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Abstract: Nanotechnology is in the spotlight of therapeutic innovation, with numerous advan-
tages for tumor visualization and eradication. The end goal of the therapeutic use of nanoparticles,
however, remains distant due to the limitations of nanoparticles to target cancer tissue. The function-
alization of nanosystem surfaces with biological ligands is a major strategy for directing the actions
of nanomaterials specifically to tumor cells. Cancer formation and metastasis are accompanied by
profound alterations in protein glycosylation. Hence, the detection and targeting of aberrant glycans
are of great value in cancer diagnosis and therapy. In this review, we provide a brief update on
recent progress targeting aberrant glycosylation by functionalizing nanoparticles with glycan-binding
molecules (with a special focus on lectins and anti-glycan antibodies) to improve the efficacy of
nanoparticles in cancer targeting, diagnosis, and therapy and outline the challenges and limitations
in implementing this approach. We envision that the combination of nanotechnological strategies
and cancer-associated glycan targeting could remodel the field of cancer diagnosis and therapy,
including immunotherapy.

Keywords: aberrant glycosylation; glycan-binding molecules; lectin; antibody; tumor targeting and
therapy; nanomedicine

1. Introduction

Although significant progress towards the development of anticancer drugs, sci-
ence still faces many problems concerning the side effects of chemotherapy. Various
nanostructures-based drug delivery systems have been synthesized to improve the thera-
peutic selectivity of this treatment [1–3]. Nonetheless, despite the rapid growth of nanotech-
nology in medicine, the promises of cancer therapy based on effective targeting and drug
delivery is still a challenging task. The efficiency, safety, and selectivity of this therapy can
be improved by surface conjugation of nanoparticles with molecules able to actively target
cancer cells and cellular uptake while minimizing their immunogenicity [4]. Current efforts
are devoted to developing methods that exploit cancer features for selective nanoparticle
targeting. Herein, we will provide a brief review of the current status of nanotechnology-
based strategies by using glycan-binding molecules to identify aberrant glycosylation
patterns: an approach which, in turn, would enhance the specificity of cancer-targeting,
diagnosis, and therapy.
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2. Targeting Nanoparticles to Cancer

Passive targeting, which exploits the enhanced permeability and retention (EPR) effect,
is the most extensively studied approach for nanoparticle delivery to cancer tissue [5]. De-
spite the great potentiality of this strategy, its effectiveness is reduced by the heterogeneity
of the EPR effect and the physiological barriers related to it. It is also clear that the physico-
chemical properties of the nanomedicine (including size, shape, and surface chemistry),
severely affect the nanoparticles uptake at the tumor site [6,7]. It is well accepted that the
optimization of nanoparticle (NP) design and an active targeting mechanism can overcome
these limitations, giving rise to a more specific accumulation of nanoparticles in tumors
rather than undesired localization. Typically, active targeting involves the functionalization
of the surfaces of the nanoparticles with one or more targeting moieties, with the capacity
to recognize specific receptors or antigens that are either uniquely expressed or upreg-
ulated on the tumor cells relative to healthy tissues: a concept which has triggered the
development of numerous methods for structural modification of NPs.

Active targeting, however, is also not without limitations. First, ligand-nanoparticles
can be rapidly cleared from the circulation by the reticuloendothelial system (RES) or can
accumulate in unwanted organs, such as the spleen and liver. Second, the heterogeneous
nature of the tumor and the adaptability of cancers are barriers to reach an absolute active
targeting. The selection of an appropriate targeting ligand is critical for optimizing the
efficiency of active targeting and is mainly governed by the specific characteristics of the
target tumors, such as the target receptor and its expression [8,9]. Currently, a variety of
targeting ligands has been tested to deliver the drug in both in vitro and in vivo models.
These include nucleic acids, nucleic acid-based aptamers, small molecules, synthetic pep-
tides, protein domains, sugars, and antibodies [7,10]. As reviewed by Friedman et al., each
ligand class possesses unique properties and can be conjugated to the NP structures by
different strategies of conjugation strategies, including physical adsorption and chemical
conjugation [11]. The properties of targeting ligands and their successful conjugation with
nanoparticles significantly impacts the application of NPs in targeted imaging, diagnosis,
and cancer therapy. Thus, in the choice of NP ligands, the researchers should also consider
different aspects, including the specificity for the antigen, the ease of conjugation, the
stability, and the cost of fabrication: factors which will ultimately impact the biological
interactions of NPs, such as cellular uptake and circulation time. Antibodies (Abs), for
example, are smart ligands with high specificity and diversity of targets, but with a high
cost for fabrication and conjugation.

On the contrary, small chemical molecules (such as folate, anisamide, phenylboronic
acid) are of small size and have very low costs, but generally low specificity as their tar-
gets are also expressed in normal tissues [9]. NPs surface functionalization offers great
potential for targeting and integration of therapeutic agents [12], a point which explains
the remarkable efforts that have been made to improve NPs surface features to increase
their interaction with cancer cells. We also note the development of novel, bioinspired,
approaches to surface coating NPs which exploit the versatility and multifunctionality
of plant polyphenols. Several groups have reported promising results using tannic acid
(TA), one of the most well-known plant-derived polyphenols, to functionalize the NPs
surfaces [13–16]. TA was chosen as a functional ligand because of its well-known bio-
compatibility, biodegradability, and the bulky nature of this hydrophilic, which allows for
effective water exchange on the hydrophobic surfaces of NPs [17]. From a biological point
of view, TA is particularly promising in those cancer types that overexpress the epidermal
growth factor receptor (EGFR), as TA regulates its activation and downstream signaling
pathways, eliciting the apoptosis process. Aguilera produced multifunctional tannic acid
nanoparticles with an extremely high entrapment efficiency of the active principle and
targeted to EGFR, which were only toxic for the cancer cells [18]. Moreover, TA was suc-
cessfully employed to coating Ultrasmall iron oxide nanoparticles (USIONPs), with uptake
by cancer cells being demonstrated by in vitro experiments [13,14]. Another ligand, also of
interest, that showed the potential to be used as an active tumor-targeting ligand is quinic
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acid (QA). QA—a synthetic mimic of sialyl-Lewis x (SLex), and its derivates, interacting
with selectin receptors expressed on tumor cells and tumor endothelium—has been shown
to promote the targeting and the internalization of NPs and as a result, is proving to be
valuable tumor-targeting ligand [13,19]. Overall, we can state that both the production
and identification of new and selective ligands have never been greater and the discovery
of new cancer biomarkers is particularly valuable for improving the efficiency of cancer
treatment.

3. Aberrant Glycosylation in Cancer

Extensive research has revealed the critical role of glycans alteration in cancer biology.
Glycans, simple or complex carbohydrates, are present in different classes of glycocon-
jugates (i.e., glycoproteins, proteoglycans, and glycolipids) on the outer layer of the cell
surface, forming the so-called glycocalyx [20]. The glycocalyx is involved in almost all fun-
damental functions across all multicellular organisms, acting as structural and modulatory
player of numerous physiological processes, such as cell–cell communication, cell adhe-
sion, proliferation, differentiation, and immune response regulation [21]. Glycosylation
is a highly regulated and most frequent process in which a saccharide moiety is attached
to a protein by the expression and activity of specific enzymes [20]. The huge array of
glycan function it is mainly related to the vast heterogeneity of glycans, itself dependent
on different factors: the nature of monosaccharide subunits, the various combination in
which they can be linked, the anomeric configuration of linkage (α or β), the branching
degree, and the further modifications of terminal structures (i.e., sulfation, phosphorylation,
and acetylation).

Typically, based on the binding site of the glycan to a protein, there are two types
of glycosylation: N-linked or O-linked glycosylation. In the first ones, the glycans are
attached to the amide group of asparagine side chains, whereas, in the second type,
the glycans are added to the hydroxyl oxygen of serine and threonine side chains [20,22].
Aberrant glycosylation has been shown to frequently occur in oncogenic transformation and
progression in all types of human cancers. The common cancer-glycan alterations, classified
as tumor-associated carbohydrates antigens (TACAs), include truncated O-glycans (Tn-
antigen, sialyl-Tn antigen, and Thomsen-Friedenreich antigen (TF), branched N-glycans
(β1,6-branching N-acetylglucosamine), aberrant fucosylated and sialylated glycans (known
as tumor sialoglycans) [23,24] (Figure 1A). Abnormal glycosylation in cancer cells can be
linked to a different mechanism, such as under/overexpression of glycosyltransferases
and glycosidases; changes in the general reorganization of glycosyltransferase topology,
alterations of glycosyltransferase localization within the secretory pathway, and, lastly, the
availability or abundance of sugar nucleotide donors. These possibilities are not mutually
exclusive and one or other may become predominant in a variety of situations. Genetic and
epigenetic alteration modifies the expression of these glycan-modifying proteins and varies
among tumor types. Numerous studies have demonstrated that the altered glycans are
active players throughout cancer development and progression by significantly altering
the protein landscape, originating unique cancer fingerprints at the cell-surface [23].

For these reasons, in the last years, the tumor-associated carbohydrate antigens have
been largely used as prognostic biomarkers in the clinical diagnosis of patients with neo-
plastic diseases [25–27]. Furthermore, several findings suggest that this utility could be
expanded also to that of therapeutic targets, providing an unequivocal label for tumor
cell recognition and therefore improving the specificity of tumor treatments [27–30], with
enormous implications for the monitoring of conditions and for personalized cancer ther-
apy. Recently, Thomas et al. have discussed in a review the fundamental role of glycans in
regulating tumorigenesis and tumor progression and provided insights into the influence
of glycans in the current tactics of targeted therapies with particular reference to glyco-
conjugate drugs, glycan-based vaccines, glycosylation specific inhibitors/mimetic, and
targeted nanotherapies [28]. The identification of cancer-specific biomarkers has oriented
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the field of nanomedicine toward the use of glycans for developing new feasible cancer
nanomedicine strategy.
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Figure 1. (A). Schematic representation of the characteristic pattern of cancer-associated glycosylation. The three main glycan
changes (i.e., altered branching of N-glycans, the expression of truncated O-glycans, and increased sialylation/fucosylation)
can be found in cancer due to genetic or epigenetic alterations in genes of glycosylation enzymes-glycosyltransferases and
glycosidases. Abbreviations: GalNAc, N-acetylgalactosamine; Neu5Ac, sialic acid; GlcNac, N-acetylglucosamine; Fuc,
fucose; Gal, galactose; Man, mannose; Tn, Tn antigen; STn, sialyl-Tn antigen; SLex, sialyl-LewisX. (B). Overview on the
anti-tumor mechanisms of natural lectins and anti-glycan antibodies that can be advantageous for the cancer nanomedicine.
(a) The binding of lectins to tumor-associated carbohydrates antigens present on the surface of cancer cells elicits cell killing
through apoptosis, autophagy, and immunomodulatory activity against cancer. (b) Abs can recognize TACAs and induced
cell death via different mechanisms, such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity,
and antibody-dependent cellular phagocytosis.
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4. Decorating Nanoparticles Surfaces with TACAs-Binding Molecules

Modifications in glycosylation machinery can generate dramatic alterations in the
antigenic profile at the tumor cell surface. Though glycosylation is complex and challenging,
the research on glycosylation is evolving and therefore many groups are exploring the
use of cancer-associated glycans for potential clinical application, such as cancer targeting
and therapy.

In this area, the glycan-binding molecules (GBPs) can be used to discriminate between
tumor and normal cells. Some GBPs, such as the lectins and anti-glycan Abs, can also trig-
ger cancer cell death due to their anti-tumor properties (Figure 1B). These capabilities make
GBPs attractive options as tumor-targeting ligands that can be used to increase the selectiv-
ity and efficiency of nanoparticles towards cancer cells and enhance their concentration in
the tumor sites. The following discussion highlights some recent and prominent results
of NPs-based strategies to tackle TACAs by decorating NP’s surfaces with natural lectins
and anti-glycan Abs and illustrates the implications of these developments for targeting,
diagnosis, and therapy of cancer disease. We also describe, in the same way, the new
promising active targeting strategies with the potential to target glycosylation aberrations.

4.1. NPs Conjugated with Natural Lectins: A Well-Trod Path
4.1.1. Lectins

Lectins are proteins present in all branches of the evolution tree since they have been
found in all organisms, from bacteria to fungi and from plants to animals [31]. They have
been found to act as glycan-specific ligands, specifically binding one or more specific struc-
tural epitope per cancer-related glycoproteins. In particular, lectins recognize the glycans
mostly via a network of hydrogen bonds between the ring oxygen atom and multiple hy-
droxyl groups of the carbohydrate residues and oxygen atoms, amide and hydroxyl groups
of the protein, as well as electrostatic interaction [32]. These glycan-binding molecules
have very specific affinities towards for only one or two types of monosaccharides whose
recognition is crucially dependent on how the saccharide is presented by the glycoprotein.
In the cancer field, plant lectins have attracted great interest in cancer studies for cancer
diagnosis, imaging, and treatment thanks to their ability to identify aberrant glycans ex-
pressed by neoplastic cells [33–36]. Recently, Bhutia et al. documented the anticancer and
immunomodulatory activities of the major plant lectins that have been studied in this field
(i.e., the legume lectins, ribosome-inactivating proteins type-II lectins, Galanthus nivalis
agglutinin (GNA) lectins, chitin-binding lectins, and jacalin), illustrating also their potential
mechanism of action in cancer cells [33]. On the contrary, a complete description of both
animal and plant lectins was provided by Yau et al. [37]. In general, the anticancer activity
of lectins is primarily mediated through apoptosis in various cancers by different mecha-
nisms of action (Figure 1B(a)). For example, it was reported that plant lectins interact with
sugar-binding receptors present on the plasma membrane and, after their internalization
through endocytosis altered ROS generation, targeted to mitochondria to generate ROS
and release cytochrome c into the cytoplasm, thereby activating p21-Foxo1a-Bim-mediated
apoptosis and extrinsic apoptotic pathways [33]. Several lectins have also been demon-
strated to successfully exert antitumor effects through the implication of autophagy [38], or
the inhibition of cancer cell migration [39]. Furthermore, lectins have also been reported
to act as potent immune stimulators, which may contribute to the elimination of cancer
cells from the human body [40]. Although lectins have enormous potential in the cancer
field, and some of them have exhibited preclinical and clinical significance [34], to date,
only Mistletoe lectins (MLs) have been extensively studied in clinical trials to assess their
anticancer potentials [41]. It remains, however, that, while showing these promising bind-
ing specificities, lectins, unfortunately, tend to have weak binding affinity stability, poor
selectivity for individual sugars, and difficulties in production and purification and toxicity
concerns toward human health. All of which limits their exploitation both in practical
assays application and clinical translation [32,42]. Currently, lectins are routinely used
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in academic laboratories for carbohydrate structure characterization, for purification of
glycoproteins, and for labeling of specific epitopes expressed on the cell membrane.

4.1.2. Lectins-NPs

In the context of cancer diagnostics and therapeutics, several pre-clinical studies have
explored the functionalization of lectins onto multifunctional NPs surfaces, with exciting
up-front results. Table 1 summarized some of the recent lectin-based nanotechnology
strategies. For instance, recently, Martínez-Carmona et al. used the plant Concanavalin A
(ConA) in an innovative nanodevice based on doxorubicin (DOX)-loaded mesoporous silica
nanoparticles (MSNs) where different building blocks were assembled for targeted bone
cancer treatment [43]. In this system, the presence of lectin grafted to a polymeric shell sig-
nificantly enhanced the selectivity towards cancer cells whilst preserving the healthy bone
cells. In another work, it was shown that the Wheat germ agglutinin (WGA) decoration
on anti-tumoral drugs-loaded nanoparticles considerably improved nanoparticles cellular
uptake and exhibited synergistic cytotoxicity [44]. Devices for the early in situ detection of
cancer and their precursors prior to their malignancy transformation are clearly desirable.
In this field, Chen et al. reported their promising findings using lectins for the functional-
ization of fluorescent MSNs as an endoscopic contrast agent for in situ diagnostic imaging
of premalignant colonic lesions [45], demonstrating the targeting role of these molecules.
Significantly, the theragnostic (simultaneous diagnosis and treatment) application of lectins
is nowadays gaining relevance in cancer nanotechnology. For example, lectin-conjugated
NPs can be used for the early detection of cancer cells, this makes NPs attractive for use
in cancer diagnosis, and at the same supports the release of drugs exclusively into the
tumor site. To achieve this goal, Chowdhury et al. successfully fabricated nanocomposites
based on graphene quantum dots, ConA, and Fe3O4 to explore their multifunctional appli-
cations in electrochemical cancer cell detection and DOX-controlled delivery [46]. These
researchers showed that these nanocomposites, when deposited on platinum electrodes,
were able to detect cancerous HeLa cells over normal endothelial cells clearly showing
that ConA effectively-recognized and attached to the glycans’ environment of cancer cells.
In addition, they also concluded that the specificity towards cancerous cells achieved by
the ConA attachment made the nanocarriers as promising nanoplatform for drug release
triggered by external magnetic fields.

Table 1. Nanoparticles (NPs) functionalized with lectin targeting aberrant cancer-associated glycans. Abbreviations: Jacalin
of Artocarpus integrifolia (JCA); Ulex europaeus Agglutinin-1 (UEA1); Cratylia mollis seeds lectin (Cramoll); Aleuria aurantia
lectin (ALL); Ricinus communis agglutinin (RCA); Lotus tetragonolobus lectin (LTL); 5-fluorouracil (5-FU); (−)-epigallocatechin-
3-gallate (EGCG); quantum dots (QDs); polyethylene glycol (PEG); gold nanoparticles (AuNPs).

Lectin Target Cancer Type Nanoparticles Application Reference

ConA TF antigen Bone cancer DOX-loaded MSNs Targeting
Therapy [43]

WGA Neu5Ac
GlcNac Colon adenocarcinoma 5-FU-EGCG -gelatin-chitosan NPs Targeting

Therapy [44]

UEA I α-L-fucose Colorectal cancer Fluorescent MSNs Targeting
Diagnosis [45]

ConA TF antigen Adenocarcinoma of the cervix DOX-loaded graphene QDs -Fe3O4

Targeting
Therapy

Diagnosis
[46]

JCA TF antigen Colorectal and breast
adenocarcinoma Phthalocyanine- PEG-AuNPs Targeting

Therapy [47]

ConA; RCA; WGA

TF antigen;
β-D-galactose;
Neu5Ac and

GlcNac

Colorectal cancer Fe2O3 -AuNPs Targeting
Diagnosis [48]

Cramoll glucose/mannose
Fibroadenoma and invasive

ductal carcinoma human breast
tissue

QDs Targeting
Diagnosis [49]

ALL LeX Colon cancer ATTO 430LS dye-loaded MSNs
Targeting
Diagnosis
Therapy

[50]

LTL α-1,2-linked fucose Prostate carcinoma and
melanoma DOX-loaded liposomes Targeting

Therapy [51]
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4.2. NPs Conjugated with TACAs-Binding Antibodies: An Explored Road
4.2.1. Anti-TACAs Abs

The anti-tumor-associated carbohydrates Abs are also widely studied as glycan-
targeted ligands [52]. They typically have much lower affinities than antibodies for recog-
nizing proteins or peptide antigens (by 3–5 orders of magnitude). Additionally, the glyco-
sylation complexity of biological samples restricts the use of the anti-glycan antibodies to
immunohistochemical staining, Western blotting, and ELISA assays for discovering, detect-
ing, and purifying carbohydrates linked with a broad range of cancer tissues both in basic
research and clinical applications [53]. On their molecular mechanism, the occurrence of the
same glycan epitope on a wide range of glycoproteins and glycolipid can hugely increase
their biological activity. However, like other Abs, the binding of anti-glycan Abs to cancer
cells can elicit antibody-dependent cellular cytotoxicity (ADCC), complement-dependent
cytotoxicity (CDC), and phagocytosis, activating in all these processes numerous receptor-
mediated signaling pathways, resulting in cell apoptosis and oncosis (Figure 1B(b)). [54,55].
As recently reviewed by Mantuano and colleagues, several monoclonal antibodies (mAbs)
exist to target aberrant glycans, which are in clinical use or pre-clinical studies, and are
known to stimulate ADCC and/or CDC mechanisms [56]. For example, Dinutuximab is a
chimeric mAb generated against disialoganglioside GD2 and approved for the treatment
of high-risk neuroblastoma pediatric patients [57]. Almost 95% of neuroblastomas consis-
tently express the GD2 antigen, while only low levels are detected on healthy tissues [58].
GD2 can be considered a tumor-associated antigen and well-suited as a target for cancer
therapy. Several other mAbs have been designed to target Lewis antigens (Le), expressed
by a wide variety of tumor cells. Examples of such mAbs are Hu3S193 and BR96 targeting
the Lewis Y glycan antigen and used in clinical trials for treating lung, breast, and colorectal
carcinoma [59–61]. Nonetheless, the use of mAbs to reveal and detect glycans has some
limitations. Indeed, despite the high spectrum of antiglycan mAbs—refers to the Database
for Anti-Glycan Reagents (DAGR) containing more than 1000 unique anti-glycan mono-
clonal antibody entries (https://ccr2.cancer.gov/resources/Cbl/Tools/Antibody/)---there
are quite a few antiglycan antibodies which are commercially available [53]. The devel-
opment of highly selective and specific monoclonal antibodies to glycans/glycoproteins,
then, remains a challenge and represents an obstacle for the progress of the glycoscience
field [62]. The major hurdles are related to both the intrinsically poor glycan immuno-
genicity and similarities in carbohydrate sequences. Additionally, the isolation of pure
and structurally defined carbohydrates for antibody generation and characterization can
be extremely difficult and laborious. It was shown that glycan density, flexibility, and
polymer backbone rigidity can influence the functional affinity (avidity) of glycan-binding
protein [63,64]. Thus, many efforts are being made to enhancing glycan-binding antibodies
affinity, which is typical with an equilibrium dissociation constant (KD) in the micromolar
range, by exploiting the recent advancement in glycome findings, protein engineering and
phage displace technologies for producing mAbs holding two or multiples glycan-binding
sites and with superior affinity [32].

4.2.2. Anti-TACAs mAbs-NPs

Among the biological ligands, Abs, or immunoglobulins (Ig), the large glycoproteins
which are found in all vertebrate life forms, and antibody fragments, represent major
nanoparticles targeting and therapeutic tools to fight cancer due to their specific binding to
receptors overexpressed on cancer cells. Very promising results have also been obtained
conjugating monoclonal, chimeric, and humanized antibodies with a variety of nanoparti-
cles, which hold great promise to enhance therapeutic efficacy and circumvent severe side
effects [65]. Despite the great potentiality of antibodies, it remains the case that inadequate
pharmacokinetics, poor tissue accessibility, and therapy resistance represent barriers for
the therapeutic antibodies and limit their clinical application, suggesting the need for novel
delivery strategies [66]. The conjugation with nanoparticles to improve the delivery of the
antibody has achieved significant outcomes both in vitro and in clinical studies [11,67]. Sev-

https://ccr2.cancer.gov/resources/Cbl/Tools/Antibody/)---there
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eral strategies have been developed and exploited to immobilize antibodies on the surface
of NPs while preserving antigen-binding ability and yielding stable antibody-conjugated
NPs. Nevertheless, antibody targeting of nanoparticles is still challenging, with many con-
cerns such as the antigen-binding affinity, that must remain high after the conjugation, the
specificity of the conjugation, the stability of the Ab-NPs conjugated during the circulation
time, and importantly the immunogenicity of the conjugated [11,68]. While the targeting of
nanoparticles with anti-TACAs Abs may undoubtedly achieve significant results in tumor
identification and therapy, facing the aforementioned challenges related to the anti-glycan
antibodies is imperative for their application in cancer nanomedicine. It is probable that,
due to all these difficulties, nanoparticle functionalization with anti-glycan Abs will require
further exploration. To our knowledge, the first experimental attempts to link anti-glycan
antibodies to nanoparticle platforms have involved the anti-GD2 Abs or their fraction
in the targeting and treatment of neuroblastoma [69,70]. As recently summarized by the
Rodríguez-Nogales group, anti-GD2 Abs were efficiently conjugated with metallic, lipidic,
and polymeric nanoparticles for tumor-specific targeting of neuroblastoma, with high
potential to serve as a multifunctional therapeutic nanoplatform [69]. Indeed, theragnostic
NPs open a new dimension in tumor-targeted therapeutic strategies that combine in simul-
taneous diagnosis and treatment of a disease at a curable stage. In particular, Baiu et al.
provided the first line of evidence that iron nanoparticles conjugated with the clinically
relevant antibody hu14.18K322A (humanized monoclonal anti-GD2) were able to target
human neuroblastoma with high levels of specificity and at levels detectable by magnetic
resonance in a murine flank xenograft model, suggesting their application as theragnostic
nanoplatform for other GD2+ malignancies [71]. Recently, another group improved the
delivery of SN-38 (a topoisomerase-I inhibitor) by using an antibody against GD2 to target
SN-38 loaded NPs into human tumors [72]. They showed that this delivery system was
antigen-specific in vitro and in vivo, the tumor penetration by SN-38 was drastically higher
in mice receiving the targeted nano-drug delivery system than non-targeted NPs or the
free drug, establishing a proof of concept that GD2 targeting of NPs using mAbs could
have clinical potential to enhance anti-tumor activity while reducing toxicity effects. These
promising approaches based on anti-GD2 Ab-NPs suggest that they may well be applied
in the near future to target and treat GD2-expressing tumors. Disialoganglioside GD2 is
indeed highly expressed not exclusively by almost all neuroblastomas, but also by most
melanomas and retinoblastomas, and by to a more variable degree, by many osteosarcomas
and soft tissue sarcomas [73]. Heavily glycosylated proteins, such as proteoglycans, also
form an interesting array of targets for tumor imaging in addition to tumor-associated
glycans. Heparan sulfate proteoglycan, such as Glypican-1 (GPC-1), has been reported
as a potential pancreatic cancer (PC) biomarker [74] as its expression is greater in human
PC than normal cells [75]. Huang et al. established a new multifunctional nanoprobe
designated for detecting pancreatic cancer cells (PC) [76]. The author showed that the
conjugation with GPC-1 antibody enabled the functional imaging probe to effectively
target GPC-1-expressing PC cells both in vitro and in vivo, suggesting the application of
this newly targeted-system for detecting PC cells in the clinic. Table 2 summarized some of
the recent antibody-based nanotechnology strategies.
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Table 2. Nanoparticles functionalized with monoclonal antibodies (mAbs) targeting aberrant cancer-associated glycans.
Abbreviations: poly lactic-co-glycolic acid (PLGA); gadolinium (Gd); gemcitabine (GEM); prussian blue nanoparticles
(PBNPs); sorafenib (SFB); glypican-3 (GPC-3).

Antibody Target Cancer Type Nanoparticles Application Reference

hu14.18K322A mAb GD2 neuroblastoma iron-oxide NPs Targeting
Diagnosis [71]

mAb 3F8 GD2 neuroblastoma SN-38 loaded polymeric NPs Targeting
Therapy [72]

ch14.18/CHO GD2 glioblastoma PLGA nanoparticles Targeting
Therapy [77]

hu14.18K322A GD2 neuroblastoma and
melanoma cancers AuNPs

Targeting
Diagnosis
Therapy

[78]

GPC-1 mAb GPC-1 pancreatic cancer Gd-Au nanoclusters Targeting
Diagnosis [76]

GPC-1 mAb GPC-1 pancreatic cancer GEM-loaded multifunctional
Au nanocarrier

Targeting
Diagnosis
Therapy

[79]

GPC-3 mAb GPC-3 hepatocellular
carcinoma PBNPs

Targeting
Diagnosis
Therapy

[80]

GPC-3 mAb GPC-3 hepatocellular
carcinoma SFB-loaded polymeric NPs Targeting

Therapy [81]

4.3. Other Anti-Glycans Approaches to Target NPs towards Cancer

Although analyzing and determining the aberrantly glycosylated motifs is, therefore,
an important diagnostic and therapeutic goal, it is clear that new glycan-specific receptor
alternatives are highly needed due to the limited availability and challenges of lectins
and glycan-specific antibody molecules. In this context, various novel and interesting
models and solutions have opened a new avenue for the recognition of TACAs on cancer
surfaces (Table 3). For example, current advances in this area have focused on aptamers
(Apt) to target carbohydrates with charged moieties, such as the sialic acids [82,83]. Apt
are a class of short nucleic acid (DNA or RNA), that are preferable to anti-glycan mAbs
due to their affordable production cost, negligible immunogenicity, and small size [9,32].
Mucin1 (MUC1) is a glycoprotein known as a tumor-associated antigen that is aberrantly
overexpressed in several cancer cells [84]. Consequently, anti-MUC1 Apt can be used for
targeted drug delivery to cancer cells [85,86]. Recently, Jafari et al. used the anti-MUC1
Apt to target chitosan NPs containing Docetaxel and insulin-like growth factor receptor
1(IGF-1R) Silencer siRNA (gene silencing by small interfering RNA) to SKBR3 breast cancer
cells [87]. This demonstrates that this novel targeted co-delivery system could enhance the
cellular uptake of NPs and profoundly decreased the pathways involved in tumorigenesis
and metastasis. Another effective way to target glycans is through peptides. Indeed, the
numerous advantages of peptides (such as low cost of production, good stability, and ease
of conjugation to the surface of NPs at a high density due to their small size), make them
appropriate anti-glycans ligands to target cancer cells. Different examples can be found
in the literature [9,88,89]. For instance, Rossez et al. prepared ultrasmall particles of iron
oxide (USPIOs) conjugated with disulfide constrained heptapeptide, that were identified
using a screening phage display, for the early detection by magnetic resonance imaging
(MRI) of colon cancer using human gastric mucin MUC5AC as a specific marker [90]. More
recently, Zhao et al. obtained successful outcomes using dextran-coated iron oxide NPs
conjugated to the near-infrared fluorescent dye Cy5.5 and to a uMUC1-specific peptide
(EPPT) as a probe for MRI and fluorescence optical imaging [89]. Another promising
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strategy involves the use of small molecules, such as boronic acids, for the construction
of synthetic receptors for glycan recognition. Boronic acids covalently bind 1,2- and 1,3-
diol groups found in carbohydrates [32]. In particular, diboronic acid compounds have
been found to recognize cell surface cancer-associated glycans in situ, such as SLex with
high levels of specificity [91]. There is great potential for the use of boronic aid and
derivates application for the development of targeted nanoparticles towards cancer cells
for drug delivery, cell imaging, and therapy. Soy protein NPs bearing phenylboronic acid
(PBA) on their outer surface were used to improve the tumor microenvironment (TME)
targeting and penetration of NPs inside the tumor [92]. It was also observed that the
incorporation of the phenylboronic acid group into chitosan NPs imparted a surface charge-
reversible characteristic to the NPs, increasing the internalization of NPs into 2D and 3D
cell models [93]. Another noteworthy approach includes the use of synthetic carbohydrate
receptors created through Molecularly Imprinted Polymers (MIP) as a general toolbox for
the specific recognition of cancer cells [94,95]. In the MIP technique, a polymer network
is obtained around a template molecule (i.e., a glycoprotein expressed on the cell surface)
in order to generate artificial binding sites which, upon removal of the template, can be
occupied by their target [96]. Very recently, monosaccharide-imprinted fluorescent NPs
were used for targeting and imaging of hepatoma carcinoma cells (HepG2) and mammary
cancer cells (MCF-7), suggesting a possible additional application also for the synthesis
of monosaccharide-imprinted plasmonic NPs for targeted photothermal therapy [95]. In
addition, other innovative and appealing methods and strategies to focus on the glyco-
specific issue, also in combination with NPs, have been developed. For instance, several
polysaccharides such as chitosan, chondroitin sulfate, alginate, hyaluronic acid (HA) have
been used to improve the active targeting of nanoparticle drug delivery systems [30,97–99].
Concerning HA, many studies have shown that HA-based nanoparticles can serve to
efficiently target the CD44 glycoprotein, whose isoforms and their altered glycosylation
are correlated with metastatic properties of human cancer [100–102]. Lastly, interesting
models have been proposed and applied to various glycosylation targets, especially in
combination with nanoparticle carrier systems. The interaction of endogenous GBPs with
aberrant glycan structures significantly influence many pathological events, such as tumor
progression. In this context, lots of new carbohydrate-modified NPs have been proposed
to target the GBPs expressed on the immune or non-immune cells or in the extracellular
space [103–105].

Table 3. Examples of recent innovative anti-glycan approaches to target NPs to cancer cells.

Targeting Moiety Target Cancer Type NPs Application Reference

Apt MUC1 breast cancer chitosan NPs Targeting
Therapy [87]

Heptapeptide MUC5AC gastric cancer USPIOs Targeting
Diagnosis [90]

Phenylboronic Acid sialic acid neuroblastoma chitosan NPs Targeting
Therapy [93]

Monosaccharide-imprinted
polymer

sialic acid, fucose
or mannose

hepatoma carcinoma
and breast cancer fluorescent silica NPs Targeting

Diagnosis [95]

HA CD44 breast cancer HA nanocarrier Targeting
Therapy [106]

5. Possible Implications in Cancer Nano-Immunotherapy

Nanoparticles provide us with unique opportunities to improve the safety and the
efficacy of cancer immunotherapy, a treatment that aims to support the re-awakening of the
immune system to attack aberrant cancer cells [107]. Increasing evidence has pinpointed
TME as the major target of nanomedicine. NPs have the potential to interact with the
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TME in unexpected ways and to ultimately and critically affect performance and tumor
response [108,109]. A wide range of NPs with different physicochemical characteristics has
been developed to stimulate the immune system and battle cancer [66,110]. NPs have been
developed to activate and target dendritic cells, to deliver cytokines, genes, and antibodies,
and also to target immunosuppressive cells in the TME, offering a promising strategy to
eliminate this tumor-induced immunosuppression and stimulate the antitumor effect of
immune cells [111]. The tumor microenvironment is indeed formed, besides the cancer
cells, of many types of infiltrating immune and stromal cells interacting in a complex
environment of soluble and matrix molecules. These interactions are critical in determining
the fate of the tumor [112].

Notably, changes in glycosylation—such as β1,6-branched N-glycans, overexpres-
sion of tumor-associated mucins, and altered surface sialylation—are found not only in
tumor cells but also in cancer associated-stromal, vascular and immune cells [113,114],
which points toward a central role of glycobiology in immune responses. These changes
are indeed involved in tumor development by hiding or uncovering specific ligands for
endogenous lectins, including C-type lectin, Siglec, and galectin families that are typically
widely expressed on immune cell surfaces, such as dendritic cells, neutrophils, and tumor-
associated macrophages (TAMs) macrophages [115–119]. TAMs are key components of
the leukocytic infiltrate in tumors and are highly plastic cells mostly due to their capa-
bility to adjust their metabolism and reprogram their phenotype into proinflammatory
M1 (anti-tumor) or anti-inflammatory M2 (pro-tumor) phenotype to respond to changes
in TME [120]. As recently discussed by Mantuano et al. [113], growing data suggest the
important role of glycosylation in regulating tumor-associated macrophage polarization
and differentiation. It has been observed that most growth factor receptors and molecules
expressed on the surfaces of macrophages are N-glycosylated and that these modifica-
tions influence their interaction with endogenous lectins, determining the polarization of
TAMs [121–123]. For example, the N-glycan containing terminal β-galactose can be recog-
nized by galectins, a class of endogenous lectin that bind specially to β-galactoside sugars,
modulating the macrophages functions [123]. Given this, several attempts are underway to
develop therapies to foster TAMs polarization into cancer-suppressive phenotypes, such as
sugar agonists or antagonist treatments and nanoparticles-based approaches [109,124].

A recent review has shed light on the use of CD24 as a target for cancer therapy [125].
CD24 is a highly glycosylated protein which is primarily expressed by immune cells but is
often overexpressed in human tumors. In cancer, by interaction with endogenous Siglec-10
on TAMs, CD24 protects cancer cells from phagocytosis by acting as a phagocytic inhibitor
(a“do not eat me” signal). CD24 has a great therapeutic potential and has become the target
for different therapy formats. For instance, unconjugated mAbs were used to blockade
the CD24–Siglec-10 interaction with the aim of strongly increasing the phagocytosis of all
CD24-expressing human tumors tested. As this glycosylated protein may have additional
ligands [126], we can suppose it may well be itself the target of other molecules, such
as anti-glycan molecules, also conjugated with NPs, to prevent phagocytic inhibition via
Siglec-10. In parallel, new insights have been obtained on the immunotoxicity of plant
lectins toward cancer cells and their role in the reinforcement and modulation of the
innate (anti-cancer) immunity (i.e., mononuclear phagocyte system). It was found that
Jacalin, a noncytotoxic plant lectin extracted from the seeds of Artocarpus integrifolia, can
recognize the macrophage surface, inducing the level of polarization toward the antitumor
phenotype [127]. Similarly, Abrus lectins derived peptides were able to stimulate TAMs to
reduce the expression on mannose receptors, to stimulate nitric oxide (NO) production and
IL-1 secretion, and to increase phagocytosis [128].

Although the alterations in glycome occurring in TME are still poorly understood,
these stimulating findings highlight the key role of protein-carbohydrates interaction in the
TME crosstalk, a point which may inspire the development not only of glyconanoparticles
able to mimic the carbohydrates on target cells to block these biorecognition systems, but
also to produce anti-glycan nanoparticles to boost the anti-tumor activities of immune
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cells or to prevent their interaction with cancer cells. With this in mind, we envisage
that the development of cutting-edge technologies (in mass spectrometry-based methods)
for the glycoconjugates characterization, together with the progress in the nanoparticles
production, gene expression analyses, or editing (CRISPR, clustered regularly interspaced
short palindromic repeats-Cas9 gene editing), it may help us to gain new knowledge of
this emerging field and contribute to our ability to uncover the function of glycosylation
changes in glycan structures on the cell surface of cancer and immune cells. Advanced
analytical techniques have enabled us to explore and pave the way for the future use of
glycan-binding molecules-nanoparticles as immunomodulatory agents to re-educate TAMs
and immune cells to fighting cancer cells.

6. Potentialities and Obstacles of Anti-Glycan NPs in Cancer Research

As mentioned above, several researchers have recently described various strategies
for cancer “sweet side” targeting, through the design of nanoparticles bearing anti-glycan
molecules, such as lectins or antibodies. Moreover, the appealing features of these func-
tionalized nanoparticles enable them to be used in a variety of cancer areas including drug
delivery systems. The advantages of lectin and antibodies, which include better targeting
and intrinsic anti-tumor activities, promote the usage of these molecules in the structure of
NPs to increase the selectivity of nanoparticles towards cancer cells. Even with some suc-
cess in animal models, this new strategy has limitations that must be extensively considered
before allowing them to be utilized in vivo. Therefore, the development of anti-TACAs NPs
needs rigorous consideration. The pros and cons of the target, the tumor-associated glycans,
are important. TACAs properties offer the following major advantages [88]: (i) their dense
epitope expression on a wide range of tumors, but not in healthy tissue, resulting in a
denser accumulation of anti-glycan molecules; (ii) their expression on the outermost layer
of cell surface layer, making them easily accessible by targeting moieties; (iii) their ability to
be expressed in target multiple tumor-associated proteins, then providing a more efficient
targeting than single protein targeting.

Nevertheless, it is true that the complexity of glycosylation remains a challenge;
the fact that glycans are not very immunogenic is a major disadvantage [129]. Second,
the researchers should consider the features of glycan-binding molecules. Lectins and
glycan-binding mAbs have been identified as powerful tools to target NPs towards TACAs
expressed on tumor cells. Nevertheless, as we described in the previous sections of this
review, these molecules have different advantages and disadvantages. Lectins display
relatively weak affinities for monosaccharides, with dissociation constants (KD) in the
millimolar range, and poor selectivity for individual sugars explained by the absence of
deeper binding pockets. The multiple interactions with terminal sugars due to their homo-
oligomeric structures allow for superior affinity and selectivity. However, concerns related
to their purification, immunogenicity, and toxicity must be tackled prior to their application
as targeting ligand [31,32]. Similarly, there remain several obstacles with mAbs, despite
their high specificity, such as large size, which can severely decrease the accessibility to
the tumor, toxicity, and high cost of manufacturing, hindering their translation into clinic
use [9,53,130]. On the other hand, the TACAs binding affinity, and the intrinsic anti-tumor
activities of both lectins and antibodies, make them attractive and efficient ligands for
the active targeting of NPs to the tumor. Some of the limitations may be partially lifted
by using diverse and interesting approaches targeting cancer-associated glycans, such
as aptamers, but more research is required to understand its safety and efficacy prior to
clinical application. Third, an important consideration concerns the NPs themselves. The
numerous advantages of NPs—including delivery control, increased payload stability, and
solubility, enhanced permeability, and retention, magnetic and optical properties—make
them suitable vehicles to deliver a wide spectrum of molecular cargos [1,131]. However,
physicochemical properties (i.e., size, shape, rigidity, or surface) profoundly influence the
large-scale distribution of NPs and the ligand conjugation [132–136].
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In a recent paper, we demonstrated that increasing the gold nanoparticles size can
improve the stability and the conjugation efficiency of Trastuzumab improved. In addition,
we observed that the antibody retained its folding and anticancer activity after conjugation
with NPs [10]. Consequentially, researchers should critically evaluate the effects of the NPs
properties while at the same time not overestimating the effect of biological ligands. We
finished by highlighting that it is worth exploring an effective “stealth“ approach to reach
a better biodistribution, enhanced recognition, and effective internalization into the cancer
cell [137]. Different biodegradable polymers were tested for coating NPs while minimizing
immunogenicity reactions [138]. Nowadays, PEG coating is widespread but has some
drawbacks in low drug loading efficiency if the drug is conjugated to the PEG chains [139].
Recent research has led to the development of biocompatible nanomaterials, especially for
the controlled release of therapeutic molecules (chemotherapy, siRNA, small molecules
of different natures, etc.) to cancer cells. For instance, Fernandes et al. developed PLGA-
based glycoengineered NPs for selective delivery of chemotherapy (5-FU and paclitaxel)
to SLeA-expressing gastric cells, with minimal off-target affinity for healthy tissues [97].
Furthermore, a winning approach for controlled drug release and its prevention from
enzymatic degradation is represented by the NPs surface functionalization using polysac-
charides. Polysaccharides display helpful abilities, such as increasing the solubility of low
soluble or insoluble drugs, enhancing the blood circulation time, maximizing therapeutic
efficacy, and minimizing side effects [99,138,140]. Lastly, we firmly believe that biological
environments are required to explore and elucidate not only NPs toxicity, but also the
interaction of this novel strategy both with the immune cell system, in order to avoid
undesired effects, and with the serum proteins, whose binding to the NPs surfaces can
significantly affect the NPs cellular uptake [141].

In general, although many challenges remain, we hypothesize that anti-glycan-mediated
targeting may be a potential and valuable approach to identify the glycans on tumor cells,
in which the inherent properties of the nanoparticle itself and the biological actions of
anti-glycan molecules would be exploited to target tumor cells with increased efficacy and
decreased non-specific effects. Certainly, the concomitant improvement in lectin engineer-
ing and mAbs production, in combination with the discovery of new GBPs, may have a
great value for the implementation of the anti-glycan NPs in the cancer field.

7. Conclusions and Future Outlook

Nanotechnology is an emerging technology that may change the face of cancer diagno-
sis and therapy by the development of a new targeted system, with numerous advantages
for tumor visualization and eradication. Cancer-associated glycans represent valuable op-
portunities for cancer diagnosis, prognosis, and therapy. As described here, the molecules
showing exceptional glycan recognition property may represent a powerful strategy for
the identification of altered glycans for cancer therapy and diagnosis, even if their clinical
application remains limited due to concerns with stability and toxicity. We can predict that
the conjugation to nanoparticles systems will hasten the translation towards the biomedical
application of anti-glycan molecules. Moreover, the literature findings clearly revealed
that their conjugation on the NPs could greatly increase the NPs delivery, thus minimiz-
ing/avoiding side-effects and facilitating uptake in the target cells. It is clear, however, that
fine-tuning of the conjugation method of these molecules on NPs is still required in order
to maintain their immunoreactivity for tumor-associated carbohydrates antigens and also
to ensure the stability of the functionalized nanosystems. In conclusion, thus far there are
no approved anti-glycan NPs, and, in this review, we have aimed to highlight the huge
solution offered by the anti-glycan conjugated nanoparticles to greatly increase the efficacy
and specificity of nanoparticles towards aberrant glycans. There is no doubt that gaining
new insights on molecules that have the capacity to recognize aberrant cancer-associated
glycosylation, as well as the identification of cancer-specific glycans and the optimization
of nanoparticle synthesis before conjugation, will continue to be a high priority for the
foreseeable future in the fight against cancer.
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