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Abstract: Background and Aims: Recent reports suggest that results from imaging retinal microvas-
cular changes with optical coherence tomography angiography (OCTA) in dementia patients reflect
cerebral microcirculation changes that occur during dementia. Macula microvascular impairment has
been shown in dementia patients compared to controls, but very little is known about its correlation
with radiological visual rating scores associated with dementia. We aimed to explore the association
between retinal microvasculature and radiological visual rating in early-onset dementia (EOD) pa-
tients. Methods: Swept-source OCTA (SS-OCTA) was used to image the retinal microvasculature
of all EOD patients. Automated software in the OCTA tool segmented and measured the densities
in the superficial vascular plexus (SVC) and deep vascular plexus (DVC) and foveal avascular zone
(FAZ) areas. Radiological visual rating scores were evaluated on all MR images. Results: Medial
temporal lobe atrophy (MTA) scores significantly correlated with FAZ area (p = 0.031) in EOD patients
after adjusting for risk factors. PWMH correlated with SVC (p = 0.032) while DWMH significantly
correlated with SVC (p = 0.007), DVC (p = 0.018) and FAZ (p = 0.001) in EOD patients. Discussion:
FAZ changes correlated with MTA scores in EOD patients, while retinal microvasculature correlated
with white matter hyperintensity. Our report suggests that microvascular changes in the retina may
reflect cortical changes in the brain of EOD patients.

Keywords: retinal microvasculature; optical coherence tomography angiography; early-onset
dementia; white matter hyperintensity; medial temporal lobe atrophy

1. Introduction

There is currently no treatment for dementia. Clinical trials with drug therapies
have been unsuccessful in showing valuable clinical results. However, these studies
were done with participants in the advanced phase of the disease when these drugs
may not have been effective in slowing down the progression of the disease. Therefore,
researchers and clinicians are focused on investigating the earliest phase of dementia to
understand the progression of the disease. Early-onset dementia (EOD) is defined as
dementia in individuals aged 65 years or younger, and has been suggested to be a model
for understanding disease progression and pathophysiology in dementia.

Structural imaging based on magnetic resonance imaging is an integral part of the
clinical assessment of patients with dementia [1]. Many reports [1–3] suggest that significant
changes occur in cerebral structural markers from the preclinical phase to the overt phase
of dementia. Atrophy of medial temporal structures is now considered to be a valid
diagnostic marker of dementia. Structural imaging is also included in diagnostic criteria for
dementia [4,5]. Cerebral imaging markers such as the presence of atrophy and white matter
hyperintensities are sensitive markers of neurodegeneration in dementia [6,7] and are
increasingly used as outcome measures in trials of potentially disease-modifying therapies.
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Recent reports [8,9] suggest that these cerebral imaging markers occur as a result of cerebral
microvascular impairment.

Microvascular impairment is a key pathological feature of dementia, and is likely to
be the main pathological driver of disease progression [10,11]. Detecting and monitoring
microvascular dysfunction from the earliest phase of dementia is important for identifying
patients at risk of dementia, with brain atrophy the current radiological indicator. Brain
atrophy is suggested to result from neurodegeneration and can be assessed by visual
rating of magnetic resonance imaging (MRI); however, recent reports [10,12] suggest that
microvascular dysfunction plays a vital role in brain atrophy. Because of the inconspicuous
nature of cerebral microcirculation, its visualization is limited. Furthermore, MRI visual
ratings lack sensitivity and do not provide specific information regarding brain regions
that are exhibiting accelerated microvascular dysfunction.

Optical coherence tomography angiography (OCTA) is a retinal imaging modality
that can non-invasively measure the microvasculature of the retina in different layers
with high resolution. The application of OCTA to neurological disorders has been widely
documented and has been suggested to reflect cerebral microvascular dysfunction and
a surrogate indicator of microvascular impairment in most neurological disorders [13].
OCTA studies have shown decreased microvascular density, reduced fractal dimension, and
decreased perfusion in dementia compared to controls [14–17]; importantly, studies [18–21]
have shown microvascular changes during mild cognitive impairment (MCI) and dementia
compared with controls. Although retinal structural changes have been suggested to be
linked with cerebral atrophy in dementia, very little is known about the association between
radiological indicators of dementia and microvasculature.

In this study, we examined the correlation between retinal microvasculature in early-
onset dementia (EOD) and radiological markers.

2. Methods
2.1. Participants and Study Design

This observational cross-sectional study design was done between September 2021
and July 2022 at the Neurology Department of the West China Hospital, Sichuan University,
China. We recruited patients from our ongoing study on Dementia and Aging Project.
Patients diagnosed with early-onset dementia (EOD) who fulfilled the NIA-AA criteria [22]
and EOD diagnostic criteria [23] were enrolled in our study. Participants enrolled were
able to cooperate and tolerate MR imaging and OCTA imaging. Exclusion criteria were as
follows: history of other neurological or major psychiatric disorder, presence of cerebral
infarction/infarcts on MR imaging, a toxic disorder that can affect the central nervous
system (CNS), and aphasia.

The study was approved by the Ethics Committee of West China Hospital (Ethics
approval number: 2020-104) and followed the Declaration of Helsinki. Written informed
consent was obtained from each patient before enrollment.

2.2. MRI Protocols and Imaging Analysis

MRI was performed on a 3-T MR system (Magnetom Trio, Siemens Medical Sys-
tems, Erlangen, Germany). A standardized protocol was used in all patients including
Tl-weighted images, T2-weighted images, fluid-attenuated inversion recovery (FLAIR)
images, DWI, three-dimensional time-of-flight MRA (3D-TOF-MRA), and susceptibility-
weighted image (SWI), as previously reported [24].

Periventricular white matter hyperintensities (PWMH) and deep white matter hy-
perintensities (DWMH) according to the Standards for Reporting Vascular changes on
neuroimaging (STRIVE) consensus criteria [25]; both PWMH and DWMH were evaluated
according to the Fazekas scale using FLAIR images [26]. WMH was defined as a high signal
intensity region on the FLAIR sequence. The extent of periventricular and deep WMH was
rated using the Fazekas scale, where periventricular WMH extends into the deep white
matter (Fazekas score 3), or deep WMH (Fazekas score 2 or 3) was regarded as severe



Brain Sci. 2022, 12, 1391 3 of 8

WMH. Medial temporal lobe atrophy (MTA), parietal cortical atrophy (PCA), and global
cortical atrophy (GCA) were visually rated on MRI scans, as previously reported [27,28].
Cerebral amyloid angiopathy was defined as regions of low-signal blooming artifact on T2
sequences, as previously reported [29].

2.3. Swept-Source Optical Coherence Tomography Angiography Imaging

Our previous report described the specification of the SS-OCTA tool [30]. The OCTA
images covered an area of 3 × 3 mm2 centered on the fovea. The en face angiograms of
the superficial vascular complex (SVC) and deep vascular complex (DVC) were generated
by the OCTA tool. The segmentation of the SVC and DVC was set in the inner two-thirds
and outer one-third border of GCIPL as shown in Figure 1. Mean percentages (%) of the
microvasculature in the SVC and DVC were obtained with an in-built algorithm in the
OCTA tool. The fovea avascular zone (FAZ) area was automatically generated by the OCTA
tool. Angiograms with poor imaging quality (signal quality less than 7), artifacts, presence
of severe cataract (which could be detected by the OCTA tool), microcystic macular edema
(MME), and age-macular degeneration, were excluded.
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Figure 1. Representative 3 × 3 mm image of the superficial vascular complex (SVC), deep vascular
complex (DVC), and fovea avascular zone (FAZ) area around the fovea. The angiograms of the
SVC, DVC, and FAZ area were automatically generated by the OCTA tool. The segmentation of the
SVC and DVC was set in the inner two-thirds and outer one-third border of the ganglion cell inner
plexiform layer (GCIPL). The top panel represents the en face angiograms of SVC, DVC, FAZ while
the lower panel represents the segmentation of SVC, DVC, FAZ.

2.4. Statistical Analyses

SPSS Statistics (version 24, IBM, New York, NY, USA) was used to perform all statistical
analyses. The Shapiro-Wilk test was used to assess normality of the data. Continuous
variables with normal distributions were expressed as mean ± standard deviations while
skewed distributions were expressed as medians and interquartile ranges. A multiple
linear regression model with generalized linear equations (GEE) was performed to assess
the association between SS-OCTA parameters and MRI visual scores while adjusting for
risk factors (age, gender, hypertension, diabetes, and CAA). A p-value less than 0.05
(p < 0.05) was considered statistically significant.
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3. Results

Eighty-three EOD patients were initially enrolled in our study; however, seven could
not complete MR imaging while thirteen could not meet our SS-OCTA inclusion criteria
(five had severe cataracts, six had age-related macular degeneration and two had cataract
surgery 2 months ago).

Our data analysis included 63 EOD patients (mean age: 60.43 ± 5.80 years; 42.86%
males); 11 (17.46%) had hypertension while 4 (6.34%) had diabetes. Table 1 shows the
clinical information, SS-OCTA results, and radiological information of the EOD patients.

Table 1. Baseline characteristics of EOD patients.

Descriptive

Number 63
Gender, M 27
Age, years 60.43 ± 5.80

Systolic blood pressure, mmHg 126.84 ± 11.09
Diastolic blood pressure, mmHg 78.39 ± 7.21

Hypertension, n 11
Diabetes, n 4

Education, years 9 (6–12)
Duration, years 2 (1–3)

MMSE 14 (9–20)
MoCA 9 (6–15)

FAZ area, mm2 0.35 ± 0.13
SVC, % 42.37 ± 5.52
DVC, % 48.47 ± 4.50

MTA 2 (1–2)
PCA 1 (1–2)
GCA 1 (1–2)

PWMH 1 (0–1)
DWMH 1 (0–1)
CAA, n 5

MMSE: Mini-Mental State Examination; MoCA: Montreal Cognitive Assessment; FAZ: foveal avascular
zone; SVC: superficial vascular complex; DVC: deep vascular complex; MTA: medial temporal lobe atrophy;
PCA: parietal cortical atrophy; GCA: global cortical atrophy; PWMH: periventricular white matter hyperintensities;
DWMH: deep white matter hyperintensities; CAA: cerebral amyloid angiopathy.

Table 2 shows the correlation between SS-OCTA parameters and radiological markers
in EOD patients. We showed FAZ area significantly correlated with (p = 0.031) MTA scores
in EOD patients. PWMH correlated with SVC (p = 0.032) while DWMH significantly
correlated with SVC (p = 0.007), DVC (p = 0.018) and FAZ (p = 0.001) in EOD patients.

Table 2. Correlation between SS-OCTA parameters and radiological indicators of dementia.

SVC DVC FAZ

B SE p-Value B SE p-Value B SE p-Value

MTA −0.024 0.027 0.374 −0.046 0.037 0.208 2.362 1.095 0.031
PCA 0.001 0.024 0.953 0.025 0.03 0.398 −0.637 0.924 0.491
GCA −0.021 0.02 0.285 −0.013 0.023 0.562 0.894 0.584 0.126

PWMH 0.027 0.013 0.032 0.032 0.017 0.052 −0.5 0.686 0.466
DWMH 0.037 0.014 0.007 0.038 0.016 0.018 −1.715 0.535 0.001

Data were adjusted for age, gender, hypertension, diabetes, and CAA. MTA: medial temporal lobe atrophy;
PCA: parietal cortical atrophy; GCA: global cortical atrophy; PWMH: periventricular white matter hyperintensities;
DWMH: deep white matter hyperintensities; CAA: cerebral amyloid angiopathy; SVC: superficial vascular
complex; DVC: deep vascular complex; FAZ: foveal avascular zone; B: beta coefficient; SE: standard error.



Brain Sci. 2022, 12, 1391 5 of 8

4. Discussion

Several reports [14–16] have shown retinal microvascular changes using OCTA in
preclinical AD and AD dementia, some reports have shown significant microvascular
changes in AD dementia compared to controls, and some reports did not find any significant
differences in the retinal microvasculature. The inconsistencies in previous studies may be
due to diagnostic criteria that differed between studies. In addition, most of these studies
were limited by small sample sizes. Using a swept-source OCTA (SS-OCTA), we showed
that EOD patients had significantly reduced microvascular densities and enlarged FAZ
area compared to controls. We suggest that the microvascular changes seen in our study
may reflect the cerebral microcirculation changes in EOD.

A novel finding was the significant correlation between MTA and FAZ area in EOD
patients. Recent reports found a large proportion of patients diagnosed with dementia
have a combination of neurodegeneration and vascular pathology in the brain [10,31].
From a radiological standpoint, MTA is usually thought to be a substitute marker of
neurodegeneration because it occurs in the medial temporal lobe [32]. On the other hand,
MTA may be due to vascular pathology, and more specifically to small vessel disease and
ischemia, which have been reported to be implicated in the development of dementia [10,33].
Similarly, OCTA reports have shown enlarged FAZ area in dementia patients compared to
controls [34,35], which is reflective of neurodegeneration and microvascular impairment
in the retina [36]. Since both structures reflect neurodegeneration and microvascular
dysfunction in dementia, the significant correlation between the FAZ area and MTA may
suggest that FAZ changes in EOD may reflect atrophy in the medial temporal lobe.

We showed that DWMH scores assessed with the Fazekas scale significantly correlated
with SVC and DVC densities and FAZ area. DWMH arises from ischemic changes disorders
in the brain [37]; it is linked with neuropathological changes caused by disruptions in
nerve fibers which result in ischemic changes [38]. OCTA reports on dementia patients
showed reduced SVC and DVC densities and enlarged FAZ area, which are thought to
be indicative of vessel wall dysfunction, neurodegeneration, and retinal microvascular
hypoperfusion [14–16,39]. Similar processes that are linked with ischemic causes may lead
to deep white matter lesions [40,41] suggesting similar mechanisms on a microvascular
level in both the retina and brain of EOD patients. On the other hand, a previous report
showed DWMH significantly correlated with cerebral Aß accumulation [42]. Similarly, in
patients with dementia, Aß deposits were found in the ganglion cell layer (GCL), inner
nuclear layer (INL) and outer nuclear layer (ONL) [43], which make up the SVC, DVC and
FAZ. This suggests that there may be a link between DWMH and SVC, DVC and FAZ in
the retina of EOD patients.

We also found that SVC density in EOD patients significantly correlated with PWMH
scores assessed with the Fazekas scale. Retinal imaging studies using fundus photog-
raphy showed that changes in the retinal vein (located in the SVC) are associated with
cardiovascular risk factors such as hypertension [44,45] and diabetes [46,47], which are
linked with dementia. Besides, it has been hypothesized that enlargement of the retinal
venules reflects endothelial dysfunction [48], which is a classical indicator of ischemia in
the retina and hypoperfusion. Since the SVC reflects the microvasculature seen in fundus
photography, our reports are in line with the hypothesis that microvascular impairment
in the brain could be reflected in the SVC. On the other hand, PWMH is suggested to be
vulnerable to decreases in blood flow due to it being situated in the arterial region of the
brain. Similarly, the SVC, which is located in the superior region of the retina, is responsible
for arterial circulation in the retina [49]. Previous OCTA reports have shown reduced SVC
density (arterial circulation) in dementia patients compared with controls, suggesting that
SVC changes may reflect dysfunction in the arterial circulation of the retina, which may
ultimately reflect PWMH in EOD patients.
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5. Limitation and Strengths

Our current study had several limitations. Our enrolled EOD patients did not undergo
a comprehensive ophthalmological examination, thus subtle ophthalmological disorders
such as diabetic retinopathy, mild cataracts, and high intraocular pressure cannot be ruled
out completely. OCTA angiograms of all patients were evaluated by an ophthalmologist
specialist to establish any relevant disorder. Another limitation is the lack of volumetric
MRI data to further support clinical MRI ratings and the lack of supportive biomarkers
of dementia such as amyloid PET or cerebrospinal fluid amyloid-tau measurements that
may have further served to reinforce clinical diagnosis. The observational cross-sectional
study design is another limitation of our study. Our current study focused on retinal
microvasculature and its association with radiological markers in EOD. This is a strength
of our study as the retinal microvasculature reflects the cerebral microcirculation, thus
suggesting that microvascular impairment is associated with radiological markers in EOD.

6. Conclusions

In conclusion, our report showed FAZ area in EOD was significantly correlated with
MTA scores, while retinal microvasculature was correlated with white matter hyperin-
tensities measured by the Fazekas scale. This suggests that microvascular changes in the
retina reflect microstructural changes in the brain. Taken together, our report suggests
that OCTA imaging might provide useful information on the role of microvasculature
in radiological markers of EOD and enable the evaluation of purported therapy. Since
our study focused on in vivo quantitative measurements of the retinal microvasculature,
histological comparisons would be worthwhile to assess these microvascular changes and
the correlation neuroimaging parameters.
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