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Background: Prediction of subsolid nodule (SSN) interval growth is crucial for clinical management and 
decision making in lung cancer screening program. To the best of our knowledge, no study has investigated 
whether volume doubling time (VDT) is an independent factor for predicting SSN interval growth, or 
whether its predictive power is better than that of traditional semantic methods, such as nodular diameter or 
type. This study aimed to investigate whether VDT could provide added value in predicting the long-term 
natural course of SSNs (<3 cm) regarding stage shift.
Methods: This retrospective study enrolled 132 patients with spectrum lesions of lung adenocarcinoma 
who underwent two consecutive computed tomography (CT) examinations before surgical tissue proofing 
between 2012 and 2021 in Kaohsiung Veterans General Hospital. The VDTs were manually calculated from 
the volumetric segmentation using Schwartz’s approximation formula. We utilized logistic regression to 
identify predictors associated with stage shift progression based on the VDT parameter.
Results: The average duration of follow-up period was 3.629 years. A VDT-based nomogram model (model 2) 
based on CT semantic features, clinical characteristics, and the VDT parameter yielded an area under the 
curve (AUC) of 0.877 [95% confidence interval (CI): 0.807–0.928]. Compared with model 1 (CT semantic 
features and clinical characteristics), model 2 exhibited the better predictive performance for stage shift (AUC 
model 1: 0.833 versus AUC model 2: 0.877, P=0.047). In model 2, significant predictors of stage shift growth 
included initial nodule size [odds ratio (OR) =4.074, 95% CI: 1.368–12.135; P=0.012], SSN classification 
(OR =0.042; 95% CI: 0.006–0.288; P=0.001), follow-up period (OR =1.692, 95% CI: 1.337–2.140; 
P<0.001), and VDT classification (OR =2.327, 95% CI: 1.368–3.958; P=0.002). For the stage shift, the mean 
progression time for the VDT (>400 d) group was 7.595 years, and median progression time was 7.430 years. 
Additionally, a VDT ≤400 d is an important prognostic factor associated with aggressive growth behavior 
with a stage shift.
Conclusions: VDT is crucial for predicting SSN stage shift growth irrespective of clinical and CT 
semantic features. This highlights its significance in informing follow-up protocols and surgical planning, 
emphasizing its prognostic value in predicting SSN growth.
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Introduction

Lung cancer is currently the leading cause of cancer 
mortality globally, especially among men who are heavy 
smokers and Asian non-smoking women with late-
diagnosed lung cancer (1-4). Owing to the worldwide 
implementation of low-dose chest computed tomography 
(CT) for lung cancer screening, the early diagnosis of lung 
cancer is clinically feasible (5-8). Relevant evidence has 
shown that prolonged lung cancer screening in high-risk 
groups can reduce mortality (9,10). However, screening 
has some disadvantages. Overdiagnosis is inevitable during 
the lung screening process (11,12). Previous studies have 
shown the widespread implementation of lung cancer 
screening programs in clinical practice, and the proportion 
of precancerous lesions has increased, particularly in Asian 
communities where non-smoking-related lung cancer 
(13,14). Therefore, active preoperative monitoring of 
the rate of precancerous lesions and the growth trend of 
subsolid nodules (SSNs) to guide appropriate surgical time 
is clinically important. Previous studies have demonstrated 
the interval growth of SSNs based on the average or the 
longest lengths of these nodules (15-17). In addition, Wu  
et al. also has demonstrated that combined clinical-radiomic 
model improved prediction in SSN interval growth in term 
of stage shift growth. However, the NELSON trial used 
volume doubling time (VDT) as a quantitative imaging 
biomarker to evaluate interval changes in indeterminate 
pulmonary nodules during the follow-up period (6). This 
study has significant clinical value, as the application of 
VDT to monitor tracked lung nodules reduces the rate of 
false positives. Owing to the heterogeneity of growth patterns 
in the lung adenocarcinoma spectrum lesions, predictors of 
interval growth that affect prognostic outcomes regarding 
stage shift are crucial in SNN management guidance. 
Preoperative prediction of the interval growth of these SSNs 
provides an important guide for clinical decision-making. To 
the best of our knowledge, no study has investigated whether 
VDT is an independent factor for predicting SSN interval 
growth in term of stage shift or whether its predictive power 
is better than that of traditional semantic methods such as 
nodular diameter or type. 

The correct diagnosis of SSN growth patterns can 
effectively improve patient outcomes and prevent 
overmanagement (18). We mainly aimed to explore the 
potential of VDT in predicting interval growth and 
prognostic outcomes, focusing on the stage shift of SSNs 
in patients with lung adenocarcinomas. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-23-1759/rc).

Methods

Patients

This retrospective analysis received approval from the 
Institutional Review Board of Kaohsiung Veterans General 
Hospital under the reference number KSVGH21-
CT2-12. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The 
requirement for written informed consent was waived owing 
to the retrospective nature of this study. We consecutively 
retrieved patients with persistent pulmonary nodules 
identified during two rounds of chest CT between February 
2012 and December 2021. The criteria for inclusion were 
as follows: (I) persistent SSNs confirmed on a series of 
chest CT scans with pathologic proof, (II) SSNs with a 
diameter <30 mm in the initial CT image, (III) at least two 
or more unenhanced thin-section (<2.5 mm) chest CT scans 
using the standard protocol at different time points and 
a follow-up interval period >1 year, and (IV) pathological 
outcomes of resected SSNs confirmed with adenocarcinoma 
spectrum. The exclusion criteria included SSNs lacking 
histopathological confirmation, insufficient follow-up  
(<2 CT scans, <1 year), and non-adenocarcinoma spectrum 
lesions. Totally, 132 patients with SSNs were included in 
this study. Of the participants, 50 were males and 82 were 
females. Clinical characteristics and radiological features 
including patient age, sex, initial nodule size, initial solid 
part size, nodular type according to SSN classification, 
follow-up duration, VDT categories, and pathological 
reports were collected. The study flowchart is shown in 
Figure 1.
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Qualitative and quantitative analysis of SSNs

CT scans were conducted using the following CT 
scanners: a 256-slice CT (Revolution CT, GE Healthcare, 
Milwaukee, USA), a 64-slice CT (Aquilion 64; Toshiba 
Medical Systems), and a 16-slice CT (Somatom Sensation, 
Siemens Healthcare, Germany). Scans spanning from 
the lung apex to the base were acquired at full inspiration 
without a contrast medium. Images were reconstructed 
with a slice thickness of 1–2.5 mm and displayed at a 
mediastinal window width of 350 Hounsfield units (HU) 
with a window level of 35 HU, lung window width of  
1,600 HU, and window level of −600 HU. The characteristic 
CT features were retrospectively reviewed by an 
experienced thoracic radiologist (F.Z.W.) with 17 years of 
experience in chest radiology. The radiologist is blinded to 
the patients’ stage shift status. The imaging characteristics 
of each lesion confirmed by pathology were analyzed based 
on the following parameters: (I) size of the initial nodule 
along the long axis, (II) initial solid part (along the long 
axis) in the lung window, and (III) nodular type according 
to the Fleischer classification. Using a lung window setting, 
axial CT images were used to measure the maximum 
longest diameter of the primary nodular lesions and solid 
components.

Definition of SSN growth in terms of stage shift

For the enrolled 132 patients with SSNs, all available 
series of chest CT scans were evaluated to define stage 
shift. Stage shift was defined as a specific stage shift growth 
of lung adenocarcinoma spectrum lesions diagnosed 
to detect notable shifts in different categories or stages 
according to the eighth edition of the lung cancer tumor-

node-metastasis (TNM) staging system, which is based on 
clinical and pathological information at the presentation of 
consecutive CT scans proposed by Wu et al. (Figure 2) (19). 
The definition of a stage shift is based on subclassification 
changes in the TNM staging system when tumor growth 
reaches a certain point. As per the eighth edition of the 
American Joint Committee on Cancer Staging System, 
subclassification changes are closely associated with the 
prognosis of cancer survival; hence, termed prognostic stage 
shifts (represented by red solid arrows). Diagnoses were 
made according to changes in TNM. Regarding T, when 
the tumor size changed from T1a–T1b, it was considered 
a subclassification change. For N, when the lymph 
node changed from negative to N2, it was considered a 
subclassification change. For M, we identified SSNs with a 
tumor size of <3 cm, and all cases were T(<3 cm)N0M0 in 
their baseline CT clinical staging. Subclassification changes 
were also considered present whether bone metastases 
or other signs of metastases were detected on the final 
CT scans or surgical outcomes. Finally, a summary was 
made according to the TNM status. Herein, any evolving 
modification within a subclassification was designated as 
a stage shift. The converse was also true; should there 
be no changes in tumor size, no stage shift (represented 
by grey dashed arrows) was defined as persistent non-
invasion of the lymph nodes and an absence of signs of 
distant metastasis. As per “The new IASLC/ATS/ERS lung 
adenocarcinoma classification from a clinical perspective: current 
concepts and future prospects”, the imaging features that define 
atypical adenomatous hyperplasia (AAH), adenocarcinoma 
in situ (AIS), and minimally invasive adenocarcinoma 
(MIA) serve as a reference guideline (20). Additionally, in 
the stage shift (+) group, four patients were diagnosed with 

N=132

Model 1

Stage shift

Model 2

Diagnostic performance

The inclusion criteria were as follows: 
(I) Persistent SSNs confirmed on a series of chest CT scans with pathologic 

proof
(II) SSNs with a diameter <30 mm in the initial CT image
(III) At least two or more unenhanced thin-section (<2.5 mm) chest CT scans 

using the standard protocol at different time points and a follow-up interval 
period >1 year

(IV) Pathological outcomes of resected SSNs confirmed with adenocarcinoma 
spectrum

The exclusion criteria included: 
(I) SSNs lacking histopathological confirmation
(II) Insufficient follow-up (<2 CT scans, <1 year)
(III) Non-adenocarcinoma spectrum lesions

Figure 1 The flowchart of the study design. Model 1: clinical characteristics and CT semantic feature. Model 2: clinical characteristics, CT 
semantic feature, and VDT classification. SSN, subsolid nodule; CT, computed tomography; VDT, volume doubling time.
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AIS lesions based on their baseline CT scans; however, 
they were confirmed as MIA lesions in their final surgical 
results. One case was diagnosed as an AAH lesion based on 
a baseline CT scan but was confirmed as an AIS lesion in 
the final surgical results. In this study, we defined these five 
lesions as stage shifts (+) because such pathological tissue 
growth changes could still affect survival prognosis (21,22). 
This study included patients with SSNs measuring <3 cm. 
A previous study has reported a low incidence (3.7%) of 
lymph node metastasis in a cohort with SNNs <3 cm (23). 
For patient-based analysis, patients with stable SSNs were 
classified into the stage shift (−) group (Figure 3). Patients 
with any SSNs showing stage shift growth were classified 
into the stage shift (+) group (Figure 4).

VDTs

For each SSN, two CT examinations were performed 
for the VDT analysis. The VDTs were calculated for 

SSNs with interval growth using a modified Schwartz 
formula (24) .  The volumes of the 132 SSNs were 
obtained using the LifeX package (LifeX freeware, version 
5.10; Orsay, France, http://www.lifex soft.org) for nodular 
contour segmentation, with a volume of interest of ≥64 
voxels for VDTs calculation (25). An experienced thoracic 
radiologist with 17 years of expertise manually outlined 
the contours of SSN. The regions of interest (ROIs) were 
manually delineated around the nodule boundary for each 
thin-slide CT section. Measurements were performed 
on non-contrast CT images using standard lung window 
settings (width, 1,600 HU; level, −600 HU). Once manual 
ROI segmentation of the pulmonary SSNs was completed, 
the VDT for the volume change of the lung nodules was 
calculated according to the following equation:

( ) ( )VDT ln 2 T ln X2 X1= ×∆
 

[1]

Where X2 and X1 denote the final and initial SSN volumes, 
respectively. ∆T (“delta T”) corresponds to the time (in d) 

Figure 2 The definition of a stage shift is based on sub-classification changes in the TNM system of cancer staging when tumor growth 
reaches a certain extent (detail in the method section). TNM, tumor-node-metastasis; CT, computed tomography; AAH, atypical 
adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma.
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Figure 3 In a 56-year-old male, a persistent ground-glass nodule measuring 0.9 cm remained stable in the left upper lobe for 8 years. No 
noticeable changes were observed in this nodule on subsequent CT scans over approximately 96 months. Surgical resection confirmed the 
presence of stage-0 adenocarcinoma in situ. CT, computed tomography.

Figure 4 In a 65-year-old male, an evident case of part-solid nodule growth with significant stage shift was observed in the right upper 
lobe. Initially, a part-solid nodule lesion of 15 mm (solid part 0.4 cm in the lung window) was identified in the right upper lobe during the 
baseline scan. Subsequently, after about 10.3 years (123 months), the nodule demonstrated noticeable growth, reaching a size of 31 mm on 
the follow-up CT scans. Surgical resection confirmed the presence of invasive acinar adenocarcinoma (T2aN2M0, stage 3A). CT, computed 
tomography.
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between the two scans, and ln is the natural logarithm. The 
term “In” represents the natural logarithm (base “e”), while 
“In2” typically denotes the square of the natural logarithm. 
The VDT classification spans five levels, progressing from 
slow to rapid growth: VDT >1,600 d, VDT from 801– 
1,600 d, VDT from 401–800 d, VDT from 101–400 d, and 
VDT ≤100 d, respectively.

The utilization of a VDT cutoff value of 400 days for 
Kaplan-Meier analysis was based on findings from the 
NELSON study, which indicated that nodules with a VDT 
of ≥400 days at 3 months were classified as non-growing 
tumors {de Koning, 2020 #6}.

Statistical analysis

Statistical analyses were performed using SPSS software 
(version 22.0; SPSS Inc., Chicago, IL, USA) and Stata 
13 (Version 13.1; StataCorp, College Station, TX, USA). 
Continuous variables are expressed as mean ± standard 
deviation, while categorical variables were summarized 
using frequencies and percentages and compared utilizing 
either the chi-square or Fisher’s exact test. Multivariate 
logistic regression was used to establish better diagnostic 
models for stage shift predictions in SSNs with and without 
VDT parameters. The results are expressed as odds ratios 
(ORs) with 95% confidence intervals (CIs). One nomogram 
was established to predict stage shifts with and without 
VDT. To compare the diagnostic performance of these 
prediction models, we constructed receiver operating 
characteristic (ROC) curves and calculated the areas under 
the curves (AUC). Additionally, positive predictive value, 
negative predictive value, sensitivity, specificity, positive 
likelihood ratio (LR+), and negative LR (LR−) were 
calculated to measure the overall diagnostic accuracy of 
these prediction models for stage shift (26). The Kaplan-
Meier method and log-rank test were used to analyze the 
two groups according to the VDT class for stage shift 
status (27,28). Statistical techniques are available to analyze 
differences in AUC values obtained from ROC curves. 
DeLong’s test is employed for comparing AUC values 
derived from different models or predictors, facilitating 
rigorous assessment of performance variations. The 
statistical significance threshold for all tail-tailed tests was 
set at P<0.05. By summing the scores assigned on the point 
scale for each parameter, we could plot a straight line to 
determine the approximate individual probability score for 
stage shift status.

Results

Clinical characteristics and CT semantic features in SSNs

The clinical features and CT semantic parameters of 132 
lung cancer patients with 132 SSNs at baseline CT are as 
follows: the initial mean nodule size was 1.21±0.953 cm,  
with a solid part size of 0.44±0.820 cm. Among these 
patients, 80 (60.61%) exhibited ground-glass nodules 
(GGNs) and 52 (39.39%) showed part-solid nodules 
(PSNs). After an average follow-up duration of 3.629 years, 
43 (32.58%) individuals had GGNs and 89 (67.42%) had 
PSNs. Among the 44 patients experiencing a positive stage 
shift in the final evaluation, one manifested mediastinal 
lymph node metastasis, four showed distant organ 
metastases, and six displayed mediastinal lymph node and 
distant organ metastases.

For general characteristics and CT semantic features, no 
significant differences in age, sex ratio, initial nodule size, 
initial solid part size, and VDT category subclassification 
between the two groups were noted according to stage 
shift progression status. The stage shift progression (−) 
and progression (+) groups comprised 88 and 44 patients, 
respectively. The general characteristics and CT semantic 
features of the patients with lung cancer in the two groups 
are summarized in Table 1. A significant difference in the 
distribution of invasive pulmonary adenocarcinoma (IPA) 
lesions was observed between the two groups. Regarding 
the spectrum of lung adenocarcinoma lesions, IPA was 
significantly more prevalent in patients in the stage shift 
progression (+) group than that in the progression (−) 
group (88.6% vs. 52.3%; P=0.001). For SSN classification, 
the stage shift progression (+) group had a significantly 
greater proportion of GGNs than the (−) group (75% vs. 
53.4%; P=0.017). The follow-up period in the stage shift 
progression (+) group was significantly longer than that in 
the (−) group (5.63±3.630 vs. 2.64±2.513 years, P<0.001).

Risk model and nomogram establishment for stage shift 
prediction

Multivariate analyses of the characteristic parameters affecting 
stage shift prediction are summarized in Table 2. Model 1 
included the clinical characteristics and CT semantic 
features for model development. Additionally, model 
2 contained the clinical characteristics, CT semantic 
features, and parameters of the VDT classification for 
model development. In model 1, SSN classification  

https://www.nature.com/articles/s41598-019-56025-6#Tab1
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(OR =0.046, 95% CI: 0.008–0.273) and the follow-up period  
(OR =1.4, 95% CI: 1.193–1.642) were significant predictors 
of a stage shift. In model 2, initial nodule size (OR =4.074, 
95% CI: 1.368–12.135; P=0.012), SSN classification  
(OR =0.042; 95% CI: 0.006–0.288; P=0.001), follow-up 
period (OR =1.692, 95% CI: 1.337–2.140; P<0.001), and 
VDT classification (OR =2.327, 95% CI: 1.368–3.958; 
P=0.002) were significant predictors of stage shift. Table 3 
shows the diagnostic AUC, sensitivity, and specificity values 
of the two models at the optimal probability score threshold 
for the stage shift prediction. The sensitivity of model 1 was 
79.55%, and specificity was 75% for stage shift prediction. 
The sensitivity of model 2 was 76.19% and specificity was 
87.21% for stage shift prediction. Among the two models, 
model 2 was the most specific for stage shift prediction. 
The areas under the ROC curves for stage shift prediction 
were 0.833 (95% CI: 0.757–0.893) for model 1 and 0.877 

(95% CI: 0.807–0.928) for model 2. Compared with model 
1, model 2 had the better predictive performance for stage 
shift prediction (AUC model 1: 0.833 versus AUC model 
2: 0.877, P=0.047) after adding the parameter of VDT 
classification (Figure 5). The probability of stage shift status 
was used for nomogram development. A nomogram was 
generated to predict the stage shift status based on the 
multivariable logistic regression shown in Figure 6. 

Influence of VDT on survival analysis for stage shift

Figure 7 depicts the Kaplan-Meier curves for stage shift 
in this cohort, based on the VDT (>400 d) and (≤400 d) 
groups. The 1-year stage shift rate of the VDT (≤400 d) 
group patients was 5%, which was significantly worse than 
that of the VDT (>400 d) group (0%). The 6-year stage 
shift rate of the VDT (≤400 d) group was 71.85%, which 

Table 1 Clinical characteristics and CT semantic parameters of 132 lung cancer patients with 132 SSNs nodules according to stage shift status

Characteristics Stage shift progression (−) (n=88) Stage shift progression (+) (n=44) P value

Age (years) 58.56±9.271 59.95±10.005 0.43

Gender (male) 29 (33) 21 (47.7) 0.09

Initial nodule size (cm) 1.12±0.794 1.34±1.188 0.27

Initial solid part size (cm) 0.41±0.685 0.51±1.053 0.57

SSN classification 0.02

GGN nodule 47 (53.4) 33 (75)

Part-solid nodule 41 (46.6) 11 (25)

Follow up period (years)* 2.64±2.513 5.63±3.630 <0.001

VDT classification (days)* 0.07

>1,600 39 (44.3) 10 (23.8)

801–1,600 14 (16.3) 12 (28.6)

401–800 15 (17.4) 13 (31)

101–400 15 (17.4) 5 (11.9)

≤100 3 (3.5) 2 (4.8)

132 SSNs with surgical proof of lung adenocarcinoma spectrum lesions 0.001

AAH 4 (4.5) 0 (0)

AIS 17 (19.3) 1 (2.3)

MIA 21 (23.9) 4 (9.1)

IPA 46 (52.3) 39 (88.6)

Data are expressed as n (%) or mean ± standard deviation. *, two cases in the stage shift progression (+) group were unable to undergo 
VDT measurement. CT, computed tomography; SSN, subsolid nodule; GGN, ground-glass nodule; VDT, volume doubling time; AAH, 
atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IPA, invasive pulmonary 
adenocarcinoma.

https://www.frontiersin.org/articles/10.3389/fcvm.2020.619798/full#F2
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Table 2 Multivariable logistic regression model to predict the stage shift status

Characteristics Coefficient OR 95% CI P value

Model 1 

Age (years) 0.021 1.022 0.969–1.077 0.43

Gender (male) 0.105 1.111 0.396–3.114 0.84

Initial nodule size (cm) 0.868 2.383 0.923–6.150 0.07

Initial solid part size (cm) 0.679 1.972 0.653–5.956 0.23

SSN classification −3.071 0.046 0.008–0.273 0.001

Follow up period (years) 0.336 1.4 1.193–1.642 <0.001

Model 2

Age (years) 0.017 1.017 0.961–1.076 0.57

Gender (male) 0.78 2.182 0.683–6.970 0.19

Initial nodule size (cm) 1.405 4.074 1.368–12.135 0.012

Initial solid part size (cm) 0.038 1.038 0.319–3.374 0.95

SSN classification −3.169 0.042 0.006–0.288 0.001

Follow up period (years) 0.526 1.692 1.337–2.140 <0.001

VDT classification 0.845 2.327 1.368–3.958 0.002

Model 1: clinical characteristics and CT semantic feature; model 2: clinical characteristics, CT semantic feature, and VDT classification. 
OR, odds ratio; CI, confidence interval; CT, computed tomography; VDT, volume doubling time; SSN, subsolid nodule.

Table 3 ROC analysis assesses stage shift status using two prediction models

Prediction model AUC (95% CI) Cut-point
Sensitivity  
(95% CI)

Specificity  
(95% CI)

P value
Difference 

between areas
SE 95% CI

Model 1 0.833  
(0.757–0.893)

>0.3169 79.55%  
(64.7–90.2%)

75%  
(64.6–83.6%)

<0.001 – – –

Model 2 0.877  
(0.807–0.928)

>0.4198 76.19%  
(60.5–87.9%)

87.21%  
(78.3–93.4%)

<0.001 – – –

Model 1 vs. model 2 – – – – 0.047 0.0437 0.022 0.000632–0.0869

Model 1: clinical characteristics and CT semantic feature; model 2: clinical characteristics, CT semantic feature, and VDT classification. 
ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval; SE, standard error; CT, computed tomography; 
VDT, volume doubling time.

was significantly lower than that of the VDT (>400 d) group 
(35.49%). For the time estimate of stage shift, the mean 
progression time for the VDT (>400 d) group was 7.595 
years and the median progression time was 7.430 years, 
whereas the VDT (≤400 d) group had a mean progression 
time of 3.250 years, and a median of 2.030 years. The log-
rank test of these two groups revealed significant differences 
(P<0.0001; Figure 7). The distribution of VDTs according 
to the histologic subtypes of lung adenocarcinoma spectrum 
lesions is shown in Figure 8. The high proportion (100%) 
of patients with long VDT (d) seems to be particularly 

large among those with indolent AAH lesions. However, 
the proportion of patients with a short VDT dramatically 
increased for lung adenocarcinoma spectrum lesions, with a 
corresponding increase in the degree of invasion.

Discussion

In this study, a total of 132 SSNs underwent long-term 
follow-up chest CT examinations for an average duration 
of 3.629±3.231 years; the added value of VDT and 
semantic features part in predicting the stage shift of lung 
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adenocarcinoma spectrum lesions were analyzed. Finally, 
we established one combined clinical-semantic-VDT model 
(model 2) that could better predict the status of stage-shift 
growth in lung adenocarcinoma spectrum lesions. Most prior 
studies have examined the factors that contribute to the risk 

of the interval growth pattern of GGNs or PSNs by tumor 
doubling time or an increase in diameter ≥2 mm to determine 
the aggressive behavior of pulmonary SSNs (29-32).  
This predictive nomogram, utilizing VDT parameters, 
represents the pioneering attempt to assess stage-shift 
growth in lung adenocarcinoma spectrum lesions initially 
appearing as SSNs within an Asian population. This study 
has three major findings. First, we created an innovative 
and valuable VDT-based nomogram prediction model that 
incorporated clinical characteristics, CT semantic features, 
and VDT parameters. This model effectively predicted 
stage shifts in lung adenocarcinoma spectrum lesions, 
demonstrating a strong performance in an Asian cohort. 
Second, compared with model 1, the innovative VDT-based 
model demonstrated a notably improved discriminatory 
capacity. Third, it has been demonstrated that VDT ≤400 d  
played an important role in aggressive growth behavior 
with stage shift status in SSNs in the follow-up period of 
3.629±3.231 years, independent of clinical characteristics 
and CT semantic features.

Previous studies have shown that the VDT value 
is a crucial volumetric parameter primarily utilized in 
lung cancer screening and subsequent follow-up in the 
NELSON trial (6,33). Therefore, aggressive tumor 

Figure 5 ROC curve analysis was conducted, comparing the 
predictive performance of model 1 and model 2 in determining the 
stage shift status. Model 1: clinical characteristics and CT semantic 
feature; model 2: clinical characteristics, CT semantic feature, and 
VDT classification. AUC, area under the curve; CI, confidence 
interval; ROC, receiver operating characteristic.

Figure 6 A nomogram was developed to estimate the likelihood of stage shift status based on the multivariable logistic regression using 
model 2, incorporating clinical characteristics, CT semantic features, and VDT classification. CT, computed tomography; VDT, volume 
doubling time; SSN, subsolid nodule.
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growth can be differentiated from indolent lesions using 
the VDT values. Recent studies also reported that VDT 
varies significantly according to the pathological subtype 
of lung adenocarcinoma (34,35). Park et al. identified 
the VDT of <400 d as an independent risk factor for 
predicting poor disease-free survival in patients with lung  
adenocarcinoma (34). This explanation is consistent 
with previous research, indicating that VDT has a greater 

impact on tumor growth and prognostic outcomes in 
lung adenocarcinomas. Our study provides additional 
information for developing a better nomogram to predict 
the long-term natural course of SSN growth regarding 
stage shifts based on VDT parameters. Furthermore, 
VDT showed additional value for predicting stage shifts 
in SSNs when added to model 1. Thus, we believe that 
this novel nomogram/prediction model could be used 
to guide management and follow-up strategies for SSNs 
during extended follow-up periods when two series of thin-
slice (≤2.5 mm) chest CT scans are available. Therefore, 
it is clinically important to detect SSNs with rapid growth 
patterns. In the future, personalized risk prediction models 
based on the clinical characteristics, the CT semantic 
features, VDT parameters, and radiomic features in high-
risk Asian populations are clinically warranted and need to 
be externally validated (36).

Furthermore, the VDT <400 d group showed a notable 
association with a high rate of stage shift in SSNs over 
approximately 3.6 years. SSNs generally require a median 
follow-up of 7.430 and 2.030 years to grow in terms 
of stage shift in the VDT (>400 d) and VDT (≤400 d) 
groups, respectively. Therefore, these findings suggest a 
heterogeneous growth behavior for SSNs. Additionally, 
it is theoretically inaccurate to predict future growth 

Figure 7 Kaplan-Meier curves for the status of stage shift in this 
cohort, based on the VDT (>400 d) and (≤400 d) groups. The 
survival curves differed significantly (by log-rank test, P<0.0001). 
VDT, volume doubling time.

Figure 8 The distribution of VDTs according to histologic subtypes of lung adenocarcinoma spectrum lesions. VDT, volume doubling time; 
AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IPA, invasive pulmonary 
adenocarcinoma.
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trends based only on the baseline characteristics of SSNs. 
Furthermore, it is critical to monitor the interval growth of 
SSNs with prognostic outcomes in terms of stage shift more 
accurately, guided by a series of CT scan-derived VDT 
parameters. Previous systematic reviews have demonstrated 
that CT attenuation may be useful in predicting the 
natural growth of SSNs by defining growth as an increase 
in diameter of ≥2 mm (37). Few studies have addressed 
using texture or CT semantic characteristics to evaluate 
volumetric changes in the SSNs (38-40). 

Therefore, this study is the first to demonstrate 
that a VDT of ≤400 d is a useful prognostic factor for 
stage shift prediction in the natural course of early lung 
adenocarcinomas.

As VDT is considered an important prognostic factor 
reflecting a stage shift, effective follow-up strategies 
according to the threshold of VDT are mandatory in 
personalized medicine. Considering these results, a 7-year 
follow-up period with annual or biennial intervals was 
necessary for the VDT group (>400 d). Prompt tissue 
proofing through surgical resection is indicated when 
SSNs exhibit obvious stage shifts. Regarding the VDT 
(≤400 d) group, most SSNs will eventually grow in terms 
of stage shift within 3 years. Based on these findings, it 
is recommended to conduct follow-up examinations for 
SSNs at 6-month intervals over a 3-year period. Therefore, 
this study is believed to have the greatest clinical value 
in demonstrating that using VDT to detect traced lung 
nodules can reduce false positives and overdiagnosis. The 
indications for watchful waiting with imaging or surgical 
management can be tailored based on risk stratification 
using VDT parameters (16,17,41). Treatment strategies 
should be individualized based on each patient’s clinical 
information, shared decision plans, and predicted 
probability (42-44).

Our study has a few limitations. First, this was a 
retrospective study designed at a single institution and 
included only surgical lung adenocarcinoma spectrum 
lesions. Second, the predictive model lacked validation 
data. Third, our study did not consider other potential 
factors that could influence tumor growth patterns and 
disease-free survival, such as molecular biomarkers. Future 
research incorporating these variables could provide a more 
comprehensive understanding of the prognostic factors 
in early lung adenocarcinoma. Hence, prospective studies 
are necessary to confirm the validity and reliability of our 
findings. A previous study demonstrated that a VDT of 
<400 d had a significant impact on disease-free survival in 

patients with lung cancer after complete resection (34). Our 
findings contribute additional value regarding tumor growth 
patterns, emphasizing the prognostic significance of stage 
shifts in early lung adenocarcinoma lesions. Fourth, a single 
radiologist conducted the measurements and ROI processes. 
However, this may have affected the consistency of the 
study and its external validation. In the future, the adoption 
of artificial intelligence for automated nodule analysis will 
optimize this process and reduce inconsistencies.

Conclusions 

In summary, this study investigated the diagnostic utility of 
integrating CT features with VDT parameters in predicting 
stage shift of lung adenocarcinoma lesions. Our developed 
combined model offers improved predictive capability for 
assessing the growth rate of pulmonary SSNs, aiding in 
clinical decision-making. 
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