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Vaccines often have heterogeneous actions because of possible variation in the immune
systems of hosts. One must consider such heterogeneity of vaccine action when
developing a vaccine efficacy parameter. Addressing this issue the summary model of
vaccine action has been proposed in the literature to estimate vaccine efficacy in a
randomly mixing population. However, nonrandom mixing is common, particularly in
a small-group-mixing population. This article extends the summary model of vaccine
action to such a nonrandomly mixing population. The interpretation and estimation of
the summary vaccine efficacy were discussed in light of other two models of vaccine
action: the leaky and all-or-nothing model. Vaccine efficacy under all models is defined
as the relative reduction in transmission probability due to vaccine. Estimation of the
transmission probabilities is described based on a deterministic epidemic model of an
acute transmitted disease. This article further discusses, based on the above vaccine
models, the estimation of vaccination coverage required to control epidemic. Methods
are illustrated using data simulated by considering different patterns of mixing and
vaccine action. Results confirm that the summary model performs better than other two
models when vaccine action is heterogeneous.
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1. INTRODUCTION

The design and implementation of a vaccination program for the control of
infectious diseases requires a consistent estimate of vaccine efficacy. Accordingly,
estimation of vaccine efficacy has received much attention in the literature. Most
such literature often ignores the fact that the immune response tends to vary
among the hosts, and thus the vaccines have heterogeneous action. Halloran
et al. (1992) pointed out that one should consider such heterogeneity of vaccine
action when developing a vaccine efficacy parameter. To address this issue, some
studies (Halloran et al., 1996; Longini and Halloran, 1996; Becker and Utev,
2002), including Halloran et al. (1992) discussed the estimation of vaccine efficacy
in a randomly mixing population. However, nonrandom mixing is common in
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practice; for example, in a population stratified into different small groups such as
households, where within-group mixing is usually higher than between groups and
thus the overall mixing is nonrandom. Therefore, two important issues one needs to
consider when estimating vaccine efficacy in a small-group-mixing population are
heterogeneous vaccine action and nonrandom mixing.

A few studies have estimated vaccine efficacy in a nonrandomly mixing
population (Haber et al., 1991a, 1995; Halloran et al., 1996; Longini and Halloran,
1996; Davis et al., 2006); however, these studies have ignored the heterogeneity of
vaccine action across the vaccinated strata. Moreover, some other studies (Becker
and Starczak, 1997; Ball and Lyne, 2002; Ball et al., 2004a,b; Ball and Lyne, 2006;
Pellis et al., 2009) have modeled the epidemic in such a stratified population and
discussed the estimation of optimal vaccination coverage under models that do
not allow for the heterogeneity of vaccine action. The present work is designed to
estimate vaccine efficacy under the heterogeneity of vaccine action in a population
that is stratified into households, for a particular outbreak of acute, directly
transmitted, infectious disease. In addition, this article focuses on estimation of
optimal vaccination coverage, a fraction of population that needs to be vaccinated
to control epidemic.

The article is organized as follows. In section 2, we briefly discuss some
existing measures of vaccine efficacy under the heterogeneity of vaccine action.
A deterministic model of an acute transmitted disease in a nonrandomly mixing
population is discussed in section 3. Estimation of vaccine efficacy in a stratified
population is described in section 4, and section 5 discusses the variance
approximation of the estimator. Section 6 discusses the estimation of vaccination
coverage required to control epidemic. For illustration the methods, a simulation
study is described in section 7. Finally, section 8 includes a brief discussion and
conclusion of the paper.

2. MEASURES OF VACCINE EFFICACY UNDER THE HETEROGENEITY
OF VACCINE ACTION

Measures of protective vaccine efficacy (VE) depend on the nature of the
host’s response to the vaccine. Greenwood and Yule (1915) first recognized the VE
estimation problem and discussed the need to model the possible heterogeneity in
host susceptibility in both vaccinated and unvaccinated individuals. Since then, some
researchers have modeled unmeasured heterogeneity through stratification (Smith
et al., 1984; Halloran et al., 1992, 1996; Longini and Halloran, 1996), while others
have modeled it by considering the susceptibility to follow probability distributions
(Brunet et al., 1993; Struchiner et al., 1995). Smith et al. (1984) defined two models
of vaccine action: model 1 assumes that the vaccine equally reduced the probability
of infection given exposure to infection in all of the vaccinated individuals whereas
model 2 assumes that the vaccine may give complete protection to a fraction of
the vaccinated while the remaining fraction receive no protection. These models are
increasingly by being used in practice.

Haber et al. (1991b) obtained expressions for the protective effects of two
vaccine mechanisms of Smith et al. (1984) based on a deterministic epidemic model
of an acute directly transmitted disease, where vaccine efficacy was defined as the
relative reduction in the transmission probability due to the vaccine. For a randomly



396 RAHMAN

mixing population, the transmission probabilities were estimated from the observed
attack rates in the vaccinated and unvaccinated by solving their proposed model.
These methods have been extended further to a nonrandomly mixing population
(Haber et al., 1991a, 1995). In the subsequent year, Halloran et al. (1992) described
models 1 and 2 of Smith et al. (1984) as the “leaky” and “all-or-nothing” model,
respectively and indicated that in the case of the all-or-nothing model, there are
two vaccinated strata, each with different vaccine actions. Based on this premise,
Halloran et al. (1992) discussed several models of vaccine action and derived a
general expression for a summary vaccine efficacy parameter, where vaccine efficacy
was defined as the relative reduction in susceptibilities to infection due to vaccine.
Extending the results of Haber et al. (1991b) for a randomly mixing population, the
authors discussed the interpretation and estimation of summary vaccine parameter
in light of the leaky model and all-or-nothing model.

The present article extends the summary vaccine efficacy parameter to a
nonrandomly mixing population that is stratified into households, for an outbreak
of an acute directly transmitted disease. For comparative purposes, the leaky and
all-or-nothing models of Smith et al. (1984) are briefly discussed. Vaccine efficacy
under all models is defined as the relative reduction in the transmission probability
due to vaccine. The transmission probability to a susceptible person can be defined
as the probability that this person will become infected by a single infected person
during one short unit of time (Haber et al., 1991b). Estimation of the transmission
probabilities from the observed attack rates is discussed based on a deterministic
model.

3. A DETERMINISTIC MODEL OF AN ACUTE TRANSMITTED DISEASE IN
A NONRANDOMLY MIXING POPULATION

In this section, the deterministic model proposed by Haber et al. (1995) is
adapted to model the transmission of a infectious disease in a population stratified
into households. Let Mk be the number of households of sizes k �k = 1� 2� � � � � L�,
and therefore, M =∑L

k=1 Mk is the total number of households in the community.
Assume that there is a stronger homogeneous mixing among the members within
a household than for members between households. Let �ij (i� j = 1� � � � �M) be the
number of contacts with members of household j that a person from household i
makes per unit of time, and let �i =

∑M
j=1 �ij . The proportion of contacts made by

a person from household i with persons of household j is �ij = �ij/�i. There are
certain constraints on the �ij inherent in their meaning:

�ij = �ji� �ii = 1� and 0 ≤ �ij ≤ 1�

Let �i be the probability that a contact between a susceptible from household i
and an infective results in transmission of infection. Assume that this probability
does not depend on the household of the infected person. Further assume that the
infection can be described by the SIR (susceptible → infective → removed) model
(Bailey, 1975). In this model, a susceptible person who becomes infected remains
infectious to others for a certain time period and then becomes immune.

As households are small in size, we measure all components of the SIR
deterministic model in terms of proportion instead of the actual numbers (Becker
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and Utev, 1997; Ball and Lyne, 1999). Let Si�t�, Ii�t�, and Ri�t� denote the
proportions of susceptible, infected, and naturally immune persons, respectively in
household i at time t, where Si�t�+ Ii�t�+ Ri�t� = 1. Assume that the total number
of persons in household i is fixed over the time of epidemic. Then the deterministic
description of disease transmission is given by:

dSi�t�

dt
= −Si�t��i�i

(
M∑
j=1

�ijIj�t�

)
(1)

dIi�t�

dt
= Si�t��i�i

(
M∑
j=1

�ijIj�t�

)
− Ii�t�/� (2)

dRi�t�

dt
= Ii�t�/�� (3)

where � is the average length of an exponentially distributed infectious period.
Substituting Ij�t� from equation (3) into equation (1) yields

1
Si�t�

dSi�t�

dt
= −��i�i

M∑
j=1

(
�ij

dRj�t�

dt

)
(4)

Let T be the time at which the observation is made after the end of the outbreak.
Integrating both sides of equation (4) from 0 to T and exponentiating, we have

Si�T�

Si�0�
= exp

[
−��i�i

M∑
j=1

(
�ij�Rj�T�− Rj�0��

)]
(5)

Let Ai = 	Si�0�− Si�T�
/Si�0� denote the observed attack rate in household i at time
T , and let Zi = Ri�T�− Ri�0� be the proportion of persons who recovered from the
disease during �0� T�. Using these values, equation (5) becomes

Ai = 1− exp	−��iDi
 (6)

where Di = �i
∑M

j=1 �ijZi. Therefore, the transmission probabilities can be
estimated as

�̂i =
− ln�1− Ai�

�Di

� i = 1� � � � �Mk (7)

The �̂i’s for all households of size k are equal, because all Di’s as well as Ai’s for
those households are equal. Therefore, the transmission probability for a household
of size k can be estimated by taking the average over transmission probabilities
obtained for all households of size k as

�̂k = − 1
Mk

Mk∑
i=1

ln�1− Ai�

�Di

= − ln�1− Ak�

�Dk

� k = 1� � � � � L� (8)
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4. ESTIMATION OF VACCINE EFFICACY

Let us assume that vaccination is not random, but that all of the individuals
belonging to the same household are either vaccinated or not. Let v be
the vaccination status, where v = 0 if unvaccinated, and v = 1 if vaccinated.
Incorporating the vaccination status, equation (8) can be written as

�̂k�v =
− ln�1− Ak�v�

�Dk�v

� v = 0� 1� k = 1� � � � � L (9)

4.1. Leaky Vaccine Model

Under the definition of the leaky vaccine model, the vaccine efficacy in a
household of size k can be estimated as

V̂E
�M1�

k = 1− �̂k�1

�̂k�0

= 1− Dk�0

Dk�1

ln�1− Ak�1�

ln�1− Ak�0�
(10)

If vaccination does not affect the number of contacts made by an individual and
consequently the distribution of an individual’s contacts, then Dk�0 = Dk�1, and
therefore, equation (10) becomes

V̂E
�M1�

k = 1− ln�1− Ak�1�

ln�1− Ak�0�
(11)

If the number of contacts made by an individual depends on his/her vaccination
status, then (11) provides a biased estimate of true VE

�M1�
k , because the assumption

of equal exposure to infection of vaccinated and unvaccinated individuals is violated
(Haber et al., 1995). In practice, it is likely that the vaccinated individuals have
more contacts than unvaccinated individuals, because they may feel that they are
protected from infection (Fine and Clarkson, 1987; Comstock, 1990). Therefore, it
is wise to use equation (10) rather than equation (11) to estimate vaccine efficacy in
a population stratified into households.

4.2. All-or-Nothing Vaccine Model

Under this vaccine model, a fraction �i of vaccinees in household i is
completely protected by the vaccine while the remaining fraction �1− �i� receive
no protection but have equal transmission probabilities to those of unvaccinated
persons from household j. Let � = �i�1 = �i�0 be the common value of such
transmission probabilities. Therefore, using equation (6) the observed attack rates
for the unvaccinated and vaccinated household of size k can be written as:

Ak�0 = 1− exp
[− ��Dk�0

]
(12)

Ak�1 = �1− �k�
(
1− exp

[− ��Dk�1

])
(13)
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Under the vaccine action as in the all-or-nothing model, it has been shown in Haber
et al. (1991b) that VEk = �k. Solving equations (12) and (13) for �k we have the
estimated vaccine efficacy for the household of size k as:

V̂E
�M2�

k = �̂k = 1− Ak�1

1− �1− Ak�0�
Dk�1/Dk�0

(14)

If vaccination does not affect the number of contacts and so the distribution of
contacts made by an individual, equation (14) reduces to:

V̂E
�M2�

k = �̂k = 1− Ak�1

Ak�0

(15)

The estimator (15) underestimates the true VE�M2� if vaccination alters an
individual’s contact rate in practice. Moreover, the estimators (10) and (15) under
the leaky and all-or-nothing vaccine models, respectively, are similar to those
discussed in Haber et al. (1995) for a non-randomly mixing population that is
partitioned into two large groups.

4.3. Summary Vaccine Model

The transmission probability defined in the earlier section is a function of
susceptibility of the susceptible, and therefore, defining vaccine efficacy, under the
summary model of vaccine action, based on relative transmission probabilities
is equivalent to those based on relative susceptibilities (Halloran et al., 1992).
According to the vaccine mechanism under the summary model, suppose a
vaccinated household i is separated into two strata in terms of host response to the
vaccine, where stratum 1 consists of a fraction �i of vaccinees, and stratum 2 consists
of the remaining fraction 1− �i. Accordingly, let ��1�

i�1 and �
�1�
i�1 be the transmission

probabilities among the vaccinees in strata 1 and 2, respectively. Let �j�0 be the
transmission probabilities among the members of unvaccinated household j. If the
vaccine acts as in the summary model, then the following conditions hold true:

0 ≤ �
�1�
i�1 ≤ �

�2�
i�1 � �

�1�
i�1 ≤ �

�2�
i�1 ≤ �j�0

In this case, equations (1)–(5) are remain unchanged. Let S�1�
i�1 and S

�2�
i�1 denote the

proportions of vaccinated susceptible in strata 1 and 2, respectively in household i .
Then equation (5) can be written for strata 1 and 2, respectively, as

S
�1�
i�1 �T�

S
�1�
i�1 �0�

= exp
[
− ��

�1�
i�1D

�1�
i�1

]
� i = 1� � � � �Mk� k = 1� � � � � L (16)

S
�2�
i�1 �T�

S
�2�
i�1 �0�

= exp
[
− ��

�2�
i�1D

�2�
i�1

]
� i = 1� � � � �Mk� k = 1� � � � � L (17)
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Let us define the observed attack rates for vaccinated strata 1 and 2,
respectively, as

A
�1�
i�1 = 	S

�1�
i�1 �0�− S

�1�
i�1 �T�
/S

�1�
i�1 �0�

A
�2�
i�1 = 	S

�2�
i�1 �0�− S

�2�
i�1 �T�
/S

�2�
i�1 �0�

As both strata are part of the same household, they have common mixing
distribution and recovery rate in the interval �0� T�. In this case, D

�1�
i�1 = D

�2�
i�1 =

Di�1. Substituting these values in (16) and (17) and solving for the transmission
probability for strata 1 and 2 we have:

�̂
�1�
i�1 = − ln�1− A

�1�
i�1 �

�Di�1

(18)

�̂
�2�
i�1 = − ln�1− A

�2�
i�1 �

�Di�1

(19)

Using the same argument that was used to derive equation (8), equations (18) and
(19) can be replaced by their average estimates obtained over all households size
k as

�̂
�1�
k�1 =

− ln�1− A
�1�
1 �

�Dk�1

(20)

�̂
�2�
k�1 =

− ln�1− A
�2�
1 �

�Dk�1

(21)

Similarly, �i can be replaced by �k.

4.4. Strata Are Identifiable and � Known

Suppose that �k and two strata of vaccinated individuals are identifiable, and
therefore, A�1�

k�1 and A
�2�
k�1 are also known. Then by using equations (9), (20) and (21)

the summary vaccine efficacy for a household of size k can be estimated as

V̂Ek = 1− �k�̂
�1�
k�1 + �1− �k��̂

�2�
k�1

�̂k�0

(22)

= 1− Dk�0

Dk�1

�k ln�1− A
�1�
k�1�+ �1− �k� ln�1− A

�2�
k�1�

ln�1− Ak�0�
(23)

If vaccination does not alter the mixing distribution, then Dk�0 = Dk�1, and
(23) becomes

V̂Ek = 1− �k ln�1− A
�1�
k�1�+ �1− �k� ln�1− A

�2�
k�1�

ln�1− Ak�0�
(24)
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Similar to the estimators (11) and (15) under the leaky and all-or-nothing models,
respectively, the estimator (24) provides biased estimate of the true VEk if
vaccination alters an individual’s contact rate.

4.5. Strata Are Not Identifiable and � Unknown

If strata are not identifiable and � is unknown, then one can derive bounds for
VEk as

VE
�M2�
k ≤ VEk ≤ VE

�M1�
k

where VE�M2�
k and VE

�M1�
k are the vaccine efficacy under the all-or-nothing and leaky

models, respectively. The upper bound assumes that all vaccinated individuals are
equally affected by the vaccine, and the lower bound assumes that some of them
are completely protected while the remainder have no protection. The proof of this
inequality is given in the appendix.

5. VARIANCE OF THE VACCINE EFFICACY ESTIMATOR

We derive an expression for the variance of the vaccine efficacy estimators
given in (10), (14), and (23) under the leaky, all-or-nothing, and summary vaccine
models, respectively. In the case of the leaky vaccine model, the estimator (10) is
a function of the simpler estimator (11) multiplied by the constant term Dk�0/Dk�1.
That is, if V̂E

∗
k denotes the simpler estimator in (11), then variance of the estimator

in (10) can be expressed as

Var�V̂E
�M1�

k � = �Dk�0/Dk�1�
2Var�V̂E

∗
k� (25)

where the following approximation for the variance of V̂E
∗
k can be derived as in

Haber et al. (1991a) (when there is no subsampling):

Var�V̂E
∗
k� ≈

[
Sk�1�0�− Sk�1�T�

Sk�1�0�Sk�1�T�
+ �1− V̂E

∗
k�

2 Sk�1�0�− Sk�1�T�

Sk�1�0�Sk�1�T�

]/[
ln

(
Sk�0�0�

Sk�0�T�

)]
(26)

For the estimator (14) under the all-or-nothing model, the following variance
approximation can be derived using the delta method (Haber et al., 1995):

Var�V̂E
�M2�

k � ≈ 1

B2
k�0

[
Ak�1�1− Ak�1�

Sk�1�0�
+ �Ak�1/Bk�0�

2r2kAk�0�1− Ak�0�
2rk−1

Sk�0�0�

]
(27)

where rk = Dk�1/Dk�0, and Bk�0 = 1− �1− Ak�0�
rk .

In the summary measure of vaccine efficacy, the estimator in (23) can be
expressed as

V̂Ek = 1− Dk�0

Dk�1

[
1− V̂E

�2�

k + �k

(
V̂E

�1�

k − V̂E
�2�

k

)]
(28)
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where V̂E
�1�

k = 1− ln�1−A
�1�
k�1�

ln�1−Ak�0�
and V̂E

�2�

k = 1− ln�1−A
�2�
k�1�

ln�1−Ak�0�
are the vaccine efficacy

estimators in vaccinated strata 1 and 2, respectively. As strata 1 and 2 are
independent, V̂E

�1�

k and V̂E
�2�

k are independent. Therefore, the variance of the
summary vaccine estimator can be approximated as

Var�V̂Ek� ≈
(
Dk�0

Dk�1

)2[
Var�V̂E

�2�

k �+ �2k

(
Var�V̂E

�1�

k �+ Var�V̂E
�2�

k �
)]

� (29)

By definition, both V̂E
�1�

k and V̂E
�2�

k are closely related to the simpler estimator (11)
of vaccine efficacy in the leaky vaccine model. Therefore, using the same approach
applied in estimating Var�V̂E

∗
k� given in (26) the variances of V̂E

�1�

k and V̂E
�2�

k can be
obtained, respectively, as:

Var�V̂E
�1�

k � ≈
[
S
�1�
k�1�0�− S

�1�
k�1�T�

S
�1�
k�1�0�S

�1�
k�1�T�

+
(
1− V̂E

�1�

k

)2 S�1�
k�1�0�− S

�1�
k�1�T�

S
�1�
k�1�0�S

�1�
k�1�T�

]/[
ln

(
Sk�0�0�

Sk�0�T�

)]

Var�V̂E
�2�

k � ≈
[
S
�2�
k�1�0�− S

�2�
k�1�T�

S
�2�
k�1�0�S

�2�
k�1�T�

+
(
1− V̂E

�2�

k

)2 S�2�
k�1�0�− S

�2�
k�1�T�

S
�2�
k�1�0�S

�2�
k�1�T�

]/[
ln

(
Sk�0�0�

Sk�0�T�

)]

The preceding expression for the variance of the summary vaccine estimator
is appropriate when vaccinated strata are identifiable and �k is known. When �k
is unknown and the strata are not identifiable, the approximate variance of this
estimator can be obtained by taking an average over Var�V̂E

�M1�

k � and Var�V̂E
�M2�

k �.
All of these variance expressions derived thus for can be used to obtain confidence
intervals for the corresponding true vaccine efficacy.

6. ESTIMATION OF THE VACCINATION COVERAGE

For designing an effective vaccination program, it is important to estimate
the vaccination coverage required to control an epidemic. In this section, we
discuss estimation of such threshold parameter based on the deterministic approach
discussed in section 3. We derive a threshold value f ∗

k for the fraction fk of
vaccinated households of size k such that for fk ≥ f ∗

k there will be no epidemic, and
for fk ≤ f ∗

k there will be an epidemic (Kermack and McKendrick, 1927; Haber et al.,
1991b).

Let us define the dynamic variable Ik�t� = Ik�0�t�+ Ik�1�t�, the total number of
infectives at time t in all households of size k. Then taking differentiation we have

dIk�t�

dt
= dIk�0�t�

dt
+ dIk�1�t�

dt
(30)

Using equation (2) and Ik�t� = Ik�0�t�+ Ik�1�t�, equation (30) can be rewritten as

dIk�t�

dt
= kMk�0Sk�0�t��k�0Hk�0�t�+ kMk�1Sk�1�t��k�1Hk�1�t�− Ik�t�/� (31)
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where Mk�0 and Mk�1 are the number of unvaccinated and vaccinated
households of size k, respectively, and Mk�0 +Mk�1 = Mk. Also Hk�v�t� =
1
Mk

[∑Mk

i=1 �i�v

(∑M
j=1 �ij�vIj�t�

)]
, v = 0� 1. It has been discussed in the literature that

Ik�t� is either strictly decreasing (in the case of no epidemic) or strictly increasing to
a maximum and strictly decreasing thereafter (in the case of an epidemic) (Hethcote,
1976; Haber et al., 1991b). Therefore, it can be proved that there will not be an
epidemic if dIk�t�

dt

]
t=0

≤ 0.

6.1. When the Leaky Model is Operating

Let us consider the leaky model is operating in practice, and assume that no
one in the population has naturally acquired immunity. Evaluating equation (31) at
t = 0, and using the initial condition Sk�0�0� = Sk�1�0� = 1, we have

dIk�t�

dt

]
t=0

= kMk�0�k�0Hk�0�0�+ kMk�1�k�1Hk�1�0�− Ik�0�/� (32)

where Ik�0� = 0+ is very small number.
As assumed that there is one infective in the population at t = 0, so Ik�0� =

1. This implies the term
∑M

j=1 �ij�vIj�0� = 1, and hence, the term Hk�v�0� = �k�v.
Moreover, the assumption on mixing due to vaccination is no longer valid before
the vaccination starts, and therefore, �k�0 = �k�1 = �k. Assume that the transmission
parameters (�k�0 and �k�1 or � or �

�1�
k�1 and �

�2�
k�1) are known from a previous study

on a similar population. Substituting Ik�0� = 1, Hk�v = �k, Mk�0 = Mk�1− fk�, and
Mk�1 = Mkfk in (32) we have

dIk�t�

dt

]
t=0

= �kMk�1− fk��k�k�0 + �kMkfk�k�k�1 − 1 (33)

In a situation where there will be no epidemic, we have dIk�t�

dt

]
t=0

≤ 0. Therefore,
solving equation (33) for fk gives

fk ≥
�kMk�k�k�0 − 1

	�k�0 − �k�1
�kMk�k
(34)

Since �k�0 ≥ �k�1 under the leaky model, the inequality (34) will be satisfied when
f ∗
k ≥ fk, and the threshold value f ∗

k is given by

f ∗
k = 1− 1/R0�k

1− �k�1/�k�0

(35)

where R0�k = �kMk�k�k�0 is the basic reproduction number for the households of
size k.
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6.2. When the All-or-Nothing Model is Operating

In this model, we use Sk�1�0� = �1− �k� and �k�0 = �k�1. Then an epidemic will
not be occur if

�kMk�1− �kfk��k�k�0 ≤ 1 (36)

Solving equation (36) for f ∗
k yields

f ∗
k = 1− 1/R0�k

�k
(37)

6.3. When the Summary Model is Operating

In the summary model, we use S
�1�
k�1�0� = �k, S

�2�
k�1�0� = �1− �k�, and �

�1�
k�1 ≤

�
�2�
k�1 ≤ �k�0. Then an epidemic will not be occur if

�kMk�1− fk��k�k�0 + �kMkfk�k�̄k�1 ≤ 1 (38)

where �̄k�1 = �k�
�1�
k�1 + �1− �k��

�2�
k�1. Solving equation (38) for f ∗

k yields

f ∗
k = 1− 1/R0�k

1− �̄k�1/�k�0

(39)

We can see that the denominator of f ∗
k in the case of all models is the vaccine

efficacy. Therefore, the equations (35), (37), and (39) can be replaced by a single
equation as follows:

f ∗
k = 1− 1/R0�k

Efficacy
(40)

The threshold f ∗
k depends on the vaccine efficacy and the R0�k. We can see that

f ∗
k is positive only if R0�k > 1 (which is the condition required to guarantee that
an epidemic will occur in the absence of vaccination). From the previous study if
we know R0�k for an acute directly transmitted disease, then f ∗

k depends on the
vaccine efficacy. If vaccine action is truly heterogeneous, then all models except the
summary one provide a biased estimate of vaccine efficacy, which leads to bias in
f ∗
k . However, in practice, the model for the vaccine action is unknown; in this case a
optimistic approach is to use the largest f ∗

k (Haber et al., 1991b). Moreover, if f ∗
k >

1, then it implies that an epidemic will occur regardless of the value of fk, which
could be possible if the disease is extremely infectious.

Finally, the overall fraction of households in the community that needs to be
vaccinated can be estimated as follows:

F ∗ = 1
M

L∑
k=1

Mkf
∗
k � (41)

which has an interpretation similar to f ∗
k .
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7. SIMULATION STUDY

7.1. Simulation Design

A simulation study was conducted to illustrate the methods described in
the earlier sections. We simulated an epidemic path of number of susceptibles,
infectious, and recovered individuals based on the SIR epidemic process in
a population partitioned into households. We considered a population of 500
households, where there were 5, 15, 35, 35, and 10% of households of sizes 1, 2,
3, 4, and 5, respectively; 50% of households were assumed to be vaccinated. We
further assumed that initially there was one infective in the population from which
the epidemic started, and that there were no naturally immune persons. The length
of infectious period was assumed to be a random variable with mean � = 5.

In simulation, we considered two matrices of mixing distribution denoted by

�rk�v�. In the first matrix (Table 1), there is higher mixing within households than
between households, and an individual’s contacts do not depend on vaccination
status. In the second matrix, there is a higher mixing within households than
between households, and individuals are more likely to contact individuals of
the same vaccination status. In both matrices, the mixing distribution, �rk�v, is
proportionally related to the size of the household. However, the mixing distribution
of all households of the same size is equal. One should note the symmetry condition
�rk�v = �kr�v.

Table 1 Values of �rk�v used in simulation, where v = 0 for unvaccinated, v = 1 for vaccinated

k = 1 k = 2 k = 3 k = 4 k = 5

v 0 1 0 1 0 1 0 1 0 1

�rk�0 = �rk�1 r = 1 0 0.24 0.24 0.08 0.08 0.10 0.10 0.14 0.14 0.20 0.20
1 0.24 0.24 0.08 0.08 0.10 0.10 0.14 0.14 0.20 0.20

r = 2 0 0.08 0.08 0.30 0.30 0.12 0.12 0.16 0.16 0.23 0.23
1 0.08 0.08 0.30 0.30 0.12 0.12 0.16 0.16 0.23 0.23

r=3 0 0.10 0.10 0.12 0.12 0.36 0.36 0.20 0.20 0.28 0.28
1 0.10 0.10 0.12 0.12 0.36 0.36 0.20 0.20 0.28 0.28

r = 4 0 0.14 0.14 0.16 0.16 0.20 0.20 0.42 0.42 0.32 0.32
1 0.14 0.14 0.16 0.16 0.20 0.20 0.42 0.42 0.32 0.32

r = 5 0 0.20 0.20 0.23 0.23 0.28 0.28 0.32 0.32 0.48 0.48
1 0.20 0.20 0.23 0.23 0.28 0.28 0.32 0.32 0.48 0.48

�rk�0 < �rk�1 r = 1 0 0.32 0.22 0.15 0.10 0.20 0.14 0.24 0.16 0.28 0.19
1 0.22 0.42 0.10 0.19 0.14 0.29 0.16 0.31 0.19 0.33

r = 2 0 0.15 0.10 0.36 0.16 0.20 0.18 0.25 0.19 0.27 0.21
1 0.10 0.19 0.16 0.48 0.18 0.33 0.19 0.35 0.21 0.37

r=3 0 0.20 0.14 0.20 0.18 0.42 0.20 0.25 0.22 0.32 0.24
1 0.14 0.29 0.18 0.33 0.20 0.56 0.22 0.39 0.24 0.40

r = 4 0 0.24 0.16 0.25 0.19 0.25 0.22 0.48 0.25 0.30 0.26
1 0.16 0.31 0.19 0.35 0.22 0.39 0.25 0.65 0.26 0.43

r = 5 0 0.28 0.19 0.27 0.21 0.32 0.24 0.30 0.26 0.54 0.30
1 0.19 0.33 0.21 0.37 0.24 0.40 0.26 0.43 0.30 0.75
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We simulated a separate epidemic path under each of the vaccine models
described in section 4. When the leaky model was operating, the transmission
probabilities �1�0 = �2�0 = �3�0 = �4�0 = �5�0 = 0�80 for the unvaccinated group and
�1�1 = �2�1 = �3�1 = �4�1 = �5�1 = 0�20 for the vaccinated group were used. These
confirmed the true VE under the leaky model as 0.75. For the all-or-nothing
model, the proportion of completely immune vaccinated individuals was considered
as �1 = �2 = �3 = �4 = �5 = 0�60. The remaining proportion of vaccinees had
similar transmission probabilities to the unvaccinated individuals as in the
leaky model. Therefore, the true VE for the all-or-nothing model is 0.60. The
transmission probabilities for the vaccinated strata 1 and 2 under the summary
vaccine were �

�1�
1�1 = �

�1�
2�1 = �

�1�
3�1 = �

�1�
4�1 = �

�1�
5�1 = 0�22 and �

�2�
1�1 = �

�2�
2�1 = �

�2�
3�1 = �

�2�
4�1 =

�
�2�
5�1 = 0�30, respectively. The transmission probabilities for the unvaccinated group

were similar to those under the leaky model. Therefore, the true VE under the
summary model is 1− 0�60×0�22+0�40×0�30

0�80 = 0�685. For each scenario, 500 simulations
were performed, and the estimate of VE was taken from the average over
500 simulations. Models were compared by assessing 90% nominal coverage of
confidence interval for the true vaccine efficacy parameter. Coverage was calculated
as the percentage of simulations in which the true value was enclosed by the
estimated confidence interval.

One of the main objectives of the study was to estimate vaccine efficacy
under the heterogeneity of vaccine action in a nonrandomly mixing population.
Among the already-described epidemic processes simulated based on three vaccine
models, only the process under the summary model was generated considering
the heterogeneity of vaccine action across the vaccinees. Using the outcomes
of this epidemic process (where the true VE = 0�685), estimates of VEs with
their corresponding coverage probabilities under each of the vaccine models were
obtained, and results were compared to assess models’ performance under the
heterogeneity of vaccine action.

7.2. Results

Depending on mixing patterns, there are two estimators of VE under each of
the vaccine models. When the individual vaccine model was operating as the true
model, results of simulation based on the first � matrix indicate that both estimators
of the model provided unbiased estimate with good coverage (Table 2). Based on
the second � matrix, the estimators (10) in the leaky model, (14) in the all-or-
nothing model, and (23) in the summary model provided accurate estimates of the
corresponding true VE with good coverage. However, the estimators (11), (15), and
(24) in the leaky, all-or-nothing, and summary models, respectively, underestimated
the true VE and provided worse coverage, because these estimators ignore the
change in mixing due to vaccination. Moreover, between the models of vaccine
action, the summary and all-or-nothing models performed equally but slightly better
than the leaky model, given that the respective model acted as the true model. This
holds true under all types of mixing pattern considered.

To assess models’ performance under the heterogeneity of vaccine action,
further simulation was conducted under a common true model of heterogeneous
vaccine actions (i.e., the summary model was operating as true model in this case),
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Table 3 Estimates of vaccine efficacy, for all vaccine models when summary model was operating as
true model (true VE = 0�685): mean estimate (V̂E), and coverage (Cov %)

Leaky model All-or-nothing model Summary model

Estimator
(10)

Estimator
(11)

Estimator
(14)

Estimator
(15)

Estimator
(23)

Estimator
(24)

HH size V̂E Cov V̂E Cov V̂E Cov V̂E Cov V̂E Cov V̂E Cov

�rk�0 = �rk�1 k = 1 0.723 63 0.725 62 0.644 63 0.640 62 0.694 74 0.667 71
k = 2 0.724 65 0.720 65 0.645 64 0.642 63 0.692 73 0.668 74
k = 3 0.720 66 0.718 64 0.646 65 0.645 65 0.689 79 0.679 77
k = 4 0.719 67 0.718 67 0.648 65 0.648 65 0.683 89 0.683 86
k = 5 0.718 68 0.715 68 0.651 67 0.651 66 0.604 91 0.692 87

�rk�0 < �rk�1 k = 1 0.749 67 0.727 68 0.650 65 0.621 56 0.693 73 0.612 64
k = 2 0.745 66 0.728 69 0.652 68 0.622 57 0.691 72 0.631 68
k = 3 0.742 67 0.723 68 0.647 67 0.623 58 0.687 77 0.637 70
k = 4 0.740 68 0.721 70 0.648 68 0.624 58 0.681 88 0.641 73
k = 5 0.740 69 0.720 72 0.651 69 0.631 59 0.682 90 0.662 76

and estimates of VE under each of the vaccine models were obtained. Results
(Table 3) of simulation based on the first matrix of mixing pattern show that the
leaky and all-or-nothing models possessed a biased estimate; however, the summary
model provided an unbiased estimate with good coverage. Simulation based on the
second matrix indicates that the estimator ignoring the change in mixing due to
vaccination still provided a biased estimate.

For the household of larger size, all types of estimator provided comparatively
more accurate estimates of the true value than those for the household of smaller
size, which implies the usual problem related to sample size in getting a consistent
estimate.

Estimates of VE under each of the vaccine models have different
interpretations. For example, the estimate 0.600 under the all-or-nothing model
can be interpreted as 60% of the vaccinated individuals begin completely protected
from infection. The interpretation of the estimate 0.75 under the leaky model is that
the transmission probability given exposure to one infective is reduced by 75%. The
estimate under the summary model has, in terms of average, similar interpretation
to those under the leaky model.

Table 4 Estimates of the vaccination coverage under all models (using estimates of VE from table 2
when �rk�0 < �rk�1); the basic reproduction number was assumed at R0 = 2

HH size f ∗ (Leaky) f ∗ (All-or-nothing) f ∗ (Summary)

k = 1 0.664 0.833 0.727
k = 2 0.664 0.832 0.729
k = 3 0.664 0.834 0.729
k = 4 0.665 0.834 0.728
k = 5 0.666 0.834 0.728

Overall 0.664 0.834 0.728
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In section 6, we discussed the estimation of the vaccination coverage, where
the estimator f ∗

k we derived is the function of the basic reproduction number R0

and the vaccine efficacy. In this section, the methods were illustrated using the
estimated vaccine efficacy from the simulation study and the basic reproduction
number assumed at R0 = 2. The estimated vaccination coverage under all models of
vaccine action is presented in Table 4.

Under each model, there was no substantial difference among the household
specific estimates of f ∗

k (k = 1� � � � � 5). However, between the models, the largest
overall estimate was observed for the all-or-nothing model, which was followed by
the estimate for the summary model, while the smallest one was observed for the
leaky model. We do not know which model is operating in practice. In this case,
the optimistic approach is to use the largest one. Moreover, following others studies
(Ball et al. 1999), it is also suggested that larger households should be vaccinated
first, because members of a larger household are expected to be infected more
rapidly than those of a smaller household because of the existence of higher mixing
in larger household than smaller one. Otherwise, the epidemic will spread very fast.

8. DISCUSSION AND CONCLUSION

Estimation of vaccine efficacy parameters depends on several assumptions,
particularly those related to population structure and their mixing patterns,
the routes of transmission of the infection agent, and vaccine response (Haber
et al., 1991a). Most published studies on vaccine efficacy assume random
mixing throughout the population. However, nonrandom mixing is common in a
population that is stratified into small groups such as households. Although some
studies consider nonrandom mixing, the heterogeneity of vaccine response among
the hosts is often ignored. This work discussed the estimation of vaccine efficacy
under the heterogeneity of vaccine action in a nonrandomly mixing population,
for an acute directly transmitted disease. To allow for the heterogeneity of vaccine
action in a nonrandomly mixing population, three models of vaccine actions were
discussed, particularly focusing on the summary model proposed by Halloran
et al. (1992) for a randomly mixing population. Estimation and interpretation of
the summary vaccine efficacy were discussed in light of other two models: the
leaky and all-or-nothing models suggested in Smith et al. (1984). Vaccine efficacy
under all models was defined assuming a vaccine that lowers the transmission
probability to vaccinated individuals. A deterministic approach proposed in Haber
et al. (1995) was applied in estimating the transmission probabilities in terms of a
log transformation of final attack rates.

To illustrate the methods, a simulation study was conducted under each of the
vaccine models, depending on whether vaccination along with stratification alters
the mixing pattern or not. The estimators under each of the vaccine models ignoring
the change in mixing pattern due to vaccination underestimate their corresponding
true VE. The simulation results, based on all types of mixing pattern, further
confirmed that all models of vaccine action performed almost equally when the
individual model was operating as true model of vaccine action. These results,
particularly under the leaky and all-or-nothing models, are analogous to those in
Haber et al. (1995) for a nonrandomly mixing population that is partitioned into
two large groups. However, population in practice consists of several small groups
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such as households, where nonrandom mixing is obvious. This work provided
information on estimating vaccine efficacy in such a small-group-mixing population.

One of the main objectives of the study was to estimate and assess
performance of the vaccine models under the heterogeneity of vaccine action. This
was accomplished by conducting a further simulation study based on a true model
that considers heterogeneous vaccine actions. Results, from simulation based on all
types of mixing pattern, confirm that the summary model performed better than
both the leaky and all-or-nothing models. The reason is simple: The leaky and all-
or-nothing models do not properly take into account the heterogeneity of vaccine
action, while the summary model does. In practice, vaccine may have heterogeneous
effects because of varying immune systems among the hosts (Halloran et al., 1992).
Therefore, it is worthwhile to estimate vaccine efficacy based on the summary
model. The estimator (23) we derived under the summary model of vaccine action
for a nonrandomly mixing population has interpretation similar to those derived in
Halloran et al. (1992) for a randomly mixing population. In addition, we derived
an approximate expression for standard error of this estimator, which is useful to
have an idea of its sampling distribution and to make an inferential statement.
Further, following Halloran et al. (1992), a bound for the summary vaccine efficacy
was derived when vaccinated strata was not identifiable, where the lower and upper
bounds were represented by the vaccine efficacy under the all-or-nothing and leaky
models, respectively.

This article further discussed, under the preceding models of vaccine action,
the estimation of vaccination coverage required to control an epidemic. We derived
a threshold value f ∗

k that depends on the basic reproduction number R0 and the
vaccine efficacy, and that has interpretation similar to those in other studies (Becker
and Starczak, 1997; Ball and Lyne, 2002, 2006; Pellis et al., 2009). The methods
were illustrated by using the vaccine efficacy obtained from the simulation study
and assuming R0 = 2. The numerical result shows that the estimates of f ∗

k were not
identical for all models of vaccine action. In this case, the optimistic approach is
suggested to use the largest value of f ∗

k . This kind of information would be useful
for health policymakers to design an appropriate vaccination program.

Because of the unavailability of real field data, this article was unable
to provide an application of the methods discussed. Therefore, providing an
application of these methods to real field data could be a future research project.
Further, these methods could be extended to a nonrandomly mixing population
that is stratified in two levels: by households, then by homestay and outgoing
groups, where unequal mixing between outgoing and home-stay groups is possible.
Moreover, it would be reasonable to consider the heterogeneity of vaccine response
for each individual rather than for a group of individuals, as vaccine responses vary
from individual to individual. In this case, vaccine efficacy could be estimated by
using a gamma frailty model, which takes into account the individual heterogeneity.

APPENDIX

Proof of the Inequality: VE
�M2�
k ≤ VEk ≤ VE

�M1�
k

We assumed that overall mixing in the population is nonrandom due to
stratification and vaccination. Also we let all other assumptions described earlier
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remain the same. We further assumed that � as well as the attack rates in vaccinated
strata 1 and 2 are unknown. First, we prove that VE�M1�

k ≥ VEk,

⇒ 1− Dk�0

Dk�1

ln�1− Ak�1�

ln�1− Ak�0�
≥ 1− Dk�0

Dk�1

�k ln�1− A
�1�
k�1�+ �1− �k� ln�1− A

�2�
k�1�

ln�1− Ak�0�

Here ln�1− Ak�0� is negative for 0 ≤ Ak�0 ≤ 1. Therefore, we have to prove

ln�1− Ak�1� ≥ �k ln�1− A
�1�
k�1�+ �1− �k� ln�1− A

�2�
k�1� (42)

We assumed here that Ak�1 = �kA
�1�
k�1 + �1− �k�A

�2�
k�1 and Ak�1 = Ak�1. That is, the crude

estimate is equal to the weighted average. However, the last inequality remains
unchanged. It is obvious that ln�1− Ak�1� is a concave function as ln�1− x� is
concave for x ∈ �, and therefore, equation (42) is true, which implies that VE�M1�

k ≥
VEk. For details, see Halloran et al. (1992). Similarly, it can be proved that VE�M2�

k ≤
VEk. Finally, we have

VE
�M2�
k ≤ VEk ≤ VE

�M1�
k

Hence, if we cannot identify the strata and do not know �, we have an upper and
lower bound for the true summary vaccine efficacy, VEk.
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