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Abstract

In this paper, we aim to examine the relationship between traffic flow and potential conflict

risks by using crash surrogate metrics. It has been widely recognized that one traffic flow

corresponds to two distinct traffic states with different speeds and densities. In view of this,

instead of simply aggregating traffic conditions with the same traffic volume, we represent

potential conflict risks at a traffic flow fundamental diagram. Two crash surrogate metrics,

namely, Aggregated Crash Index and Time to Collision, are used in this study to represent

the potential conflict risks with respect to different traffic conditions. Furthermore, Beijing

North Ring III and Next Generation SIMulation Interstate 80 datasets are utilized to carry out

case studies. By using the proposed procedure, both datasets generate similar trends,

which demonstrate the applicability of the proposed methodology and the transferability of

our conclusions.

Introduction

Due to the massive losses caused by road crashes, traffic safety has become a high-priority

issue to traffic researchers and engineers [1–4]. As highlighted in an overview paper by Lord

and Mannering [5], many generalized linear regression models were developed to establish the

relationship between crash count, traffic parameters and road geometry parameters. Among

such research, a considerable amount of pioneering studies have been conducted addressing

the relationship between historical crash data and traffic volume, using different forms of traf-

fic volume, such as Annual Average Daily Traffic (AADT), the hourly traffic volume and the

volume/capacity (V/C) ratio [6–18]. Many different models have been developed to represent

the relationship between the traffic volume and crash data, either linearly or non-linearly. Tan-

ner [19] found that the traffic volume and crash data followed the model Y = αFβ, where Y rep-

resented the crash count, F denoted the traffic volume, and α, β were the calibration

coefficients. A non-linear concave function was found by Hauer and Persaud [20] to represent

this relationship. Abbas [21] concluded that it followed a power function for most rural roads

in Egypt. A typical U-shaped relationship was constructed in some other studies [22–25].
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One particular traffic volume corresponds to two distinct traffic states with different densi-

ties and speeds in the fundamental diagram [26–28]. Although these two states have the same

volume, it is of significance to distinguish them when analysing the relationship between traffic

volume and crash. It is widely accepted that traffic volume itself is inappropriate to represent a

traffic state [29–31]. Other traffic flow characteristics such as speed and/or density should be

considered when establishing the relationship between traffic conditions and potential conflict

risks. This relationship should be formulated based on the actual crash data. However, large

amounts of quality crash data in some traffic conditions are usually absent in practice, making

it difficult to represent flow—crash relationship cross all traffic conditions. Hence, in this

research, we decide to use crash surrogate metrics to represent potential conflict risks, since

crash surrogates have more frequent occurrence [32–37]. Many crash surrogate metrics have

been proposed and applied to measure traffic conflict risks in existing studies [38–47].

We examine the relationship between traffic flow and potential conflict risk by using two

prominent crash surrogate metrics, namely, Aggregated Crash Index and Time to Collision.

Case studies are then carried out based on the Beijing North Ring III and Next Generation

SIMulation Interstate 80 datasets. Using the proposed procedure, both datasets generate simi-

lar flow—conflict risk trends, which demonstrate the applicability of the proposed methodol-

ogy and the transferability of our conclusions.

Surrogate metrics

Aggregated Crash Index (ACI)

The ACI is a tree-structured crash surrogate metric proposed by Kuang et al. [48], through

imposing a hypothetical disturbance to the leading vehicle in a car-following scenario. Eight

possible conflict types are defined by four levels of conditions, as shown in Table 1, where d1 is

the degree of disturbance; D1−2(0) is the initial distance gap; V1(0) and V2(0) are the initial

speed for leading and following vehicle respectively; ΔV(0) is the initial speed difference. The

ACI represents the accumulation of the crash risk of all possible crash outcomes. Mathemati-

cally, the ACI can be represented as

ACI ¼
X8

j¼1

CRLj
¼
X8

j¼1

PðLjÞ � CLj
ð1Þ

where CLj
and CRLj

are the crash risk and the crash outcomes incurred at each leaf node Lj of

tree structure which is shown in Table 1. The ACI thus directly represents the potential conflict

risk, considering additional factors such as reaction time and braking capacity. For any car-fol-

lowing scenario i, the ACI over the time period T can be represented as

ACIi ¼

XN

t¼0

ACIiðtÞ � Dt

T
ð2Þ

where ACIi(t) denotes the ACI value for the ith car-following scenario at discrete time t; N and

Δt are the total number and duration of the time intervals; T is the total time duration investi-

gated, T = N � Δt.

Time to Collision (TTC)

Time to Collision (TTC) is another widely used crash surrogate metric, which is defined as the

time remains until a collision between two vehicles would have occurred if the collision course
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and speed difference are maintained [38], mathematically,

TTC ¼
D1� 2

v2 � v1

; if v2 > v1

1; otherwise

8
<

:
ð3Þ

At a particular time, D1−2 represents the distance gap of the leading and following vehicles;

v1 and v2 denote the speeds of the leading and following vehicles. This metric has been widely

applied in evaluating the level of safety in different traffic situations [49, 50].

Methodology

In this research, we intend to demonstrate potential conflict risks with respect to different traf-

fic conditions in a traffic flow fundamental diagram. In this regard, we need to divide all data

into many distinct traffic conditions with different flow characteristics and conflict risks.

Firstly, the traffic conflict risk of each car-following scenario can be estimated by using the

ACI and TTC, based on the collected traffic data (i.e., speeds, vehicle lengths and time head-

ways). Those original traffic data of car-following scenarios are then integrated into many

aggregated points with respect to different traffic conditions. The potential conflict risk of each

aggregated traffic point is calculated based on the number of car-following scenarios involved

in each 60-second time period. Finally, those aggregated traffic points are divided into many

traffic states, sorted by density, with uniform span.

Traffic conflict data

As suggested by previous researchers [51, 52], the distance headway for a car-following sce-

nario D1−2 can be estimated by (V2 × h2 − l1). l1 denotes the length of the leading vehicle in the

car-following scenario, while V2 and h2 represent the speed and time headway of the following

vehicles at a particular time, respectively.

As our road section is rather short, we assume the traffic flow in this road section is homo-

geneous with a similar traffic flow characteristics. In other words, we can simply measure the

Table 1. Leaf nodes of the tree structure [48].

Conflict type Condition level 1

τ1 = (T1 vs. R)

Condition level 2

τ2 = (TA/B vs. R)

Condition level 3

τ3 = (TTC(R) vs. (T1 − R)/2)

Condition level 4

τ4 = (BRAD1/2 vs. MADR)

Leaf node

Lj

Probability

P(Lj)

Outcome

CLj

A1 R� T1 R� TA — — L1 P(L1) 1

B1 R < T1 R� TB — — L4 P(L4) 1

A211 R� T1 R < TA TTC(R)� (T1 − R)/2 BRAD1 > MADR L2 P(L2) 1

A210 R� T1 R < TA TTC(R)� (T1 − R)/2 BRAD1�MADR L3 P(L3) 0

B211 R < T1 R < TB TTC(R)� (T1 − R)/2 BRAD1 > MADR L6 P(L6) 1

B210 R < T1 R < TB TTC(R)� (T1 − R)/2 BRAD1�MADR L5 P(L5) 0

B220 R < T1 R < TB TTC(R) < (T1 − R)/2 BRAD2�MADR L7 P(L7) 0

B221 R < T1 R < TB TTC(R) < (T1 − R)/2 BRAD2 > MADR L8 P(L8) 1

Notations: R: reaction time of the following vehicle; T1: stopping time of leading vehicle; TA: value of
D1� 2ð0Þþ

V2
1
ð0Þ

2d1

V2ð0Þ
; TB: value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DV2ð0Þþ2d1 �D1� 2ð0Þ

p
� DVð0Þ

d1
; P(Lj):

probability of conflict Lj in car-following scenario i; BRAD: the minimum deceleration rate required to avoid a collision; MADR: the maximum available

deceleration rate.

BRAD1 is suitable for the situation where the leading vehicle stops earlier than or at the same as the following vehicle, while BRAD2 works for the scenario

where the following vehicle stops before the leading vehicle.

https://doi.org/10.1371/journal.pone.0182458.t001
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potential conflict risk at a particular spot, and use aggregated risk over time to represent the

risk values for this short road section in the given time period. In this research, ACI can repre-

sent the risk directly, while the risks represented by TTC are determined by comparing their

values and thresholds. Mathematically,

IRij ¼
Sj
� � Sij; if Sj

� > Sij

0; otherwise

(

ð4Þ

where IRij represents the Individual Risk (IR) of discrete car-following scenario i measured by

surrogate j; Sij denotes the surrogate value for discrete scenario i measured by surrogate j; S�j is

the threshold of surrogate metric j. As suggested by Kuang et al. [46, 48], the thresholds of

TTC and ACI are adopted as 4s and 0, respectively. Accordingly, the traffic conflict risk of

each car-following scenario can be measured by using surrogate metrics ACI and TTC.

Aggregated traffic points

Each aggregated traffic point is calculated based on the number of vehicles passing through the

road section in each 60-second time period. The aggregated traffic density, speed and conflict

refer to the average values of the source data involved in each time period. Similarly, the inte-

grated conflict risk of each aggregated traffic point can be represented by the ACI and TTC,

respectively.

Traffic states

In order to examine the relationship between traffic conflict risk and traffic state, we adopt the

following procedure to divide the field data into many traffic states, sorted by density, with

uniform span.

Step 1. Rank all observations according to their densities, from smallest to largest,

ðkð1Þ; vð1Þ; fð1Þ; IRð1ÞÞ; � � � ; ðkðiÞ; vðiÞ; fðiÞ; IRðiÞÞ; � � � ; ðkðmÞ; vðmÞ; fðmÞ; IRðmÞÞ ð5Þ

where k(1)� � � � � k(i)� � � � �k(m), and v(i), f(i) and IR(i) are, respectively, the corre-

sponding speed, flow rate and IR value under traffic density k(i).

Step 2. Determine the total number of intervals for those observations with constant span δ
which is set as 1.5 veh/km, mathematically

~n ¼ round
kmax � kmin

d

� �

ð6Þ

where ~n is the total number of intervals, and kmax and kmin represent the maximum

and minimum density of the data, respectively.

Step 3. Find the range of each interval as follows:

ðkmin þ d � ðn � 1Þ; kmin þ d � n�; n 2 ð1 : 1 : ~nÞ ð7Þ

Then count and record the number of data points for the corresponding interval as

Nn; n 2 ð1 : 1 : ~nÞ ð8Þ

Traffic safety fundamental diagram
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Step 4. Calculate the Cumulative Risk (CR) value for each interval, which can be written as

CRn ¼
XMn� 1þNn

i¼Mn� 1

IRi; Mn� 1 ¼
Xn� 1

n¼1

Nn; n 2 ð1 : 1 : ~nÞ ð9Þ

where CRn denotes the CR value for the nth interval, while Mn−1 and IRi respectively

denote the lower bound of the nth interval and the ith IR value in step 1.

Step 5. Compute the Average Risk (AR) value for each interval as follows:

ARn ¼
CRn=Nn

; n 2 ð1 : 1 : ~nÞ ð10Þ

where ARn and Nn are the AR and the total number of i for the nth interval.

Data collection

Two distinct datasets are used to demonstrate our potential risk flow relationship. Data I was

collected on the North Ring III expressway in Beijing, China, and data II was gathered from

the interstate 80 freeway in the San Francisco Bay area in Emeryville, CA, USA.

Data I—Beijing North Ring III expressway

Data I (S1 File) was collected on June 21st (Tuesday) in 2011, during eight different time peri-

ods including two morning peak hours, three afternoon peak hours, and three off-peak hours.

There are three lanes with speed limit of 80 km/hour at the spot. During the data collection,

there were no traffic crash occurred. By taking advantage of the video recording systems, the

traffic volumes, density spot speeds, time headways and vehicle lengths were recorded. Total

52,994 original car-following scenarios are used. Those original data are moreover integrated

into 2,280 aggregated traffic data samples.

Data II—NGSIM interstate 80 freeway

The data of Interstate 80 (I-80) Freeways was collected by the Next Generation SIMulation

(NGSIM) program on eastbound I-80 in the San Francisco Bay area in Emeryville, CA, USA

on April 13, 2005. As stated by [53], the study area was approximately 500 meters (1,640 feet)

in length and consisted of six freeway lanes, including a high-occupancy vehicle (HOV) lane,

with speed limit of 110 km/h. A total of 45 minutes of trajectory data are available in the full

dataset, segmented into three 15-minute periods: 4:00 p.m. to 4:15 p.m.; 5:00 p.m. to 5:15 p.m.;

and 5:15 p.m. to 5:30 p.m., by using seven cameras. We further extracted total 139,230 car-fol-

lowing scenarios from the trajectory data. 4,644 aggregated traffic data samples are generated

on the basis of those source car-following scenarios data.

It is found that the speed and density of both data follow the Underwood model [54]. The

free flow speed and capacity density are estimated as 107.6 km/h and 51.9 veh/km, 181.8 km/h

and 37.7 veh/km for data I and II, respectively. Fig 1 shows the characteristics of the aggregated

data for both datasets in a speed-flow fundamental diagram. As can be seen in Fig 1, two data

have distinct characteristics and distributions in speed and density. Data I is evenly distributed

from density 20 veh/km to 100 veh/km, while data II is more concentrated in the range of den-

sity 20 veh/km to 40 veh/km. Those distinct flow characteristics are caused by the different

speed limit, data collection time period and traffic conditions.

Traffic safety fundamental diagram
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Potential risk—Flow relationship

By using the methodology mentioned, the traffic states can be generated by using the aggre-

gated traffic points. Accordingly, the density, flow, speed and conflict risk of each traffic state

is estimated based on those characters of aggregated traffic points. Regarding each interval as a

unique traffic state, total 70 and 39 traffic states are generated for data I and II, respectively. All

traffic states are distinguished by their traffic flow characteristics and AR represented by the

ACI and TTC. In order to better demonstrate the relationship between conflicts and traffic

states, the curve of speed and flow are generated based on the Underwood model obtained pre-

viously. We further map the risk of each state to the corresponding position on the speed-den-

sity curve, using the AR value to determine the size and color of each point. Accordingly, the

traffic conflict risk can be visually mapped onto the corresponding position in the speed-den-

sity fundamental diagram.

Fig 2 shows the speed-density diagram mapped with traffic conflict risk represented by the

ACI and TTC, respectively. The bigger size and darker color of a point indicate the higher

potential conflict risk of a traffic state. Obviously, the traffic conflict risk increases with an

increase in density and a decrease in speed. When the density increases, the distance headways

between cars are reduced, with a potential to increase the risk even though the speed decreases.

As can be seen in Figs 2 and 3, the ACI has more obvious trend on the change of risks than the

TTC for both data.

Fig 1. Aggregated traffic data in speed-density diagram for data I and II.

https://doi.org/10.1371/journal.pone.0182458.g001

Fig 2. Traffic conflict risk on speed-density curve for data I.

https://doi.org/10.1371/journal.pone.0182458.g002
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We further use the same method to map the traffic conflict risk of different states on the

speed-density curve, using the risk represented by the ACI and TTC to determine the size and

colour of each point. Figs 4 and 5 show the fundamental diagrams mapped with traffic conflict

risk represented by the ACI and TTC, for data I and II, respectively.

Fig 3. Traffic conflict risk on speed-density curve for data II.

https://doi.org/10.1371/journal.pone.0182458.g003

Fig 4. Traffic conflict risk on the speed-flow curve for data I.

https://doi.org/10.1371/journal.pone.0182458.g004

Fig 5. Traffic conflict risk on the speed-flow curve for data II.

https://doi.org/10.1371/journal.pone.0182458.g005
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As depicted in Figs 4 and 5, the points are found with size increased and colour thickened

as we move from top to bottom. Obviously, the potential conflict risks measured by the ACI

and TTC increase when the speed decreases. As can be seen in Fig 4, the flow value located

between 1,500 veh/h and capacity is found corresponding to two traffic states, with different

speeds. Apparently, the traffic conflict risk is found to be distinct for those two states, the traffic

conflict risk of the capacity state clearly being less than that of the over-capacity state. As can

be seen in Fig 5, the conflict risk is increasing when the speed decreases along the curve from

the top to the bottom in both graphs. There are two distinct traffic states found between flow

rate 2,200 veh/h and capacity. The trend is also found for data II in Fig 5 by using the ACI and

TTC. Thus, we can conclude that the traffic conflict risk increases along the curve, from level

of service A to F. Besides, it is found that the ACI can represent the change of risks better than

TTC for both data. This is consistent with that ACI has better performance than surrogate

TTC by Kuang et al. [48]. The possible reasons are as follows: (1) The ACI can evaluate more

car-following scenarios than TTC. According to the notions of TTC, all scenarios in which the

speed of the following vehicle is not greater than that of the leading vehicle are regarded as

safe. That is to say, the condition used to determine the risk is the speed differential. Thus, it is

impossible to identify the risks in other scenarios by using the TTC. The ACI is based on a

hypothetical disturbance; it can be used in any car-following scenario, even the leading vehi-

cle’s speed is greater than that of the following vehicle. Therefore, the ACI can have more accu-

rate results than TTC. (2) The ACI takes more important variables into account. Since the

drivers and vehicles are most critical parts in crash mechanism, the consideration of the driv-

er’s reaction time and the MADR can contribute to a better representation of the risk.

Discussion and conclusions

Since one traffic volume corresponds to two different traffic states with different speeds and

densities, traffic flow itself is not able to properly represent a traffic condition. In this regard,

we visualize a potential traffic risk—flow relationship in a traffic flow fundamental diagram.

To this end, we use two classical surrogate metrics, namely, ACI and TTC, to represent the

potential conflict risk in this study. Two distinct datasets, one collected in China and the other

gathered in the U.S., are used to testify our methodology. Based on the case studies, the poten-

tial conflict risk is found to have a strong correlation with the level of service, as the latter

increases from level A to F. The curves for both case studies have a similar pattern, which dem-

onstrate the transferability of the proposed methodology.

This research has two limitations. Firstly, the sample size and data quality might not be large

enough to conclude the above findings. In the future work, more data will be collected to vali-

date the relationship that is presented in the potential risk flow relationship. Moreover, micro-

simulation could be used to generate simulated data for further analysis. Secondly, the study is

based on the assumption that the potential conflict risk has a strong correlation with crash fre-

quency. As a follow up study, this relationship will be validated properly using actual crash data.

Supporting information

S1 File. Data I collected from Beijing expressway.

(XLSX)
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