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Abstract

Colorectal cancer arises in part from the cumulative effects of multiple gene lesions. Recent 

studies in selected cancer types have revealed significant intra-tumor genetic heterogeneity and 

highlighted its potential role in disease progression and resistance to therapy. We hypothesized the 

existence of significant intra-tumor genetic heterogeneity in rectal cancers involving variations in 

localized somatic mutations and copy number abnormalities. Two or three spatially disparate 

regions from each of six rectal tumors were dissected and subjected to next-generation whole 

exome DNA sequencing, Oncoscan SNP arrays, and targeted confirmatory sequencing and 

analysis. The resulting data were integrated to define subclones using SciClone. Mutant-allele 

tumor heterogeneity (MATH) scores, mutant allele frequency correlation, and mutation percent 

concordance were calculated, and copy number analysis including measurement of correlation 

between samples was performed. Somatic mutations profiles in individual cancers were similar to 

prior studies, with some variants found in previously reported significantly mutated genes and 

many patient-specific mutations in each tumor. Significant intra-tumor heterogeneity was 

identified in the spatially disparate regions of individual cancers. All tumors had some 

heterogeneity but the degree of heterogeneity was quite variable in the samples studied. We found 

that 67–97% of exonic somatic mutations were shared among all regions of an individual’s tumor. 

The SciClone computational method identified 2 to 8 shared and unshared subclones in the 

spatially disparate areas in each tumor. MATH scores ranged from 7 to 41. Allele frequency 

correlation scores ranged from R2 = 0.69 to 0.96. Measurements of correlation between samples 

for copy number changes varied from R2 = 0.74 to 0.93. All tumors had some heterogeneity, but 
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the degree was highly variable in the samples studied. The occurrence of significant intra-tumor 

heterogeneity may allow selected tumors to have a genetic reservoir to draw from in their 

evolutionary response to therapy and other challenges.

Colorectal cancer is the third leading cause of cancer-related death in the US, and rectal 

cancers comprise about a third of the burden of colorectal cancer (1). Treatment of rectal 

cancer requires complex multimodal therapy due to the increased risk of local recurrence as 

compared to colon cancer (2). Response to the pre-operative combination chemotherapy and 

radiation therapy is variable with up to 30 percent of patients demonstrating a complete 

pathologic response (3, 4). No particular clonal somatic mutations or biomarkers have been 

found that predict these differences in response; however, the studies to date have not been 

properly powered or comprehensive (5). We hypothesized that rectal cancers may exhibit 

significant intra-tumor genetic heterogeneity and that this heterogeneity may have relevance 

in therapeutic response and/or tumor recurrence.

Intra-tumor genetic heterogeneity, such as manifested by heterogeneity in point mutations or 

copy number changes among cancer cells, has been described in several tumor types, 

including lung cancer (6, 7) renal cell carcinoma (8), chronic lymphocytic leukemia (9), 

breast cancer (10, 11), and acute myeloid leukemia (12). The heterogeneity reflects the 

presence of different subclonal populations within the cancer and likely impacts the patient’s 

clinical course and response to therapy. Defining subclonal populations within solid tumors 

is challenging and requires costly and complex analysis and interpretation methods. Hence, 

some groups have utilized other mathematical approaches to assess and describe 

heterogeneity (13, 14). With the exception of a very recent publication revealing substantial 

intra-tumor heterogeneity in localized mutations and copy number changes between 

individual glands in adenomas and colon cancers (15), prior publications describing intra-

tumor heterogeneity in colorectal cancer have reported the existence of heterogeneity, but 

the depth of the analyses was limited to studies at a few genetic loci (16, 17).

The nature of intra-tumor heterogeneity can be defined and described in multiple different 

ways, including considerations of differences in localized mutations (point or small 

insertion/deletion mutations), and differences in copy number changes, as well as by a 

calculation known as the mutant-allele tumor heterogeneity, MATH score (14, 18). In 

patients with head and neck squamous cell carcinomas (HNSCCs), high MATH scores were 

associated with poor outcome, whereas low MATH scores are associated with better 

outcomes. Whether these measures of heterogeneity correlate with each other or with the 

extent of subclonality in a tumor is unknown.

We present here an in-depth assessment of intra-tumor heterogeneity in six rectal cancers. 

We performed next-generation Illumina whole exome sequencing of normal rectal mucosa 

and two or three spatially distinct regions of rectal cancers from six patients, obtaining 

median gene coverage per sample of 47-fold. We then used the Ion Torrent platform to 

perform targeted re-sequencing for validation allowing us to obtain an average depth of 

greater than 400-fold per gene. We additionally utilized Oncoscan SNP arrays to assess for 

copy number and allele frequency changes. We examined heterogeneity with regard to single 

nucleotide variants, insertions, deletions, allele frequency correlations, copy number changes 
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and correlations, MATH scores, and percent mutation correlation. We combined the deep, 

targeted sequencing and the copy number changes data using a previously described 

computational method called SciClone to estimate the number of subclones within the 

tumors (14). We found rectal cancers exhibit intra-tumor genetic heterogeneity as well as 

evidence of subclones as assessed by multiple measures and the degree of heterogeneity 

varied considerably among patients.

Materials and Methods

Sample collection and DNA extraction

For five of the rectal cancers, DNA was isolated from banked surgical resection materials 

present in the University of Michigan Cancer Center Tissue Procurement Core. A qualified 

gastrointestinal pathologist assessed multiple independent regions from each of five primary 

rectal cancers. Two or three spatially distinct areas of adenocarcinoma were identified in 

each cancer specimen via inspection of hematoxylin- and eosin- (H&E)-stained glass slides. 

Each tumor region intended for analysis was at least one centimeter in distance from the 

other area(s). Normal rectal tissue was also collected from the surgical specimens. The 

relevent area of each frozen tumor blocks were identified and the normal and tumor material 

were manually dissected from the blocks. For one patient’s specimens, spatially distinct 

areas of tumor and normal rectum were removed from the in situ tumor at the time of 

ultrasound and the tissues were frozen. These samples were also assessed for tumor purity 

by a gastrointestinal pathologist via analysis of representative H&E-stained slides. Clinical 

data on each patient was abstracted from the medical records. The University of Michigan 

Institutional Review Board approved this study. DNA was extracted from frozen tissue, 

using the Allprep mini kit (Qiagen, Valencia, California) and according to the 

manufacturer’s instructions.

Next Generation Sequencing

Illumina whole-exome sequencing and analysis—Genomic DNA samples were 

fragmented using a Covaris S2 fragmentation system to a target size of 300bp. The samples 

were end-repaired, a-tailed, and custom adapters were ligated using the NEBNext ® DNA 

Library Prep kit according to the manufacturers recommended protocols. The custom 

adapters included 6bp barcodes designed using BARCRAWL software (19) and synthesized 

by Integrated DNA Technologies. After ligation, the samples were size selected to 300bp on 

a 2 percent agarose gel and 1mm gel slices were retained. Samples were isolated from the 

gel using the Qiagen QIAquick gel extraction system. Either 10ul or 15ul of each ligation 

product was enriched using the Phusion master mix kit and custom polymerase chain 

reaction (PCR) primers for a total of 14 cycles of PCR amplification. The PCR products 

were purified using AmpureXP® beads.

Library QC was performed using the Agilent Bioanalyzer and qPCR. Each pool was 

captured using the Nimblegen SeqCap EZ V3 Exome Enrichment Kit according to the 

manufacturer’s recommended protocols. The capture pools were combined and sequenced 

on the Illumina HiSeq 2000 platform with paired-end 100bp reads using v3 reagents.
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Paired reads were mapped to the hg19 reference genome using the Burrows-Wheeler 

Aligner (BWA) (20) and were processed with SAMtools (21). Duplicates were removed 

with the rmdup function and variants were called with the mpileup function. Variants were 

identified as on-target if they fell within 10bp of a targeted area defined by the exome 

capture panel, and off-target variants removed. The samples were processed by mpileup as 

normal-tumor pairs so that the likelihood ratio of each variant could be estimated (22). 

Variants identified only in the tumor sample with a likelihood ratio (CLR value) greater than 

60 were considered somatic, representing a less than 1 in 1 million likelihood of a false 

somatic identification. Somatic variants identified in one region of the tumor but not the 

others were considered unique to that region. Variants were then annotated with SnpEff (23) 

to classify variants by region (e.g. exon, intron, 5′-UTR), to determine amino acid change 

type (e.g. synonymous, non-synonymous) and to prioritize according to the predicted impact 

of the variant. Variants within non-coding transcripts (e.g. pseudogenes), and variants 

present in dbSNP v.135, were removed. Depth of coverage was calculated as number of 

reads aligned to exons in a gene multiplied by the length of reads per length of all exons in 

gene. We then calculated the median coverage per gene per sample.

Ion Torrent Sequencing and analysis—Variants identified from Illumina sequencing 

data were targeted for sequencing by Ion Torrent using custom Ion Torrent Ampliseq panels. 

Briefly, for each targeted variant, a single overlapping amplicon (~100bp) was designed, and 

assigned to one of two separate targeted panels for sequencing. Ampliseq library preparation 

with barcode incorporation, template preparation and sequencing using the Ion Torrent PGM 

was performed as described (24). Custom VCF files containing all targeted variants were 

used for variant calling using command-line Torrent Variant Caller (TVC, v4.2.3) with 

default somatic low-stringency settings after alignment by TMAP v3.6.3 in Torrent Suite 

v3.6.2. VCF-level filtering of candidate variant calls generated by TVC was applied to 

remove variant calls with flow-corrected read depth (FDP) less than 20, flow-corrected 

variant allele containing reads (FAO) less than 6, variant fraction of <5%, variants in 

homopolymer runs ≥ 4, or those with extreme skewing of forward/reverse flow-corrected 

reads supporting the variant allele (FSAF/FSAR <0.2 or >5). Base-level filtering was then 

applied to candidate somatic variants passing aforementioned criteria to exclude additional 

technical artifacts, including removal of variants located at the last mapped base (or outside) 

of amplicon target regions and variants with the majority of supporting reads harboring 

excess additional mismatches or indels (likely sequencing error). Variants called in 30% or 

more of samples sequenced on a given targeted panel were removed as panel-specific 

technical artifacts. Variants present at allele frequencies >0.5% in ESP6500 or 1000 

Genomes Project (reported by Annovar (25)) were filtered out as known polymorphisms. To 

restrict our focus exclusively to somatic variation, we also filtered out variants present in any 

of the matched or unmatched normal samples. We have previously shown similar filtering 

criteria identifies variants passing Sanger sequencing validation with >95% accuracy (26–
28). A subset of called variants was inspected by visualizing the alignment bam files and 

corresponding variant .vcf files in the GenomeBrowse genome browser software (Golden 

Helix). APC indels were assessed manually.
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Oncoscan SNP arrays and Copy Number Variation analysis—Affymetrix 

OncoScan V3 arrays were run on all tumor samples. The OncoScan array platform consists 

of a set of 217k probes designed specifically for profiling tumors. The assay detects copy 

number change by generating data at 50–100kb resolution across a set of 891 cancer genes, 

and 300–400kb across the rest of the genome. Raw array florescence intensity data 

generated on the Affymetrix scanners in the form of CEL files were loaded into the 

OncoScan Console software v.1.1.0 (Affymetrix, Santa Clara, California). Quality control 

statistics as well as integrated OSCHP files were generated by OncoScan Console. The 

standard Affymetrix reference control file for OncoScan data was used for processing the 

arrays.

The SNP-FASST2 algorithm implemented in the Nexus software v.7.5 (BioDiscovery, El 

Segundo, California) was used to make copy number calls. SNP-FASST2, rather than 

reporting on the large number of individual probe locations across the genome, uses a 

Hidden Markov Model based approach to identify larger copy number segments based on a 

log-ratio threshold derived from all probes in a given region. Ratios are the log2 ratios of the 

normalized intensity of the sample over the normalized intensity of a reference with further 

correction for sample specific variation. The Median Log2 Ratio is computed for each 

segment detected in the analysis. The significance threshold for segmentation was set at 

1.0E-5 also requiring a minimum of three probes per segment and a maximum probe spacing 

of 1000 kbp between adjacent probes before breaking a segment. Segments were classified 

as having gains when the Log2Ratio (L2R) exceeded 0.2, losses when L2R was less than 

−0.2, and with high copy gains and homozygous losses being called when L2R was greater 

than 0.6 and less than −1.0, respectively. Differences in copy number changes between 

samples from a tumor for individual genes were counted when one sample had a change as 

defined above and another either did not have that change or had a different change.

B-allele frequency information was also generated for each tumor. Median BAF is reported 

for each segment and is the median BAF of the markers identified as heterozygous. If the 

number of heterozygous markers in the segment is below 10 or the percent of homozygous 

markers is above 85% no value is reported. The B Allele Frequency values are used to 

determine whether a segment is in a loss of heterozygosity (LOH) or an allelic imbalance 

state. By default, probe sets were automatically centered to the median for all samples by the 

Nexus software. For individual samples where the median probe set value was not diploid, 

specified regions of balanced heterozygosity were manually identified by visual inspection 

of L2R and BAF plots and defined as diploid regions, permitting the Nexus software to reset 

the entire probeset to the newly defined areas.

We calculated Copy Number Correlations by comparing copy number changes between 

pairs of samples within each tumor. We correlated the median centered (tumor/normal) L2R 

values over the chromosomal regions (Table 3 and Supplement 3). We computed copy 

number estimates for individual genes as the median copy number estimate over the 

segments spanned by the gene’s transcript. We called copy number estimates as different in 

two samples if the log2 estimates differed by at least 0.2 units.
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MATH and Correlations—In order to calculate the mutant-allele tumor heterogeneity 

(MATH) score, the distributions of alternate (mutant) allele frequencies for all somatic 

variants detected in each sample were plotted using the R plot and density functions. The 

MATH score, a robust version of the coefficient of variation, was computed for each sample 

as 100 times the median absolute deviation from the median (the MAD) divided by the 

median: MATH = 100* MAD/median (14, 18). Tumor purity is corrected for in this 

calculation as it is both in the numerator and the denominator.

We calculated the Mutation Percent Concordance between every pair of samples within a 

tumor by computing 100%*S/(S+((U1+U2)/2)), where S is the number of shared mutations 

observed in both of the two samples and U1 and U2 are the number of mutations found in 

one sample but not the other, for each of the two samples, respectively (13). The presence of 

other samples for the tumor has no effect on the calculation. We also calculated allele 

frequency correlations by computing the (Pearson) correlation between mutant allele 

frequencies (obtained via Ion Torrent) for every pair of samples from the same tumor, over 

the 24910 genes interrogated by exome sequencing.

SciClone Analysis—SciClone is an R package developed to infer subclonal populations 

of cells in a tumor sample (14). The software implements a variational Bayesian mixture 

model to classify variants into different populations based on their copy number states and 

allele frequencies, with clusters in the diploid copy number state being potential subclones. 

A probability is calculated for the presence of each variant in each of the inferred subclones. 

The validated variant allele frequencies and read depths from the Ion Torrent analysis of 

each tumor and the copy number and loss-of-heterozygosity data from the OncoScan arrays 

were used as input into SciClone, generating cluster models for the tumors.

Data Sharing—The Ion Torrent sequencing data can be found at the European Variation 

Archive website: http://www.ebi.ac.uk/eva/?Home accession number: PRJEB10956. The 

OncoScan array data are available from the NCBI’s Gene Expression Omnibus (29) at http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73365 accession number GSE73365.

Results

Patient characteristics

The clinical features of the six patients whose cancers were analyzed are summarized in 

Table 1. Five of the six tumors were collected as surgical resection specimens in patients 

who did not undergo pre-operative chemotherapy and radiation. Samples from NP1 were 

prospectively collected at the time of his endorectal ultrasound before radiation and 

chemotherapy. However, the pathologic features described represent those in the surgical 

resection of his primary tumor following 6 months of combination 5-fluorouracil, 

leucovorin, and oxaliplatin and then combination therapy with xeloda and 50.4 Gy of 

radiation over 6 weeks. Each of the spatially distinct regions subjected to analysis in each 

patient’s tumor were assessed by a gastrointestinal pathologist and showed similar 

histological features.
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Variants identified

Utilizing Illumina whole exome sequencing, we identified 333 somatic, coding variants 

across our samples. An average of the median gene coverage per sample of 47-fold was 

obtained by Illumina sequencing across exonic regions, with the lowest depth of 19-fold 

(patient 204, Ca2) and the highest of 89-fold (patient NP1, Ca2). Ion Torrent sequencing of 

the entire targeted panel was performed on each sample, achieving an average read depth of 

405-fold per target across all samples, with the lowest average depth being 165-fold (patient 

20, Ca1) and the highest 698-fold (patient 20, Normal). We identified and validated between 

30 and 89 somatic variants per tumor (Table 2). This is similar to the number of variants 

identified per tumor in The Cancer Genome Atlas (TCGA) studies of colon and rectal 

cancers, where the mean number of somatic mutations in non-hypermutated tumors was 58 

(30). From one to three of the genes identified as being somatically mutated in tumor 

samples of each of the six patients were previously noted to be significantly mutated in the 

TCGA study of colorectal cancers (Table 2 and Figure 1) (30).

Intra-tumor heterogeneity in variants

An initial assessment, using only the Illumina exome-capture data, of presence and absence 

of specific somatic variants suggested that a given tumor shared as little as 23 percent of the 

variants among all samples (data not shown). Targeted, higher depth re-sequencing did not 

validate this degree of heterogeneity in all samples but did still reveal substantial mutational 

heterogeneity. Overall, the false negative rate for variants identified using Illumina 

sequencing and then tested using Ion Torrent was 38% and the false positive rate was 8%. 

The false negative Illumina calls were identified when the Illumina sequencing identified a 

variant in one sample from a tumor but failed to call a variant in another sample from the 

same tumor. Had we failed to assess the variants with deeper sequencing analysis, we would 

have dramatically over-estimated the degree of intra-tumor heterogeneity in the samples. 

However, because low-depth Illumina sequencing was used to identify the variants for 

targeted sequencing, we are likely under estimating heterogeneity.

When Ion Torrent validated mutations were assessed, the percentage of all coding validated 

mutations that were shared among all of the spatially distinct regions of an individual tumor 

ranged between 67 and 97 percent (Table 2 and Figure 1). Mutation percent concordance 

was calculated for every pair of distinct samples within each tumor and ranged from 86.5% 

to 98.7% (Supplement 1 and Table 3). Allele frequency correlations were calculated for the 

spatially distinct samples within each tumor revealing R2 = 0.75 to 0.94 (Supplement 1 and 

Table 3).

MATH

Another means of describing intra-tumor genetic heterogeneity is by generating a histogram 

or density plot of the mutant allele frequencies and calculating a score based on the ratio of 

the width of the distribution to the center of the distribution (14). Heterogeneous tumors will 

tend to exhibit a broader allele frequency distribution due to genomically distinct cellular 

populations, centered at a lower allele fraction, than a homogeneous tumor (Figure 2). 

MATH scores and density plots were calculated for each sample from each tumor (Figure 2, 

Table 2 and, Figure Supplement 2). The resulting MATH values ranged from 7 to 42. The 

Hardiman et al. Page 7

Lab Invest. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



density plots indicate somewhat narrow, unimodal distributions of allele frequencies in 

tumors 4 and 11 (Figure 2, Supplement 1). Peaks immediately flanking the modal peak can 

theoretically be explained by single chromosomal duplication (three-copy genotype regions), 

with smaller peaks lacking a matching equivalent on the opposite side of the modal peak, or 

asymmetrical shoulders to the modal peak, representing possible subclonal contributions. A 

peak present at double the allele frequency of the main peak may be caused by regions of 

single copy deletion (one-copy genotype regions). The median allele frequency distribution 

peak for these tumors is between 0.3 and 0.4, with the exception of 11-Ca3, which has a 

median around 0.2. An ideal distribution of purely heterozygous mutations would be 

expected to center around 0.5, however contaminating normal DNA or non-aberrant cells 

present in the tumor have the effect of shifting the median to a lower value. Tumors 1 and 20 

exhibit more broad distribution profiles with more marked multimodality (Figure 2, 

Supplement 2). The two tumor profiles of patient 204 display radically different density 

profiles, indicating a possible sampling of different subclonal populations or potential 

significant differences in tumor purity between samples (Supplement 2).

Intra-tumor heterogeneity in copy number

Differences in copy number between samples for the same tumors can be reflected in 

heterogeneity measures like the MATH scores, since variant frequencies are affected, but 

direct copy number change measurements provide additional orthogonal information about 

genomic alteration events. It is well known that multiple genomic regions can differ from the 

diploid state in colorectal cancers (30, 31). Copy number changes were assessed using 

OncoScan Arrays (Figure 3a and Supplement 3). Several quality control metrics are 

generated by the OncoScan Console software for assessing the performance of each array 

assay, the two main metrics being MAPD and ndSNPQC which measure noisiness of the 

log2ratio and the differentiation of the B-allele frequency tracks, respectively. Arrays with 

MAPD <= 0.3 and ndSNPQC >= 26 are considered “within bounds”. Of the 15 arrays 

generated in this experiment, 10 arrays were within bounds and 5 were outside bounds 

(4Ca1, 204Ca1, NP1Ca1-3). Profiles for the outside bounds arrays were determined to be 

useful for overall visual comparison with the caveat that specific calls and boundaries of 

copy number regions for these arrays are less precisely determined. The overall reported 

percentage of aberrant cells varied from 40 to 80 percent, with the percentage 

undeterminable for 7 arrays. Manual interpretation of the undetermined arrays based on the 

log2R and B-allele frequency plots indicate aberrant cell percentages between 30 and 57 

percent. Several tumor samples were indicated by the OncoScan Console software (using the 

TuScan algorithm) as being almost entirely non-diploid, with overall ploidy of 4 (Tumor 1, 

Tumor 20Ca2) (Figure 3, Supplement 3). OncoScan Console was unable to determine 

correct “normal diploid” regions for these tumors and for one other tumor of undetermined 

ploidy (204Ca1). For these samples, normal diploid regions were identified manually within 

the Nexus Copy Number software, permitting recalculation of profiles for these tumors 

using the SNP-FASST2 algorithm. Significant regions of copy number change were detected 

in all tumors, with several tumors exhibiting quite complex copy number profiles (Tumors 

20 and 204). All six tumors displayed significant gains of chr20q, with all but tumor 4 

having gains of variable length of chr8q. Losses were observed on chr18 in all samples, 

except in tumor 204, and for chr8p in tumors 11, 20, and NP1. Tumor 20 shows 
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heterogeneity in chromosome 3, in which regions of the p and q arms vary between states of 

allelic balance and imbalance across the three samples, as evidenced by characteristic three 

band or four band patterns in the BAF plots, respectively (Figure 3B). Care must be taken in 

interpreting these plots so as not to confuse differences in tumor purity with copy number 

change or allelic differences; most differences in the Tumor 20 profiles may be attributed to 

estimated aberrant cells fractions of 70, 90, and 50 percent for 20Ca1, 20Ca2, and 20Ca3, 

respectively (Figure 3A). Examples of intra-tumor heterogeneity were observed in some 

tumors such as Tumor 11 where differences for gains of chr8q were seen in Ca2 versus Ca1 

and Ca3 as well as in losses of 8p, where the first ~24Mb are commonly deleted but the rest 

of the deleted segment varies between the samples (Supplement 3). Similarly, for Tumor 1, a 

large portion of chr3 is lost in Ca1 but not in Ca2 (Supplemental 3). The copy number 

changes found in individual samples from the same tumor were variably correlated, showing 

correlations from 0.74 to 0.93 (Table 3 and Supplement 1). Regions of copy number change 

were assessed specifically at the sites of the 32 genes highlighted as being significant in The 

Cancer Genome Atlas (TCGA) publication characterizing colorectal cancer (30). Depending 

on the tumor assessed between 0 and 66 percent of the 32 TCGA specified genes were found 

to have differences in copy number changes between pairs of samples for the same tumor. 

The average was 19.5 percent with binomial 95 percent confidence interval of 15.6 to 23.5 

percent. This was compared to differences in copy number between the samples for 100 

random genes where we found differences in 17.0 percent of the pairs of samples (95 

percent confidence interval: 2.0 to 62.0 percent). Differences between pairs for the 32 

highlighted genes was highly correlated to the number of differences found in the 100 

random genes across pairs of samples (r=.95, p=1×10−6). We found that the frequency of 

copy number changes in the TCGA genes is no different than other genes (p=.26, Z-test of 

two proportions).

SciClone

The high-depth targeted sequencing results and copy number variations were used to 

identify subclones in the diploid portions of the tumors using the previously published 

method called SciClone (14). The R package utilizes the copy number changes to identify 

mutations that are only in the diploid region of the tumor and then the algorithm defines 

subclones by clustering variant allele frequencies. The SciClone plots display subclones 

within each tumor, some of which are shared between the spatially distinct samples while 

others are not (Figure 4 and Supplement 4). For Tumor 1 (figure 4A), SciClone identified 3 

distinct subclones in the copy number 2 portion of the tumor. These were shared equally 

between samples from the tumor. However, in tumor 11, (figure 4B), SciClone identified 6 

distinct subclones in the copy number 2 portion of the tumor. The number and distribution of 

subclones varied in the six tumors studied (Supplement 4).

Differences in Heterogeneity

Some of the tumors studied manifested high levels of intra-tumor genetic heterogeneity in 

the spatially distinct samples from the tumors, using each of the analysis strategies. Other 

tumors manifested considerably less intra-tumor genetic heterogeneity. For example, Tumor 

4 had 93 percent of its mutations shared across the spatially distinct regions of the tumor 

tested (Figure 1 and Table 2), as well as a dominant peak on its allele frequency density plot 
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with near complete overlap between the 2 spatially disparate areas (Figure 2). In addition, 

tumor 4 had low MATH scores (7 and 9), high allele frequency correlation (0.910), mutation 

percent concordance (96.3 percent), and moderate change in copy number with copy number 

correlation between samples of 0.802 and only 3 subclones identified by SciClone (Table 2 

and 3, Supplement 1 and 4). Tumors demonstrating higher amounts of heterogeneity are 

Tumors 20 and 11. Tumor 11 shares only 67 percent of mutations between all spatially 

disparate samples (Table 1) and the correlation between mutant allele frequencies was 0.750. 

MATH scores for Tumor 20 were very high, perhaps due to a greater number of high 

frequency mutant allele fractions, which increases the MATH score even if observed in 

every sample (Table 2, Supplement 2). There were 6 subclones identified on the SciClone 

analysis in Tumor 11 and 8 in Tumor 20. Most correlations between measures of 

heterogeneity are not significant likely due to our small sample size (Table 3, Supplement 1). 

However, the allele frequency correlation is correlated to the concordance, as expected (r = 

0.89, p = 0.017).

Discussion

The studies and data presented here offer strong evidence of intratumor genetic 

heterogeneity in rectal cancer. The heterogeneity observed among spatially distinct regions 

in a given tumor was found for localized mutations, allele frequency measures, MATH 

scores, as well as copy number alterations. In addition, the computational method, SciClone, 

identified multiple subclones in the tumors, some of which were shared among the different 

samples from a given tumor and the others were private. Genetic heterogeneity was 

confirmed using high-depth DNA sequencing coverage provided by Ion Torrent-based 

analyses. Our study utilizes more in-depth sequencing analyses for the six rectal cancers 

studied than some of the prior work examining colorectal cancer intratumoral genetic 

heterogeneity. As in other types of cancers, intra-tumor heterogeneity is likely to be of 

potential biological and clinical significance in rectal cancer.

Our findings are largely in agreement with those in a recent study of individual glands in 

adenomas and colon cancers that revealed substantial intra-tumor heterogeneity in the 

targeted panel of mutations and copy number alterations leading the authors to present a 

“Big Bang” model whereby there are early expansions of a large number of sub-clones that 

intermix (15). Sottoriva and co-workers sequenced both bulk colon tumors and individual 

tumor glands and found evidence of early and widespread intratumor heterogeneity. We 

exclusively used rectal cancers in our studies. Colon and rectal cancers are treated differently 

and multiple studies have suggested they are different genetic entities, thus it is important to 

study each of them in order to understand how their genetics may predict their phenotype 

and response to therapy. Other prior studies to address intra-tumor heterogeneity in 

colorectal cancer have been more limited. Losi and coworkers assessed between 9 and 14 

areas of 45 colorectal cancers for specific somatic mutations in TP53 and KRAS along with 

loss of heterozygosity of chromosomes 5q and 18q. They found evidence of intra-tumor 

heterogeneity for at least 1 marker tested in 76 percent of tumors (17). Diaz and colleagues 

found evidence for increasing levels of mutant KRAS alleles in the circulation of CRC 

patients whose primary tumors were largely comprised of wild type KRAS alleles, when the 

patients were treated with anti-EGFR therapy. The authors performed mathematical 
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modeling suggesting that cells with these KRAS mutant alleles were present at low levels in 

the tumors before treatment and then expanded in the setting of biological selection during 

anti-EGFR therapy (32). The findings highlight the potentially significant role for intra-

tumor heterogeneity in the response or resistant to current and future therapies (33). 

Historically, APC, KRAS, and TP53 have been thought of as key driver mutations in 

colorectal cancer development (34). Over time, with further sequencing, other drivers have 

been identified (30, 35). As expected, we found some of these potential alternative driver 

mutations in our samples. As explained by Lawrence, Getz, and colleagues in their recent 

manuscript on driver mutations, there are likely many more driver gene lesions to be found 

(36).

Our data regarding shared and unique mutations and copy number alterations among 

spatially distinct regions of individual tumors implies that distinct subclones are frequently 

present in rectal tumors. Limitations of this study include: low depth of our initial 

sequencing and use of normal adjacent rectum as our control. The initial Illumina 

sequencing results that formed the basis for the targeted panel were relatively low coverage 

(average of 47-fold). Greater initial sequencing depth may have identified more low allele 

frequency variants, some of which may be early events private to a particular location or 

help to define additional subclones. However, the depth used to define our panel is similar to 

that used in other studies. For example, Sottoriva and co-workers used 20x-60x coverage 

Illumina whole exome sequencing to define the targets of their Ion Torrent panel (15). In 

addition, we used DNA from normal appearing nearby rectum as our normal control rather 

than DNA from blood. It is possible that DNA from this tissue may not perfectly represent 

normal due to passenger mutations in the mucosa that have not resulted in a neoplastic 

phenotype but these likely are present at a very low allele frequency because any given 

mutation is not likely to be in the entire area samples due to the long time to division for any 

given crypt (37).

Despite its apparent clinical importance in head and neck cancer, the MATH score approach 

to assess intra-tumor genetic heterogeneity in rectal cancer may have limitations. If in all 

samples for a hypothetical cancer, half the mutant genes have a mutant allele fraction of 0.45 

and half have 0.90 (due to loss of the wild-type alleles), the MATH score is 33.3, which 

would be rather large. However, in this same hypothetical cancer, the concordance and allele 

frequency correlations would both be 1.0, and indeed we would not say we could see any 

heterogeneity in the samples. Nevertheless, in our studies, the MATH score in the tumors 

that were more heterogeneous by other measures, were high, and the MATH score 

determination is a relatively inexpensive method for assessing heterogeneity as it only 

requires low pass exome sequencing as compared to SciClone which requires deep 

sequencing and SNP arrays or equivalent copy number data for copy number changes, so it 

may have utility. In addition, if a tumor is a mixture of many different clones but they are 

spatially well mixed, different samples may yield nearly identical variant allele frequencies 

and copy number data, yet the MATH score will detect the mixture.

We calculated 4 different measures of intra-tumor heterogeneity and identified subclones 

using SciClone. As of yet, we do not know which will be clinically important or whether 

they will correlate with each other. These measures vary between the different tumors. More 
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research is needed to develop clinically useful metrics from mutation frequency and 

heterogeneity data.

The potential clinical significance of intra-tumor genetic heterogeneity for cancer prognosis 

or for treatment of colorectal cancer patients has yet to be explored. Studies in head and 

neck cancer have shown that increased MATH scores are a poor prognostic indicator (18). In 

chronic lymphocytic leukemia, Landau and colleagues found that patients treated with 

chemotherapy underwent expansion of resistant subclones and that the presence of sub-

clonal driver mutations was an independent predictor of rapid disease progression (9). These 

studies suggest that intra-tumor heterogeneity may be a genetic reservoir to be drawn from 

in times of stress and that the extent and nature of intratumor genetic heterogeneity should 

be examined further for its clinical significance in patients with colon and rectal cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Allele frequencies of coding variants in each tumor and sample in six rectal cancers. 

Mutations that failed validation with Ion Torrent were not included. Red indicates genes 

listed as significant in TCGA colorectal cancer paper. Yellow indicates high impact 

mutations: frameshift, splice site, and stop codons. Blue indicates synonymous mutations. 

Black indicates the mutation was not found in that sample. S: Sample
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Figure 2. 
A. Estimated probability density of allele frequency for variants from different samples vs 

density for Patient 4 and Patient 20. Each sample is plotted as a different color.
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Figure 3a
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Figure 3b

Figure 3. 
Intra-tumor Heterogeneity in Copy Number Changes A: Heterogeneity in Copy Number 

Changes in 3 samples from Tumor 20. B. Tumor 20 shows heterogeneity in chromosome 3, 

in which regions of the p and q arms vary between states of allelic balance and imbalance 

across the three samples, as evidenced by characteristic three band or four band patterns in 

the BAF plots.
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Figure 4a
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Figure 4b

Figure 4. 
SciClone plots: A. Tumor 1, Variant Allele Frequency (VAF) is plotted against density and 

the copy number 2 variants are identified along the green line. Then VAF is plotted against 

tumor coverage (depth) for the 2 samples from tumor 1 for variants found in the diploid 

portion of the samples and subclones are defined by different colors. VAF’s for each sample 

are then plotted against each other in the diploid portion to reveal the relationship between 

the multiple clusters (subclones).
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B. Tumor 11; Tumor 11, Variant Allele Frequency (VAF) is plotted against density and the 

copy number 2 variants are identified along the green line. Then VAF is plotted against 

tumor coverage (depth) for the 3 samples from tumor 11 for variants found in the diploid 

portion of the samples and subclones are defined by different colors. VAF’s for each sample 

are then plotted against each other in the diploid portion to reveal the relationship between 

the multiple clusters (subclones).
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Table 3

Summary of Measures of Intra-tumor Heterogeneity

Tumor Allele frequency R2 Copy number R2 Mutation Percent Concordance Average MATH

T1 0.938 0.906 98.7% 21.2%

T4 0.910 0.802 96.3% 8.3%

T11 0.750 0.918 86.5% 11.1%

T20 0.879 0.827 93.4% 40.8%

T204 0.886 0.740 89.9% 19.0%

NP1 0.917 0.883 97.7% 20.3%

Corr to allele freq R2 1 −0.279 0.890 0.224

p 0.592 0.017 0.669

Corr to copy# R2 −0.279 1 0.134 −0.085

p 0.592 0.800 0.873

Corr to concordance 0.890 0.134 1 0.145

p 0.017 0.800 0.784

Corr to MATH 0.224 −0.085 0.145 1

p 0.669 0.873 0.784
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