 cancers ﬁw\p\py

Article

The Expression Profiles of ADME Genes in Human
Cancers and Their Associations with
Clinical Outcomes

Dong Gui Hu *7, Peter I. Mackenzie, Pramod C. Nair'”, Ross A. McKinnon and Robyn Meech

Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and
Public Health, Flinders Medical Centre, Bedford Park, Adelaide 5042, SA, Australia;
peter.mackenzie@flinders.edu.au (P1.M.); pramod.nair@flinders.edu.au (P.C.N.);
ross.mckinnon@flinders.edu.au (R.A.M.); robyn.meech@flinders.edu.au (R.M.)

* Correspondence: donggui.hu@flinders.edu.au; Tel.: +61-8-82043085; Fax: +61-8-82045114

Received: 8 September 2020; Accepted: 11 November 2020; Published: 13 November 2020 ﬁr:,e;gtfeosr
Simple Summary: There are roughly 300 genes that are classically defined as ADME genes based
on their roles in drug absorption, distribution, metabolism, and excretion (ADME). The expression
profiles of ADME genes in human cancers and their impact on cancer patient survival remain to
be systematically assessed. Our pan-cancer gene expression analysis revealed that about half of
all ADME genes were expressed in all 21 cancers assessed. Most genes showed highly variable
expression within and among different cancers. Our pan-cancer survival analysis identified a set of
core ADME genes whose intratumoral expression was associated with overall survival in these cancers.
These findings highlight the potential implication of ADME genes as cancer prognostic biomarkers
and therapeutic targets. We propose that intratumoral expression of ADME genes can influence
cancer patient survival through not only drug metabolism and disposition, but also metabolism and
disposition of numerous endogenous molecules that can fuel and/or stimulate cancer growth.

Abstract: ADME genes are a group of genes that are involved in drug absorption, distribution,
metabolism, and excretion (ADME). The expression profiles of ADME genes within tumours is
proposed to impact on cancer patient survival;, however, this has not been systematically examined.
In this study, our comprehensive analyses of pan-cancer datasets from the Cancer Genome Atlas
(TCGA) revealed differential intratumoral expression profiles for ADME genes in 21 different cancer
types. Most genes also showed high interindividual variability within cancer-specific patient
cohorts. Using Kaplan-Meier plots and logrank tests, we showed that intratumoral expression
levels of twenty of the thirty-two core ADME genes were associated with overall survival (OS)
in these cancers. Of these genes, five showed significant association with unfavourable OS in
three cancers, including SKCM (ABCC2, GSTP1), KIRC (CYP2D6, CYP2E1), PAAD (UGT2B7);
sixteen showed significant associations with favourable OS in twelve cancers, including BLCA
(UGT2B15), BRCA (CYP2D6), COAD (NAT1), HNSC (ABCB1), KIRC (ABCG2, CYP3A4, SLC22A2,
SLC22A6), KIRP (SLC22A2), LIHC (CYP2C19, CYP2C8, CYP2C9, CYP3A5, SLC22A1), LUAD (SLC15A2),
LUSC (UGT1A1), PAAD (ABCB1), SARC (ABCB1), and SKCM (ABCB1, DYPD). Overall, these data
provide compelling evidence supporting ADME genes as prognostic biomarkers and potential
therapeutic targets. We propose that intratumoral expression of ADME genes may impact cancer
patient survival by multiple mechanisms that can include metabolizing/transporting anticancer
drugs, activating anticancer drugs, and metabolizing/transporting a variety of endogenous molecules
involved in metabolically fuelling cancer cells and/or controlling pro-growth signalling pathways.

Keywords: cancer; drug absorption; drug distribution; drug metabolism; drug excretion; endobiotic
metabolism; overall survival; therapeutic target; prognostic biomarker
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1. Introduction

Cancer is a major public health burden worldwide and is the second leading cause of death after
heart disease in many countries [1,2]. The global rise in cancer incidence is not fully understood but
is presumably related to population aging and a growing prevalence of cancer risk factors such as
alcohol consumption, exposure to industrial pollutants, tobacco use, obesity, and physical inactivity [2].
Using the global data for cancer incidence and mortality produced by the International Agency
for Research on Cancer, the Global Burden of Cancer (GLOBOCAN) study predicted 18.1 million
cancer cases and 9.6 million cancer deaths worldwide in 2018 [3]. With the advent of genome-wide
high-throughput platforms (e.g., microarrays, DNA/RNA deep-sequencing), numerous molecular
biomarkers (e.g., causative, prognostic, predictive, and diagnostic) have been discovered for a
wide variety of cancers over the last two decades [4-7]. Such biomarkers not only improve our
understanding of cancer development and progression but also facilitate early diagnosis of cancer and
accurate prediction of treatment response and clinical outcomes.

ADME genes are a group of genes that are involved in drug absorption, distribution, metabolism,
and excretion (ADME) [8-11]. Currently, the PharmaADME consortium classifies 298 ADME genes that
encode phase I (functionalization) and phase II (conjugation) drug-metabolizing enzymes, transporters,
and modifiers (http://www.pharmaadme.org) [8,9]. Typical Phase I enzymes are oxidases, hydrolases,
dehydrogenases, and deaminases. Cytochrome P450 enzymes (CYPs) such as CYP2A6, CYP2B¢,
CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3AS are the most important Phase
I drug-metabolizing enzymes [12]. Phase II drug-metabolizing enzymes are mainly transferases,
such as UDP-glucuronosyltransferases (UGTs), glutathione transferases (GSTs), sulfotransferases
(SULTs), N-acetyl transferases (NATs), and thiopurine methyltransferase (TPMT) [13]. Phase I enzymes
introduce reactive or polar groups (e.g., hydroxyl) into substrates that are frequently conjugated by
phase II enzymes. The resulting products are generally inactive and water-soluble, thus facilitating
their excretion from the body through the bile, urine, or feces. Therefore, the combined action of Phase I
and II enzymes usually facilitates drug metabolism and clearance [12,14,15]. Drug transporters include
the ATP-binding cassette (ABC) transporters and the solute carrier (SLC) transporters. The ABC
transporters are mainly efflux transporters (e.g., ABCB1, ABCC2, ABCG2) that extrude drugs out
of cells whereas the SLC transporters are influx transporters (e.g., SLC15A2, SLC22A1, SLC22A2,
SLC22A6, SLCO1B1, and SLCO1B3) that are involved in the uptake of drugs into cells [16]. In addition
to drugs, ADME genes have important roles in metabolizing, transporting, and detoxifying a wide
range of endobiotics (e.g., steroid hormones, amino acids, fatty acids, bile acids, lactate) and xenobiotics
(e.g., dietary constituents, pollutants, and carcinogens) [14,15,17,18]. Many of these endobiotics and
xenobiotics can influence the initiation and progression of cancer via direct effects such as DNA damage,
and/or controlling growth signalling pathways. Consistent with the critical roles of ADME genes in
metabolizing and clearing anticancer drugs and cancer-modulating compounds, numerous genetic
polymorphisms (e.g., single nucleotide polymorphism, SNP) of ADME genes are known to be associated
with carcinogenesis and drug response [19-21]. However, these genes also show tissue-specific and
dynamically-regulated interindividual variation in expression that may have more profound impacts
on ADME properties of tissues (including tumours) than genetic variance. ADME genes are highly
expressed in the liver, the major organ for systemic drug metabolism and clearance, but are also
expressed extrahepatically and in cancerous tissues where their expression has been associated with
cancer progression and anticancer drug resistance [19,22-24]. This knowledge emphasizes the need for
a comprehensive analysis of ADME gene expression profiles in tumours, and their impact on cancer
patient survival.

The internationally coordinated 10-year (2006-2015) Cancer Genome Atlas (TCGA) program
provides freely-accessible databases for genome-wide molecular profiles (e.g., genomic, transcriptomic,
and epigenetic) for over 20,000 primary cancer patients representing 33 different cancer types (https://gdc.
cancer.gov). Analyses of these data have greatly advanced our understanding of cancer biology [25-32].
The TCGA project also collected clinicopathological data from cancer patients that allows association
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analyses between clinical outcomes and molecular profiles, thus facilitating the identification of
prognostic and diagnostic biomarkers. The TCGA Pan-Cancer Clinical Data Resources (TCGA-CDR)
recently comprehensively assessed the TCGA clinical data and provided strong support for their
value for reliable survival analyses using different clinical outcome endpoints: overall survival
(OS), disease-specific survival, disease-free interval, and the progression-free interval [33]. Indeed,
using TCGA survival data and matched gene expression (RNA-seq) data in tumours, a recent analysis
identified all candidate prognostic genes associated with OS for 17 TCGA cancer types [34]. A similar
study revealed genes associated with OS for 21 TCGA cancer types [35].

We recently reported the expression profiles of ADME genes and patterns of dysregulation in
the TCGA hepatocellular carcinoma cohort (LIHC) [8]. ADME gene expression profiles and their
potential dysregulation in cancers other than LIHC are largely unknown; furthermore, no studies
have comprehensively assessed the impact of intratumoral ADME gene expression on patient survival.
In the present study, we examined the expression profiles of ADME genes in 21 TCGA cancer types
and assessed their potential association with patient survival.

2. Results

2.1. The Expression Profiles of ADME Genes in Human Cancers

Table 1 lists the 21 TCGA cancer types and the number of patients for each of these cancers that
were analysed in this study. We examined the expression profiles of all 298 ADME genes in these
21 cancers (Table S1). A unique set of ADME genes was expressed in different cancers; LAML (Acute
Myeloid Leukemia) expressed the fewest ADME genes (181 genes) while LIHC (Liver Hepatocellular
Carcinoma) expressed the most (248 genes) (Table 1). Of the 298 ADME genes, 157 genes (52%) were
expressed in all 21 cancers and only 12 genes (4%) (CYP11B1, CYP11B2, DHRS7C, GPX5, GPX6, GSTA3,
GSTA5, LOC731356, PLGLB1, SLCO6A1, SULT1C1, UGT2B17) were not expressed in any of the 21 cancer
types analysed (Table S1). When considering the 32 core ADME genes specifically, four cancer types
(CESC, LAML, SKCM, UCEC) expressed the fewest of these genes (17 genes) while LIHC expressed
the most (29 genes) (Table 1).

Table 1. This table lists the number of patients analysed, the number of ADME (absorption, distribution,
metabolism, and excretion) genes and core ADME genes expressed for each of 21 TCGA cancer types.

No. of No. of ADME No. of Core

Cancer Types Description Patients Genes ADME Genes
BLCA Bladder Urothelial Carcinoma 403 220 20
BRCA Breast Invasive Carcinoma 1006 216 19
CESC Cervical Squamous Cell Carginoma and 264 214 17

Endocervical Adenocarcinoma

COAD Colon Adenocarcinoma 440 228 25
ESCA Esophageal Carcinoma 144 218 21
GBM Glioblastoma Multiforme 153 206 18
HNSC Head and Neck Squamous Cell Carcinoma 497 215 18
KIRC Kidney Renal Clear Cell Carcinoma 523 235 23
KIRP Kidney Renal Papillary Cell Carcinoma 285 225 22
LAML Acute Myeloid Leukemia 151 181 17
LGG Brain Lower Grade Glioma 510 213 20
LIHC Liver Hepatocellular Carcinoma 360 248 29
LUAD Lung Adenocarcinoma 492 225 18
LusC Lung Squamous Cell Carcinoma 489 228 23
ov Ovary Serous Cystadenocarcinoma 294 219 20
PAAD Pancreatic Adenocarcinoma 175 243 26

READ Rectum Adenocarcinoma 159 229 23
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Table 1. Cont.

Cancer Types Description No. of No. of ADME No. of Core

Patients Genes ADME Genes
SARC Sarcoma 259 200 18
SKCM Skin Cutaneous Melanoma 459 196 17
STAD Stomach Adenocarcinoma 379 229 24
UCEC Uterine Corpus Endometrial Carcinoma 541 221 17

2.2. Variable Expression of ADME Genes within and among Different Types of Cancers

Most ADME genes had highly variable expression in different cancers (Table S1). Interestingly,
thirteen core ADME genes (ABCB1, ABCC2, ABCG2, CYP2D6, CYP2E1, CYP3A5, DPYD, GSTP1,
GSTT1, NAT1, SLC15A2, SULT1A1, TPMT) were expressed in all 21 cancer types. Figure S1 shows
their variable expressions in these cancers. Furthermore, most ADME genes showed highly variable
expression among patients within individual cancers. This is exemplified by the interindividual
variability in the expression of ABCB1 (multidrug resistance protein 1, MDR1) in 21 cancer types
(Figure S2). For example, there was a huge difference in intratumoral ABCB1 expression level (RSEM)
within the TCGA Kidney Renal Papillary Cell Carcinoma (KIRP) ranging from 6.85 to 21,254.47; of the
285 patients, 55 patients had an expression of <1000 whereas 69 patients had an expression of >5000.
We hypothesized that such interindividual variability for ABCB1 and other ADME genes can alter
intratumoral drug metabolism and clearance, and hence influence therapeutic efficacy and patient
survival. We assessed this possibility using Kaplan-Meier plots and Logrank Tests as described in
Sections 2.3 and 2.4.

2.3. Core ADME Genes Were Significantly Associated with Overall Survival Rates in Cancers

We focused on core ADME genes to investigate the impact of ADME genes on overall survival
(OS) rates in 20 TCGA cancer types using Kaplan-Meier survival analysis and the logrank test. To avoid
false-positive predictions, we excluded LGG (one of the cancers listed in Table 1) from OS analysis as a
recent study reported a very large number of genes were correlated to OS in this cancer [35]. Using the
significant Bonferroni-corrected cut-off logrank p-value of < 0.05, we found that the intratumoral
expression levels of 20 of the 32 core ADME genes were significantly associated with OS rates in at
least one cancer type (Table 2). Of these genes, five showed significant association with unfavourable
OS in three cancers, including SKCM (ABCC2, GSTP1), KIRC (CYP2D6, CYP2E1), PAAD (UGT2B7);
sixteen genes showed significant associations with favourable OS in twelve cancers, including
BLCA (UGT2B15), BRCA (CYP2D6), COAD (NAT1), HNSC (ABCB1), KIRC (ABCG2, CYP3A4, SLC22A2,
SLC22A6), KIRP (SLC22A2), LIHC (CYP2C19, CYP2CS8, CYP2C9, CYP3A5, SLC22A1), LUAD (SLC15A2),
LUSC (UGT1A1), PAAD (ABCBI1), SARC (ABCB1), and SKCM (ABCB1, DPYD). We describe these
results in detail below.

Table 2. Kaplan-Meier survival analyses/logrank tests showed associations of intratumoral expression
levels of core ADME genes with favourable or unfavourable overall survival rates in TCGA cancer types.

Adjusted p-Value

Core ADME Genes TCGA Cancers . . Prognostic Biomarker
Bonferroni Correction
ABCB1 HNSC 0.01788 Favourable
ABCB1 PAAD 0.02392 Favourable
ABCBI1 SARC 0.02358 Favourable
ABCB1 SKCM 7.26 x 107% Favourable
ABCC2 SKCM 0.021470 Unfavourable

ABCG2 KIRC 6.53 x 10797 Favourable
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Table 2. Cont.

Adjusted p-Value

Core ADME Genes TCGA Cancers . . Prognostic Biomarker
Bonferroni Correction
CYP2C19 LIHC 0.02230 Favourable
CYP2C8 LIHC 0.02987 Favourable
CYP2C9 LIHC 0.03712 Favourable
CYP2D6 BRCA 0.0100 Favourable
CYP2D6 KIRC 0.00738 Unfavourable
CYP2E1 KIRC 0.03634 Unfavourable
CYP3A4 KIRC 0.00042 Favourable
CYP3A5 LIHC 0.02534 Favourable
DPYD SKCM 5.34 x 1079 Favourable
GSTP1 SKCM 0.00186 Unfavourable
NAT1 COAD 0.01382 Favourable
SLC15A2 LUAD 0.04690 Favourable
SLC22A1 LIHC 0.00214 Favourable
SLC22A2 KIRC 8.35 x 1079 Favourable
SLC22A2 KIRP 0.01139 Favourable
SLC22A6 KIRC 1.17 x 1079 Favourable
UGT1A1 LUSC 0.02438 Favourable
UGT2B15 BLCA 0.02420 Favourable
UGT2B7 PAAD 0.04654 Unfavourable

2.3.1. Association of Core ADME Genes Coding for Phase I Drug Metabolism Enzymes with OS Rates
in Cancers

Eight core ADME genes coding for phase I drug metabolism enzymes showed significant
associations of their intratumoral expression levels with OS rates in cancers, including
dihydropyrimidine dehydrogenase (DPYD) and seven CYP genes (2C19, 2C8, 2C9, 2D6, 2E1, 3A4,
3A5) (Figure 1, Table 2). High intratumoural DPYD expression was associated with increased OS rates
in SKCM (Figure 1). A recent study reported frequent somatic DPYD mutations in SKCM and its
upregulation in metastatic tumour [36]. We show here that the association of DPYD with favourable
OS was seen in metastatic tumours but not in primary tumours (Figure 2A).

Among the CYP genes, four (2C19, 2C8, 2C9, 3A5) showed significant associations with increased
OS rates in liver cancer (LIHC); three showed correlation with reduced (2D6, E1) or increased (3A4) OS
rates in kidney cancer (KIRC); CYP2D6 was also associated with increased OS rates in breast cancer
(BRCA) (Figure 1).

Breast cancers can be classified by a 50-gene signature into five molecular intrinsic PAM50 subtypes:
Luminal A, Luminal B, HER2-enriched, Basal-like, and Normal-like [37]. The TCGA BRCA clinical
dataset includes records of the PAMS50 subtype, tumor stage, and tamoxifen treatment. We stratified
the patients by these factors and performed further analysis for CYP2D6. The association of CYP2D6
with favorable OS was seen only in patients with stage II tumour (Figure 2B) but not in any of the
PAMBS50 subtypes (Figure S3B), or within the cohort (248 patients) treated with tamoxifen (Table S3).
To assess whether CYP2D6 was differentially expressed between PAMS50 subtypes, we performed a
one-way ANOVA analysis followed by Tukey’s multiple comparison test. Our results showed higher
CYP2D6 expression in the basal-like subtype relative to all other PAM50 subtypes (Figure S3A).
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Figure 1. Kaplan-Meier survival analysis and logrank test show significant associations of intratumoral
expression levels of core ADME (absorption, distribution, metabolism, and excretion) genes coding for
phase I drug-metabolizing enzymes with overall survival rates in TCGA cancers. For Kaplan-Meier
survival analysis, the patients were separated into high-expression group (upper 50 percentile, red
curve) and low-expression group (lower 50 percentile, blue curve) by gene expression levels in each
TCGA cancer type as indicated. The number of patients in each group was given in bracket following
the p-value. A Bonferroni-corrected cutoff logrank p-value of < 0.05 indicates statistical significance.

6 of 21



Cancers 2020, 12, 3369 7 of 21
B high expression group B low expression group
HR: 1.41 (0.67-2.96) HR: 1.76 (1.31-2.35)
p: 1.00 (48/47) p:0.00115 (178/178)
100 100
. DPYD - DPYD
X 80 S 80
8 3
Z 60 & 60
£ 40 4 £ 40
: : g
@ 20 4 SKCM @ 20 - SKCM "u—‘_L
Primary Metastatic
0 T T T 0 T T T 1
SS e e § NI R
Months Months
HR: 1.66 (0.61-4.47) HR: 2.37 (1.46-3.84) HR: 1.00 (0.53-1.79)
p: 1.00 (89/89) p:0.0145 (303/303) p: 1.00 (123/122)
100 CYP2D6 100 CYP2D6 100 CYP2D6
& 80 S & 80
@ 7] -]
2 8 e
S 60 Z 60 Z 60
£ 40 ) : £ a0
B g 5
% 20- BRCA & 20 | BRCA Z 20 BRCA
stage | stage II stage IIT
0T T 0+ 1 . 0 -+ :
Q ¢ P ¢
MBI R L S e PP
Months Months Months
HR: 1.82 (1.28-2.57) HR: 1.26 (0.73-2.19)
p: 0.0176 (149/149) p: 1.00 (54/53)
100 100
S UGT2BI15 © UGT2B15
= 80 = 80
5 5
C Ze 3 60
£ 10 . £ 10
Z 20 | BLCA Z 20 | BLCA
Male patients Female patients
0+ T T 0 T T 1
S @ 8 S s e &
Months Months

Figure 2. Kaplan-Meier survival analysis and Logrank test show significant associations of intratumoral
expression levels of dihydropyrimidine dehydrogenase (DPYD) in skin cancer SKCM (stratified by
tumor type) (A), CYP2D6 in breast cancer BRCA (stratified by tumor stage) (B), and UGT2B15 in bladder
cancer (stratified by sex) (C) with overall survival rates. For Kaplan-Meier survival analysis, the patients
were separated into high-expression group (upper 50 percentile, red curve) and low-expression group
(lower 50 percentile, blue curve) by gene expression levels in each TCGA cancer type as indicated.
The number of patients in each group was given in bracket following the p-value. A Bonferroni-corrected
cutoff logrank p-value of < 0.05 indicates statistical significance.

2.3.2. Association of Core ADME Genes Coding for Phase II Drug Metabolism Enzymes with OS Rates
in Cancers

Five core ADME genes coding for phase II drug metabolism enzymes showed significant
associations of their intratumoral expression levels with OS rates in cancers, including GSTP1, NAT1,
UGT1A1, UGT2B15, UGT2B7 (Figure 3, Table 2). Of these genes, three showed association with
increased OS rates in COAD (NAT1), LUSC (UGT1A1), or BLCA (UGT2B15), whereas the other two
genes showed correlation with reduced OS rates in SKCM (GSTP1) or PAAD (UGT2B7).
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Figure 3. Kaplan-Meier survival analysis and Logrank test show significant associations of intratumoral
expression levels of core ADME genes coding for phase II drug-metabolizing enzymes with overall
survival rates in TCGA cancers. For Kaplan-Meier survival analysis, the patients were separated into
high-expression group (upper 50 percentile, red curve) and low-expression group (lower 50 percentile,
blue curve) by gene expression levels in each TCGA cancer type as indicated. The number of patients in
each group was given in bracket following the p-value. A Bonferroni-corrected cutoff logrank p-value
of < 0.05 indicates statistical significance.

Androgen signaling is involved in bladder carcinogenesis and promotes bladder cancer growth [38].
UGT2B15 inactivates androgens and thus represses androgen signaling [39]; hence, we examined
whether the association of UGT2B15 with OS was different in male and female patients. We found that
higher expression of UGT2B15 was associated with increased OS only in male patients (Figure 2C).

2.3.3. Association of Core ADME Genes Coding for Drug Transporters with OS Rates in Cancers

Seven core ADME genes coding for drug transporters showed significant associations of their
intratumoral expression with OS rates in cancers, including three ABC transporters (B1, C2, G2),
and four SLC transporters (15A2, 22A1, 22A2, 22A6) (Figure 4; Table 2). Among the three ABC
transporters, high ABCB1 expression was associated with increased OS rates consistently across four
different cancer types (HNSC, PAAD, SARC, SKCM) (Figure 4A); high ABCG2 expression was also
correlated with increased OS rates in KIRC (Figure 4A), consistent with a recent report [40]. By contrast,
high ABCC2 levels showed associations with decreased OS rates in SKCM (Figure 4A).

All of the four SLC transporters showed associations only with increased OS rates in cancers
(Figure 4B), including 1) SLC15A2 (LUAD), SLC22A1 (LIHC), SLC22A2 (KIRC, KIRP), and SLC22A6
(KIRC) (Figure 4B).
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Figure 4. Kaplan-Meier survival analysis and Logrank test show significant associations of intratumoral
expression levels of core ADME genes coding for ABC (A) and SLC (B) drug transporters with overall
survival rates in TCGA cancers. For Kaplan-Meier survival analysis, the patients were separated into
high-expression group (upper 50 percentile, red curve) and low-expression group (lower 50 percentile,
blue curve) by gene expression levels in each TCGA cancer type as indicated. The number of patients in
each group was given in bracket following the p-value. A Bonferroni-corrected cutoff logrank p-value
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of < 0.05 indicates statistical significance.

2.4. Survival Analyses of Core ADME Genes in Non-TCGA Lung and Breast Cancer Datasets

9of 21

It was not possible to find independent datasets for all of the 20 TCGA cancer types to validate
our findings. We were able to assess three non-TCGA cancer datasets from the Kaplan-Meier plotter
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(KM-LUAD, KM-LUSC, KM-BRCA) [41,42]. As the KM cancer datasets were based on Affymetrix
oligo gene expression arrays, many core ADME genes had expression data from more than one probe
set. Survival analysis was carried out for all probe sets of every core ADME gene as described in
Materials and Methods (Table S3).

All of the core ADME genes that were analysed for the TCGA-LUAD and TCGA-LUSC datasets
(Table S3), were also analysed in the KM-LUAD and KM-LUSC datasets. The genes that showed no
association with OS in the TCGA datasets also showed no association in the respective KM datasets.
The finding that high SLC15A2 expression associated with favourable OS in the TCGA-LUAD dataset
(Figure 4B), was corroborated by the KM-LUAD analysis. Specifically, analysis of the KM-LUAD cohort
using expression data from both of the SLC15A2 probe sets: 205316_at (Figure 5A) and 205317_s_at
(Figure 5B), showed a similar association with OS. Stratification by tumor stage indicated that the
association was specific to patients with stage I tumour (Figure 5A,B).

B high expression grou; B low expression grou
g P group P group
Probe set: 205316 _at Probe set: 205316_at Probe set: 205316 _at
HR: 0.57 (0.45-0.72) HR: 0.43 (0.28-0.64) HR: 0.96 (0.59-1.55)
p:0.000162 (359/360) p:0.00134 (185/185) p: 1.00 (68/68)
100 1 100 100
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X 80 4 S 80 S 80
A 2601 =S 60 Z 60
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B z z
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Figure 5. Kaplan-Meier survival analysis and Logrank test show significant associations of intratumoral
SLC15A2 expression levels with overall survival rates in the lung cancer cohort from the Kaplan-Meier
Plotter (KM-LUAD). Survival analysis was conducted using the expression data from the two SLC15A2
probe sets: 205316_at (A) and 205317_s_at (B). Patients were analysed altogether or following
stratification by tumor histology. For analysis, the patients were separated using Median expression into
high-expression group (Red curve) and low-expression group (Black curve). The number of patients in
each group was given in bracket following the p-value. A Bonferroni-corrected cutoff logrank p-value

of < 0.05 indicates statistical significance. Hazard ratio (HR) and 95% confidence interval (CI) (bracket)
are also provided.
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High UGT1A1 expression was associated with favourable OS rates in TCGA LUSC (Figure 3).
However, no association was observed in KM-LUSC when expression data from all of the six UGT1A1
probe sets was examined (Table S3). The UGT1A gene superfamily has nine functional isoforms
(1A1, 1A3-10), which have a unique exon 1 but share exons 2-5 [43]. Of the six UGT1A1 probe sets,
four (215125_s_at, 207126_x_at, 206094_x_at, 204532_x_at) target exon 5, one (208596_s_at) targets exons
3-5, and the sixth (221304 _at) targets UGT1A8 exon 1 [41]. Hence, none of the UGT1A1-designated probe
sets on the Affymetrix oligo arrays were UGT1A1-specific; this might explain the association of UGT1A1
with OS in the RN Aseqg-based TCGA-LUSC dataset was not reproducible in the KM-LUSC dataset.

All of the core ADME genes that were analysed in the TCGA-BRCA dataset (Table S3), were also
analysed in the KM-BRCA dataset (Table S3). All but one of the ADME genes that showed no
association with OS in the TCGA-BRCA data also showed no association in the KM-BRCA dataset
(Table S3). The exception was GSTM1, where higher expression was associated with favourable OS in
KM-BRCA when analysed using data from both GSTM1 probe sets (215333_x_at, 204550_x_at) (Figure
S4). Moreover, our finding that high CYP2D6 levels associated with favourable OS in the TCGA-BRCA
dataset (Figure 1), was not corroborated by the KM-BRCA analysis when all three CYP2D6 probe sets
were analysed (207498_s_at, 215809_at, 217468_at) (Table S3) [41].

Overall, these data provide confirmation for most of the genes analysed from the three TCGA
cancer datasets, but also provide conflicting results for two genes (CYP2D6, GSTM1) from the KM-BRCA
dataset. Our results also point out the limitation of the Affymetrix oligo arrays-based gene expression
data to study genes with probe sets that cross-hybridize to other genes. Clearly, future RNAseq-based
studies (similar to TCGA projects) will require to verify the findings of this study and many other
studies that have analysed the TCGA cancer datasets [34].

3. Discussion

Using OncoLnc [35], we comprehensively assessed for the first time the expression profiles of
ADME genes in 21 TCGA cancer types. Approximately half of all ADME genes were expressed in all
cancer types, with very variable expression within and among different cancers. The widespread and
high intratumoral expression of ADME genes is consistent with the view that factors controlling the
levels/activities of drugs and other small molecules are not restricted to detoxification organs such as
liver, and emphasizes the capacity of tumours to control ADME activities. We also comprehensively
assessed potential associations between intratumoral expression of core ADME genes and overall
survival (OS) in 20 TCGA cancer types. Overall, twenty core ADME genes showed significant
associations with OS in at least one cancer (Table 2). Most of these genes were associated with
favourable OS. Eleven of the 25 significant associations reported by the present study were consistent
with the results from previous reports, including the Human Protein Atlas [34], the Kaplan-Meier
plotter [44], and many others cited below. Further analyses of the KM-LUAD dataset validated our
findings from the TCGA-LUAD dataset. Taken together, our results demonstrate abundant expression
of ADME genes in human cancers and their potential implications as prognostic biomarkers or
therapeutic targets.

Many phaseland Il drug-metabolizing enzymes (e.g., CYP enzymes, aldehyde oxidase, glutathione
S-transferase) can activate anticancer drugs/prodrugs [45]. Particularly, CYP enzymes are involved in the
activation of many commonly used anticancer drugs/prodrugs, including tamoxifen, cyclophosphamide,
dacarbazine, trofosfamide, ifosfamide, AQ4N, ftorafur (tegafur), mitomycin C, and flutamide [45-47].
Elevated expression of CYP genes within cancer cells may increase intracellular concentrations
of active drug metabolites, enhancing therapeutic efficacy, and improving cancer patient survival.
For example, tamoxifen, a selective estrogen receptor (ER) modulator for treating ER-positive breast
cancer, is converted by CYP2D6 to the more potent metabolite 4-hydroxytamoxifen. Our observed
association of high intratumoral CYP2D6 expression with favourable OS in breast cancer (BRCA)
might be related to its activation of tamoxifen. This finding is in accordance with pharmacogenomic
data indicating that patients with functional CYP2D6 alleles had more favourable clinical outcomes
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than patients with reduced-function CYP2D6 alleles following tamoxifen therapy [48]. In LIHC,
we showed an association of four CYP genes (2C19, 2C8, 2C9, 3A5) with favourable OS (Figure 1).
Similar associations with favourable OS in liver cancer have been recently reported for all of these
CYP genes [49-53]. Unfortunately, drug regimens were available for only 42 of the 360 LIHC patients
(Table S2), and the main drug received was Sorafenib (29 patients), which is not known to be a substrate
of these specific CYP enzymes. Moreover, the drug-treated group was too small for robust statistical
analysis. In KIRC, CYP3A4 was associated with favourable OS; by contrast, CYP2D6 and CYP2E1 were
correlated with unfavourable OS (Figure 1). Drug regimens were available for 83 of the 523 KIRC
patients (Table S2). The main drugs received were kinase inhibitors, such as sorafenib, sunitinib,
gefitinib, pazopanib, and temsirolimus. Most of these drugs are CYP3A4 substrates [12,54], but none
are known CYP450-activated prodrugs. Moreover, because the drug regimens were only available for
a small proportion of the patients in KIRC, we were not able to assess whether the association of these
CYP genes with OS could be related to specific drug regimens.

Phase I and II drug-metabolizing enzymes are also involved in the metabolism and
biotransformation of a wide range of endogenous bioactive molecules (e.g., steroid hormones,
amino acids, fatty acids, bile acids, lactate) that can fuel or stimulate cancer growth. For example,
the two natural androgens, testosterone, and dihydrotestosterone, are primarily inactivated through
glucuronidation by three UGT enzymes (2B7, 2B15, 2B17) [39]. There is emerging evidence that androgen
signalling is involved in bladder carcinogenesis and progression [38,55,56]. Targeting androgen
signalling represents a potential novel therapy for bladder cancer [38]. In BLCA, we showed an
association of high UGT2B15 expression with favourable OS, consistent with a recent report [34].
None of the main drugs (carboplatin, cisplatin, gemcitabine) received by BLCA patients (Table S2)
were UGT2B15 substrates. Hence, we hypothesized that UGT2B15 might instead influence BLCA
survival by modulating the androgen signalling pathway through androgen conjugation. Bladder
cancer occurs more frequently in men than women [38]. Consistently, stratifying the patients by
sex revealed that the association of UGT2B15 with favourable OS occurred only in male patients
(Figure 2C). Similar mechanisms whereby UGT2B15 and UGT2B17 influence survival through
modulating the androgen signalling pathway have been reported in androgen-sensitive prostate
and breast cancer [57,58].

Phase I and II drug metabolizing enzymes may also impact cancer patient survival, independently
of their enzymatic activities. For example, CYP3A5 has been reported as a tumour suppressor
that inhibits liver cancer cell migration and invasion through suppressing ROS/mTORC2/p-AKT
kinase signaling [59]. Low CYP3Ab expression was correlated with aggressive vascular invasion,
poor differentiation, and poor survival in liver cancer [59]. In LIHC, we showed the association
of high CYP3A5 expression with favourable OS (Figure 1), which is consistent with the reported
tumour suppressive activity of this enzyme. By contrast, GSTP1 has been reported to possess
pro-oncogenic activity that protects cancer cells from apoptosis signals by suppressing MAPK/JNK
kinase signaling [60]. In SKCM, we showed a correlation of GSTP1 with unfavourable OS (Figure 3);
however, none of the main drugs (dacarbazine, interferon, ipilimumab) received by SKCM patients
were GSTP1 substrates (Table 52). Hence, GSTP1 might modulate OS in SKCM via the reported
non-enzymatic pro-oncogenic activity of this enzyme.

The influx transporters are involved in the uptake of anticancer drugs into cells, and therefore
their high intratumoral expression may increase therapeutic efficacy and improve cancer patient
survival [61-64]. Indeed, we showed here that four influx transporters (SLC15A2, SLC22A1, SLC22A2,
SLC22A6) whose high intratumoral expression was correlated only with favourable OS (Figure 4B).
SLC22A2 and SLC22A6 were associated with favourable OS in KIRC (Figure 4B). A similar association of
SLC22A6 with favourable OS in kidney cancer (KIRC) was recently reported [65]. SLC22A2 substrates
include cisplatin, oxaliplatin, picoplatin, imatinib, irinotecan, paclitaxel, mitoxantrone. SLC22A6
substrates include methotrexate and bleomycin [64]. While KIRC patients received a wide range of
drugs (Table S2), none are substrates for SLC22A2 or SLC22A6. SLC22A2 was also associated with
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favourable OS in KIRP (Figure 4B); however, drug regimens were only available for 22 of the 285 KIRP
patients (Table S2). Finally, we showed an association of SLC15A2 with favourable OS in TCGA LUAD;
this was consistent with a recent report [66], and we also corroborated this finding in the KM-LAUD
dataset (Figure 5B). SLC15A2 is a peptide transporter (PEPT2) involved in transport of numerous
di-and tripeptides, and peptidomimetic drugs (e.g., delta-aminolevulinic acid (8-ALA), fosinopril] [67]).
However, none of the main drugs (carboplatin, cisplatin, gemcitabine, pemetrexed, taxol) received by
the LUAD patients were SLC15A2 substrates (Table S2). The association of this gene with favourable
OS in LUAD might be related to the transport of endogenous oligopeptides; this hypothesis requires
further investigation.

The efflux transporters (e.g., ABCB1, ABCC2, ABCG2) extrude anticancer drugs out of cells and
confer multi-drug resistance [24,68]. Studies have shown that their high expression within the tumour
was correlated to poor drug response and unfavourable cancer patient survival [69,70]. We showed here
that high ABCC2 expression was associated with unfavourable OS in melanoma (SKCM) (Figure 4A).
Drug regimens were available for only 142 of the 459 SKCM patients, and the range of drugs was
very broad, with no individual drugs received by more than 20% of patients (Table S2). Some of these
drugs (e.g., cisplatin, melphalan, vinblastine) were ABCC2 substrates but were received by less than
20 patients [71]. Hence, the association of ABCC2 with unfavourable OS in SKCM could not be related
to drug efflux.

The most intriguing finding was the association of efflux transporters ABCB1 and ABCG2 with
favourable OS in cancers (Figure 4A). We showed an association of ABCG2 with favourable OS in
KIRC, consistent with a recent report [40]. Many of the drugs received by KIRC patients were ABCG2
substrates, such as sorafenib, sunitinib, gefitinib, pazopanib, and temsirolimus (Table S2) [71]. As drug
regimens were only available for 83 of the 523 KIRC patients, we were not able to assess any relationship
between this association and drug regimens. We showed a correlation of ABCB1 with favourable
OS in four separate cancer types (HNSC, PAAD, SARC, SKCM) (Figure 4A). Similar associations of
ABCBI1 with favourable OS have been reported in two of these cancers (HNSC, PAAD) [34,72-75],
and also in breast cancer (BRCA) [76] and kidney cancer (KIRC) [34,77]. High ABCB1 expression
was also associated with favourable OS in neuroblastoma [78,79]. Our findings together with these
reports strongly argue that ABCB1 has a positive impact on cancer patient survival. None of the
main drugs received by PAAD or SKCM patients were ABCB1 substrates (Table S2); therefore,
the association of ABCB1 with favourable OS could not be attributed to drug efflux in these two
cancers. Considering HNSC and SARC, paclitaxel was received by 36 of the 497 HNSC patients and
doxorubicin was received by 38 of the 259 SARC patients; both drugs are ABCB1 substrates [71].
However, this small proportion of the patients treated with these drugs limits any analysis of
the relationship between the association and drug regimens. Taken together, these observations
led us to hypothesize that ABCB1 may influence cancer patient survival independently of drug
efflux. In addition to drug efflux, ABCBI is also involved in transporting a variety of endogenous
substrates, such as phospholipids (sphingomyelin, glucosylceramide), steroid hormones and their
metabolites (glucocorticoids, aldosterone, (-estradiol-glucuronide), cytokines (IL-1f3, IL-2, IL-4,
IENY), and platelet-activating factor (PAF) [80-82]. ABCB1 also has an important role in regulating
programmed cell death, apoptosis [82]. Therefore, ABCB1 may positively influence cancer patient
survival by exporting these and other unknown endogenous substrates that may fuel or stimulate
cancer growth. Most clinical trials of inhibitors targeting ABCB1 resulted in no benefit in survival [24].
This raises the question of how significant ABC transporters are in contributing to clinical drug
resistance [83]. A recent call for the re-evaluation of their role in mediating multidrug-resistance has
revitalized this debate [24]. Our findings that ABCBI was associated with favourable survival in
multiple cancers emphasizes the need for further studies to clarify whether ABCB1 should be targeted
for cancer therapy.

The TCGA projects have defined the comprehensive molecular profiles (e.g., genomic,
transcriptomic, epigenetic, proteomic) for common human cancers and discovered numerous



Cancers 2020, 12, 3369 14 of 21

therapeutic targets and causative, diagnostic, or prognostic biomarkers [34]. However, we recognize
the limitations of the TCGA datasets to decipher drug-specific mechanisms. A major limitation is that
tumour samples were obtained prior to therapeutic intervention. Many ADME genes (e.g., CYPs and
UGTs) are induced by common cytotoxic anticancer drugs [84-86]. Inter-individual differences in
ADME gene induction might lead to different drug responses; however, testing this hypothesis would
require tumour samples to be sampled during/after treatment. Another limitation is that information
on drug regimens was typically only available for a small proportion of the patients for most cancer
types. Furthermore, drug type, dose, and/or treatment duration varied among patients, and most
patients received multiple therapy types, including chemotherapy, hormone therapy, ancillary therapy,
vaccine, immunotherapy, or targeted therapy. Such diverse drug regimens challenge our ability to
define drug-specific mechanisms. Given these limitations, future purpose-designed prospective studies
with sufficient patients and potentially incorporating longitudinal tumour sampling will be required
to precisely assess gene-/drug-specific impacts on cancer patient survival.

4. Materials and Methods

4.1. ADME Genes and TCGA Cancer Types

Roughly 300 genes are considered as ADME genes with slightly different lists among
studies [8-11,87]. The present study assessed the 298 ADME genes defined by the PharmaADME
Consortium (http://www.pharmaadme.org) as previously reported [8,9]. These 298 genes include
32 core ADME genes and 266 extended ADME genes (Table S1). Core ADME genes are the most
important genes directly involved in drug metabolism and clearance; the extended ADME genes are
other genes related to drug metabolism/clearance. ADME genes are categorized into three groups:
1) phase I and II enzymes; 2) transporters; 3) modifiers (modulating the expression or activity of other
ADME genes). The full names for all 298 ADME genes are given in Table S1.

Table 1 lists the 21 TCGA cancer types (7983 patients in total) that were included in our analysis of
ADME gene expression profiles. For 20 of these cancer types, only primary tumours were included in
the analysis; the SKCM dataset included about 30% primary tumour and 70% metastatic tumours [35].

The drug regimens of TCGA cancer types (Table S2) were downloaded from the GDC
(Genomic Data Commons) data portal (https://portal.gdc.cancer.gov) using an R/Bioconductor package
TCGADbiolinks as previously reported [88,89].

4.2. ADME Gene Expression Profiles Among and Within Cancers

The mRNA levels (RNASeqV2) of ADME genes of 21 different TCGA cancer types were obtained
as normalized RSEM values from the OncLnc database (http://www.oncolnc.org). RSEM is one of
the most frequently used programs for quantifying transcript abundances from RNA-Seq data [90].
Only genes with a median expression higher than 1 RSEM and no more than 25% of the patients with
an expression of 0 were included in the analysis [35]. The expression profiles and variable expression
of ADME genes within and between cancers were graphed using GraphPad Prism (version 7.03)
(GraphPad Software Inc, San Diego, CA, USA).

4.3. Assessment of Associations between the Intratumoral Expression Levels of Core ADME Genes and Overall
Survival of Cancer Patients Using the OncoLnc Database

The Kaplan-Meier estimator is one of the most frequently used methods for clinical survival
analysis [91]. In a clinical setting, patients are often recruited at different stages of the study or
even leave the study before its completion. Overall survival (OS) time was defined as the time
from the day at diagnosis to the date of death (dead patients) or the date of the last follow-up
(censored patients). The Kaplan-Meier estimator allows these “censored data” to be included in the
survival analysis. Using this approach, a recent study assessed the genome-wide associations of
gene expression and overall survival (OS) for 21 different types of TCGA cancers and established
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the publicly accessible OncoLnc database for survival analysis of genes of interest for the scientific
community using Kaplan-Meier plots and logrank tests [35]. The analysis from this study reported
the association of OS with a large number of genes in LGG. To avoid false-positive predictions,
we excluded this cancer from our OS analysis. Using the OncoLnc platform, we examined potential
associations between intratumoral expression levels of all 32 core ADME genes and OS rates for each
of the remaining 20 TCGA cancer types. For the Kaplan-Meier survival analysis, we separated the
patients by gene expression into high-expression group (upper 50 percentile) and low-expression group
(lower 50 percentile) and performed logrank tests. To control for false discovery rates, we performed
multiple testing correction using the R-statistical program (version 3.51) (https://cran.r-project.org).
Specifically, we performed Bonferroni correction separately for each of the 20 TCGA cancer types
using the raw p values of all independent logrank tests conducted from each specific cancer type. As a
varying number of core ADME genes were expressed in different cancer types (Table 1), the number of
independent logrank tests performed varied among different cancers. The Bonferroni correction is
the most stringent test for multiple testing correction and offers the most conservative approach to
minimize false-positive discovery rates [92]. A Bonferroni-corrected cutoff logrank p-value of < 0.05
was considered to be statistically significant. Table S3 lists both raw and Bonferroni-corrected p values
for independent logrank tests of all core ADME genes that were conducted for each of the 23 cancer
types, including 20 TCGA cancers and 3 non-TCGA cancers (KM-LUAD, KM-LUSC, KM-BRCA).
Of note, the Bonferroni correction was conducted separately for each of these cancer types, not for
study-wide comparisons.

The OncoLnc survival analysis tool is not able to stratify patients using clinical parameters
such as sex, tumor stage, and subtype. For analysis of three genes (CYP2D6 in BRCA, DPYD in
SKCM, UGT2B15 in BLCA) stratified by clinicopathological parameters (as indicated in Figure 2 and
Figure S3B), we obtained the clinical datasets for these three TCGA cancers and the expression levels
for these three genes from respective cancers from the cBioPortal [93] (https://www.cbioportal.org).
We performed Kaplan-Meier survival analysis and logrank tests using the GraphPad Prism software
(version 7.03). For the analysis, we separated the patients by gene expression into a high-expression
group (upper 50 percentile) and a low-expression group (lower 50 percentile). A Bonferroni-corrected
cutoff logrank p-value of < 0.05 was considered to be statistically significant. The GraphPad Prism
software generated Hazard ratio (HR) and 95% confidence interval (CI) for the analysis. Both HR and
95% CI values for relevant survival analyses are given in Figure 2 and Figure S3B.

4.4. Survival Analysis of Core ADME Genes in Non-TCGA Cancer Datasets

It was not possible to find independent datasets with transcriptomic profiling and overall survival
data for all of the 20 TCGA cancer types analysed in the present study. However, we were able to
analyse the lung cancer dataset and the breast cancer dataset from the Kaplan-Meier Plotter (KM-lung
cancer) [41] (https://kmplot.com) to validate our findings from the three TCGA cancer types (BRCA,
LUAD, LUSC). The KM-lung cancer dataset was established using gene expression data (Affymetrix
HGU133A, HG133A+2, and HGU133+2) and clinicopathological parameters of 2437 patients that
were collected from 14 published independent datasets (accessed 1 October 2020) [41]. Of these
patients, there were 1925 patients with overall survival data for analysis, including 865 patients with
adenocarcinoma (KM-LUAD) and 675 patients with squamous cell carcinoma (KM-LUSC). The breast
cancer dataset (KM-BRCA) was also established using gene expression data (Affymetrix HGU133A,
HGU133+2) and clinical data of 5139 patients that were collected from 35 independent Gene expression
Omnibus (GEO) datasets (accessed 1 October 2020, https://kmplot.com) [42]. Of this dataset, there were
1402 patients with overall survival data for analysis.

We plotted the Kaplan-Meier plots and performed the logrank tests for the same set of core ADME
genes (Table S3) that were analysed for the three TCGA cancers (BRCA, LUAD, LUSC) through the
Kaplan-Meier plotter (https://kmplot.com). As listed in Table S3, most core ADME genes analysed had
more than one probe set on the Affymetrix HGU oligo arrays. We performed survival analysis for all
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probe sets for every core ADME gene analysed. Because of this, we performed a total of 67, 56, and 54
independent logrank tests for the 19, 18, and 23 core ADME genes that were analysed for KM-BRCA,
KM-LUAD, and KM-LUSC, respectively (Table S3). Raw independent logrank p values of all probe sets
conducted for each of the three datasets (KM-LUAD, KM-LUSC, KM-BRCA) were adjusted separately
using Bonferroni correction. A Bonferroni-corrected cutoff logrank p-value of < 0.05 was considered
to be statistically significant. A significant association was defined where all probe sets of a gene
had a Bonferroni-corrected p-value of < 0.05. Conflicting results were seen for some genes such as
DPYD in KM-LUAD, where all three DPYD probe sets showed a Bonferroni-corrected p-value of < 0.05;
however, one probe set (1554534_at) was associated with unfavourable OS but the two other probe
sets (1554536_at, 204646_at) showed association with favourable OS (Table S3). Genes with conflicting
results among their probe sets were considered to be not statistically significant.

The Kaplan-Meier plotter generated Hazard ratio (HR) and 95% confidence interval (CI) for each
analysis. Both HR and 95% CI values for the survival analyses using the SLC15A2 expression levels
from its two probe sets in KM-LUAD were given in Figure 5.

5. Conclusions

In conclusion, we have defined the expression profiles of ADME genes in 21 TCGA cancer types.
We also identified 20 core ADME genes whose intratumoral expression was significantly associated
with overall survival in at least one cancer type. Our results provide compelling evidence supporting
ADME genes as potential prognostic biomarkers and therapeutic targets. As data on drug treatment
regimens were limited, for most TCGA cancer types we were unable to assess whether the associations
of ADME genes with survival could be attributed to anticancer drug regimens. Despite this, we have
provided the first comprehensive set of evidence that intratumoral ADME gene expression may
impact patient survival through a diverse range of mechanisms, including metabolism/transport of
anticancer drugs, activation of pro-drugs, metabolism/transport of endogenous molecules that can fuel
or stimulate cancer growth, and possible non-enzymatic mechanisms that have recently emerged in
the literature.
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intratumoral GSTM1 expression levels and overall survival in the KM-BRCA cohort; Table S1: The complete lists
of ADME genes and their expression levels in 21 different types of TCGA cancers; Table S2: Drug regimens of
TCGA cancer types; Table S3: Multiple testing corrections using Bonferroni correction.
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