comparing the eight NTM patients with the 20 healthy controls, LRP5, E2F1, and
ADCY3 were all found to be less methylated in the NTM group (Figure 3B). These genes
were enriched in breast cancer cells, as well as in the mTOR, AMPK, and Wnt signaling



Curr. Issues Mol. Biol. 2021, 43 509

pathways (Figure 3B,C). Most of the enriched terms and genes were linked, except for those
in the spliceosome and the eight linked genes. The Notch and AMPK signaling pathways
were linked to the more-methylated genes in patients with NTM (Figure 3C).

4. Discussion

To the best of our knowledge, this is the first study to evaluate the epigenetic profile of
patients with NTM lung disease and to identify novel NTM-related DMRs, which may play
pivotal roles in respiratory diseases. The DNA methylation patterns in patients with NTM
were clearly distinguishable from those of the healthy controls in terms of the associated
genes as well as the enriched terms; moreover, the methylation patterns significantly
differed between NTM patients with good or poor prognosis. Presumably, the results and
methodology of this study can be used to predict the prognosis of other mycobacterial
diseases or to compare it with that in normal subjects. By analyzing the DNA methylation
pattern in whole blood, this study provided evidence of a relatively strong prognosis and
diagnosis of NTM. The traditional method to detect NTM or TB is time-consuming. The
method developed in this study uses a primer to confirm the methylation patterns in many
patients. Thus, using this method, NTM or TB can be rapidly and accurately detected
(compared to traditional methods); moreover, factors that predict prognosis can also be
identified. By confirming the pattern of blood-derived DNA methylation, we can identify
disease-related factors underlying the host response to infection.

Numerous identified enriched terms and genes exhibited distinct patterns in NTM
patients (compared with the healthy controls) and in NTM patients with poor prognosis
(compared with NTM patients with good prognosis). TGFBr1 and HLA-DR—which are
related to Th17-cell differentiation—were distinctively methylated in NTM patients with
poor prognosis (compared with NTM patients with good prognosis). LRP5—associated
with mTOR and Wnt signaling—was significantly less methylated in patients with NTM
(compared with the controls). Furthermore, genes associated with the AMPK and mTOR
pathways and the cell cycle were found to be related to NTM. As several immune-related
genes were less methylated in patients with NTM or in those with a poor prognosis, chronic
infection and inflammation with NTM might trigger the cellular transformation of host
immune cells [25]. Additionally, some DNA methylation patterns may serve as candidate
prognostic markers for immune-related respiratory diseases.

Reciprocal regulation between the AMPK and mTOR pathways plays a pivotal role in
mycobacterial diseases [26]. The AMPK pathway regulates host autophagy, mitochondrial
biogenesis, and metabolic reprogramming, thereby controlling pathological inflammation
in mycobacterial infections [27]. Through this pathway, the host defenses are promoted,
leading to enhancement of antimicrobial responses against tuberculosis [26]. Hence, NTM
lung disease, which is a mycobacterial infection caused by intracellular pathogens, might
also be regulated by the AMPK and mTOR pathways.

In addition to the genes associated with the AMPK and mTOR pathways, MAD1L1 and
CTBP2 were found to be commonly less methylated in patients with NTM (compared with
the healthy controls) and in patients with a poor prognosis. E2F1—one of the top three DMR
probes in NTM—and MAD1L1 control the inflammatory stimulation of the macrophages
and contribute to the activation of T cells in response to the presence of pathogens; these
genes are consistently associated with the cell-cycle-enriched term [28]. CTBP2 is associated
with the Wnt signaling pathway and plays a crucial role in mycobacterial disease, as it
modulates the inflammatory response and controls the adaptive immune response [29–31].
The underlying variations in CTBP2 expression between patients with TB and healthy
controls have been identified in other bioinformatic analyses [32].

A previous pathway analysis revealed differential expression of the microRNAs
involved in cell growth, migration, and proliferation, and in the Wnt and TGF-β signaling
pathways in NTM lung diseases [33]. The Wnt-pathway-related gene LRP5 is strongly
associated with the progression of pulmonary disease [31], and also regulates the immune
mechanisms in TB [30]. This study suggests that the expression of LRP5 may be increased in



Curr. Issues Mol. Biol. 2021, 43 510

patients with NTM, specifically in those with a poor prognosis, and that DNA methylation
may play a crucial role in various immune triggers.

LRP5 is not only involved in the canonical Wnt pathway, but it also regulates the expres-
sion of members of the TGF-β gene family [31,34]; TGF-β has been implicated in the patho-
genesis of NTM [35]. TGF-β 1 suppresses cytokine-induced macrophage activation [36],
which may play a crucial role in regulating the immune response against NTM [37,38].
TGF-β 1 is known to downregulate the expression of HLA-DR in macrophages [37], which
is consistent with our results. We found that TGFB1 was significantly less methylated,
whereas HLA-DR genes were significantly more methylated in NTM; both of these genes
were associated with Th17-cell differentiation. Th17 cells induce excessive neutrophilic pul-
monary inflammation in MAC [39,40]; moreover, the serum concentrations of Th17-related
cytokines reflect the treatment outcome in case of NTM lung disease [41]. Treatment failure
in patients with NTM may lead to molecular changes in the Th17 differentiation pathway
that is known to be associated with inflammation [41]. In the present study, we found that
TGFB1 showed less methylation, and the HLA-DR genes linked with Th17 could act as
markers for predicting the treatment outcomes in patients with NTM. Furthermore, genes
such as TGFB1 that exhibit somatic mutations in patients with NTM are involved in breast
cancer, and NTM infection may act as a potential risk factor for chronic inflammation and
cellular transformation; several patients with NTM ultimately developed breast cancer [42].
This might explain why certain genes related to breast cancer are linked to NTM diagnosis.

This study had two limitations. First, cross-validation was not performed for the
DMRs presented in this study. Future experiments using more patients with NTM or
TB and cross-validation experiments are required to validate the DMRs or related genes
using techniques such as bisulfite sequencing or real-time RT-PCR. Second, NTM patients
exhibiting a pattern that differed from the epidemiologically common sex ratio for MAC
lung disease were enrolled. MAC lung disease occurs more frequently in women than in
men, but its proportion in the present study revealed a different pattern. However, sex
differences did not influence the results because epigenetic markers were significant after
adjusting for sex. Further studies that take into consideration the sex ratio for MAC lung
disease should be carried out. By overcoming the aforementioned limitations in future
studies, we look forward to identifying DNA methylation biomarkers that can explain
infectious respiratory diseases such as NTM or TB.

5. Conclusions

We evaluated the epigenetic profiles for the diagnosis and prognosis of NTM. TGFBr1
was significantly less methylated, whereas HLA-DR1 and HLA-DR5 were more methylated
in patients with a poor prognosis (compared to those with a good prognosis). LRP5, E2F1,
and ADCY3 were the top three less-methylated genes in patients with NTM (compared to
the controls). Collectively, TGFBr1 and HLA-DR may be used as potential biomarkers for
predicting the treatment response in patients with NTM lung disease.
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