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Abstract

Background: Source identification in areas with outbreaks of airborne pathogens is often time-consuming and expensive.
We developed a model to identify the most likely location of sources of airborne pathogens.

Methods: As a case study, we retrospectively analyzed three Q fever outbreaks in the Netherlands in 2009, each with
suspected exposure from a single large dairy goat farm. Model input consisted only of case residential addresses, day of first
clinical symptoms, and human population density data. We defined a spatial grid and fitted an exponentially declining
function to the incidence-distance data of each grid point. For any grid point with a fit significant at the 95% confidence
level, we calculated a measure of risk. For validation, we used results from abortion notifications, voluntary (2008) and
mandatory (2009) bulk tank milk sampling at large (i.e. .50 goats and/or sheep) dairy farms, and non-systematic vaginal
swab sampling at large and small dairy and non-dairy goat/sheep farms. In addition, we performed a two-source simulation
study.

Results: Hotspots – areas most likely to contain the actual source – were identified at early outbreak stages, based on the
earliest 2–10% of the case notifications. Distances between the hotspots and suspected goat farms varied from 300–
1500 m. In regional likelihood rankings including all large dairy farms, the suspected goat farms consistently ranked first.
The two-source simulation study showed that detection of sources is most clear if the distance between the sources is
either relatively small or relatively large.

Conclusions: Our model identifies the most likely location of sources in an airborne pathogen outbreak area, even at early
stages. It can help to reduce the number of potential sources to be investigated by microbial testing and to allow rapid
implementation of interventions to limit the number of human infections and to reduce the risk of source-to-source
transmission.
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Introduction

Several airborne infectious diseases, including Q fever, foot-

and-mouth disease, legionellosis, and avian influenza, have

outdoor sources and no (significant) human-to-human transmis-

sion. When an outbreak of such a disease occurs, it is a public

health priority to identify the location of the source(s) as soon as

possible in order to be able to implement control measures. Taking

(air) samples from putative sources or their nearby surroundings

can be helpful, but collecting and analysing these samples can be

time-consuming and expensive. Atmospheric dispersion models

(e.g., [1]) have been used for modeling of airborne transmission of,

among others, the foot-and-mouth disease virus (e.g., [2]),

Legionella bacteria (e.g., [3]), and Coxiella burnetii (Q fever) (e.g.,

[4]). However, they require a known source location, whereas in

outbreak control a reverse approach – to identify the source by

means of the notified cases – would be more helpful. Therefore, we

developed a model to detect the source of outbreaks of airborne

pathogens, using only data on human population density, case

residential addresses and day of onset of clinical symptoms.

As a case study, we used data from three large regional Q fever

outbreaks in the Netherlands that occurred in 2009 [5]. Q fever is

an airborne infectious disease [6], caused by the gram-negative

bacterium Coxiella burnetii, and human infection occurs mainly by

inhalation of contaminated aerosols [7]. During the Dutch Q fever

epidemic – from 2007 through 2010 – outbreaks were generally

associated with dairy goat farms and to a lesser extent with dairy

sheep farms [8]. The authorities needed much time to identify the

farms that were responsible for the human infections. Farms were

designated Q fever positive based on either (A) a Q fever-induced

abortion rate .5% [9], and/or (B) a non-systematic bulk tank milk
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(BTM) program performed in the autumn of 2008 [10], and/or

(C) a systematic BTM monitoring program mandatory from

September 2009 [8], and/or (D) positive vaginal goat or sheep

swabs [11,12].

From December 2009, all dairy goats were vaccinated and all

pregnant dairy goats on positive farms with .50 goats were culled

[13]. The number of cases subsequently dropped sharply in 2010.

If the authorities however had the ability to use a model as a first

indicator for farm infections, then costs (time/money), and the

number of human infections could have been lower [14].

Methods

Data
The current study was limited to the year 2009. We selected

three Q fever case cluster, each with a single positive large dairy

goat farm as the suspected source: the center of Utrecht province

(area A) [5], the southeast of Noord-Brabant province (area B)

[5,15], and the south of Limburg province (area C) [5,16].

Population density data was available at the six-digit zip code level

(PC6, i.e. street-level). Data of cases notified in 2009, including the

residential addresses at the PC6-level and dates of disease onset,

were available from the Municipal Health Services (MHS) of

Utrecht & Midden-Nederland (n = 120), Brabant-zuidoost

(n = 367), and Zuid-Limburg (n = 230). Dutch legislation allows

using this case information for research purposes if information is

not traceable to individual patients. In this case, consent of cases is

not required. The case information can however not be made

publicly available.

Information on all goat and sheep farms in the Netherlands was

made available by the Ministry of Economic Affairs, Agriculture

and Innovation (used for validation). It includes the exact location

of all goat/sheep farms and the number of goats/sheep per farm in

November 2009.

Q fever status was available for all dairy and some non-dairy

farms. In 2008, the Animal Health Service performed a non-

systematic BTM program at approximately 66% of the large dairy

goat farms (.50 goats) [10]. From September 2009, the Nether-

lands Food and Consumer Product Safety Authority implemented

a mandatory BTM monitoring program for all large dairy goat

farms [8]. Abortion rates of .5% [9], indicative for Q fever

[8,17], were reported by a number of farms and available from the

Animal Health Service. Finally, vaginal swabs were taken at a

selected number of large and small dairy and non-dairy goat and

sheep farms [8,18].

In each outbreak area (A, B and C) there was a single large dairy

goat farm being Q fever positive based on at least one of the above

criteria and therefore considered as the suspected source. The

suspected farm in area A (1295 goats) was positive in the 2008 and

2009 BTM program, and vaginal swabs from goats at this farm

were positive in July 2009. The farm in area B (791 goats) reported

an abortion wave in April 2008, was positive in the 2008 and 2009

bulk tank milk program, and had positive vaginal swabs in May

2009. The farm in area C (1135 goats) reported an abortion wave

in March 2009 and was positive in the 2008 and 2009 BTM

program (no vaginal swabs were taken here). Based on these

results, we assumed the suspected goat farms were infectious

during the complete study period. No other large goat/sheep

farms in the case cluster areas reported an abortion wave, nor was

positive according to the 2008 or 2009 BTM programs, nor had

positive vaginal swabs.

Model description
We defined the center of each outbreak area as the coordinates

of the center of gravity of a four-digit zip code (PC4, i.e. at

neighborhood-level) polygon with the highest incidence. The

incidences in areas A, B and C were equal to 270, 540 and 1280

cases per 100 000 persons respectively (the national incidence in

2009 was 14 per 100 000 persons). The center coordinates were

used as the center of a spatial grid (Figure 1). Each grid point

represents an area of 2506250 m and is located in the center of

this 2506250 m square.

Every individual grid point j represents the location of a putative

source. We collected information from every PC6 q (with q = 1 …

Qj) within Z = 5000 m [15,19] around each point j: the number of

inhabitants (nq,j) and cases (kq,j), and the distance (rq,j) from grid

point j to PC6 q. The total modeling area thus has a radius of

10 km (i.e. the radius of the spatial grid plus Z), in which the total

number of cases in 2009 was 106 (A), 278 (B) and 230 (C)

respectively.

We performed a sensitivity analysis on the case selection radius

Z (see supporting information in Text S1 and Figure S1),

suggesting that Z = 5000 m is an appropriate choice. In case of a

too low Z (#3000 m) the number of cases and inhabitants is too

low for reliable results; in case of a too high Z ($7500 m) a too

large area is depicted as a possible location of the putative sources.

We assumed that for each PC6 q within 5000 m of grid point j

the number of cases kq,j is a realization from a binomially

distributed random variable with parameters pq,j and nq,j, with pq,j

being the probability of becoming ill due to C. burnetii in PC6 q due

to a putative source in grid point j:

P(kq,j)~
nq, j

kq, j

 !
pq, j

kq, j :(1{pq, j)
nq, j{kq, j ð1Þ

According to spatial concentration theories (e.g., the Gaussian

plume equation), concentrations around spatial point sources

decrease exponentially as function of distance [20]. Also, since the

incidences in the total population are relatively small, we assume

the doses were relatively small and thus the relation between the

incidence and the dose is approximately linear [21]. Hence, the

risk of infection – being proportional to the concentration of a

pathogen – decreases exponentially by distance from a source.

Thus, we define the risk of becoming ill due to a putative source at

grid point j as:

pj
!(~rr)~w0,j

:exp({cj
:~rr) ð2Þ

for a baseline infectivity Q0,j [-] and decay parameter cj [m21].

Vector pj
! represents the probabilities of infection in all PC6’s;

vector~rr contains the distances from grid point j to all PC6’s. For

each grid point j we tested whether

H0 : cj~0 ð3aÞ

or

H1 : cjw0 ð3bÞ

that is, whether the incidence-distance relationship is either

constant (null hypothesis) or exponentially decreasing (alternative

hypothesis). The parameters Q0,j and cj are estimated by

maximizing the log-likelihood lj for grid cell j:

Identification of Sources of Airborne Pathogens
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lj(w0,cj)~
XQ

q~1
log P kq ,j

� �h i
ð4Þ

which results in values for Q0,j and cj. The parameters which

maximize the log-likelihood in equation (4) were computed using

R (version 2.15.1) [22] and the script is provided in the supporting

information (Text S2).

Subsequently, the deviance is calculated as a measure for the

difference between log-likelihood of the models of the null and

alternative hypotheses:

Dj~2: lj,H0
{lj,H1

h i
ð5Þ

Since the model of the alternative hypothesis is nested in the model

of the null hypothesis, Dj is x2-distributed with one degree of

freedom. Any grid point with Dj significant at the 95% confidence

level was classified as ‘‘exponential’’, and thus representing a

location for a putative source. All other grid points were classified

as ‘‘constant’’, and thus not representing a location for a putative

source.

To compare the exponential grid points, we defined a measure of

risk (MR), by integrating equation 2 from 0 to L = 2000 m [15]:

MRj(r)~w0j
:
ðL

0

exp {cj
:r

� �
dr ð6Þ

A sensitivity analysis of the upper integration limit (Text S3 and

Figure S2) suggested that L = 2000 m is an appropriate choice,

since it not only gives a reasonable contrast of the hotspot with its

surrounding, but also it is a regular distance from the suspected

farms to nearby villages. Furthermore, Schimmer et al. (2010) [15]

concluded that the risk for a human Q fever infection was highest

within 2000 m from an infected farm.

Subsequently, we normalized the values of vector MR
��!

to values

between 0 and 1, leading to a normalized measure of risk (nMR):

nMR
���!

~MR
��!

=max(MR
��!

) ð7Þ

and defined a hotspot as the collection of grid points in space with

nMR.0.9. This value is chosen as it results in hotspots with a

radius of 61 km. If a lower limit is used, the radius of the hotspots

increases to several kilometers.

The values of nMR
���!

are based on the total list of notified cases in

2009 in each area. In addition, a time-dependent analysis was

Figure 1. Overview of the data selection in outbreak area C. The PC4-polygons are indicated by the green lines. The center of the case
cluster is indicated by the green star. This star is also the center of the spatial grid with a resolution of 2506250 m (black squares). Around each of the
grid points (example indicated by the large red square) the distance r to all PC6’s (small blue dots) within Z = 5000 m is determined, as well as the
number of cases k and inhabitants n in these PC6’s.
doi:10.1371/journal.pone.0080412.g001
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elaborated to determine the earliest week where the location of the

final hotspots was identified. That is, we calculated the distance

between the coordinates of the grid point with nMR = 1 of the

temporal and the final hotspots and recorded the first week of

stabilization of this difference by visual inspection. Finally, we

defined temporal nMR-fractions as the sum of the elements of

nMR
���!

of a particular week (using the list of notified cases up to that

week) divided by the sum of the elements of the final nMR
���!

(using

the total list of notified cases in 2009).

Validation
For the validation analysis, all farms in the spatial grid were

regarded as putative sources. We primarily focused on large farms

(.50 animals), firstly because this was the standard for BTM-tests,

and secondly because larger farms are supposedly associated with

higher numbers of infections [8,23]. This analysis was repeated

including small (i.e. #50 animals) farms.

The likelihood of a putative source to be the actual source was

determined by retrieving the nMR-value of the closest grid point.

We then ranked the farms by their nMR-values and identified the

ranking of the suspected farms.

Multiple source simulation
A two-source simulation was performed to learn how the model

behaved in case of more than one source in an outbreak area. Two

artificial sources were added to a non-urban area in outbreak area

C (although any other location in the Netherlands could be used as

well). This allocation was semi-random, as we selected runs with a

varying distance between the two sources.

For every source location, we generated cases as realization of a

binomial distribution using the underlying population data at the

PC6-level. The probability of infection in PC6 q from sources s1

and s2 is equal to:

Mq(r)~1{ 1{ws1
(r)

h i
: 1{ws2

(r)
h i

ð8Þ

for which we applied w0s1
~w0s2

<3.1461022 and cs1
~

cs2
<7.1861024 m21, i.e. the mean baseline infectivity and the

mean decay rate of the suspected farms in areas A, B, and C (values

retrieved from the results section). Equation 8 gives us the probability

of being infected at distance r by either source 1, or source 2, or both.

With the spatial distribution of M
�!

as input, the model needs to

identify the location of the allocated sources. Approximately 250–300

binomial simulations were necessary for steady-state results of M
�!

,

monitored by the running average of the elements of M
�!

, but to be

on the safe side we performed 500 simulations per run. The size of the

spatial grid was 10610 km; its resolution was reduced to 5006500 m

due to computational speed limitations. Cases were drawn from an

area up to 5000 m outside the spatial grid.

Results

Area A
Non-temporal analysis. Figure 2 shows nMR

���!
spatially

represented by square grid cells. In area A, the hotspot is located

2200–3300 m northeast of the case cluster centre. Table 1 shows

the nMR-value of the closest grid point from the suspected farm,

being 0.56. Although the distance between the suspected farm and

the hotspot is nearly 1500 m, the suspected farm is ranked as the

most likely source out of 18. Taking into account small farms as

well, the suspected farm is ranked as 12 out of 86. Furthermore, of

the two non-dairy farms in the region, one is located near a grid

point with nMR = 0.29; the other is located near low ranking

exponential grid points and some constant grid points.
Temporal analysis. Figure 3 shows the cumulative number

of cases per week and the temporal nMR-fractions. The largest

increase in the temporal nMR-fractions occurs in week 22, when

the increase in cases is largest. The distance between the temporal

and final hotspots declines very sharply in time and stabilizes

below 1000 m in week 19 with 11 cases (10%) notified (not shown).

Area B
Non-temporal analysis. The hotspot is located 2500–

3500 m north of the case cluster centre at 900 m from the

suspected farm. This farm is located near a grid point with

nMR = 0.57 and is ranked as the most likely source out of four

large farms. Taking into account the small farms as well, it is

ranked as the third most likely source out of 56. One non-dairy

farm in the region is located near a grid point with nMR = 0.45;

the other is located near no high ranking exponential grid points

and some constant grid points.
Temporal analysis. The largest increase in the temporal

nMR-fraction occurs when the increase in cases is largest (i.e. week

16). The distance between the temporal and final hotspots

stabilises from week 14 with 23 cases notified (8%).

Area C
Non-temporal analysis. The hotspot is located 600–1600 m

south of the case cluster centre at 300 m from the suspected farm,

which is located near a grid point with nMR = 0.89. It is ranked as

the most likely source out of five large farms. Including also the

small farms, it remains the most likely source out of 97.

Furthermore, there is also a negative large dairy goat farm in

the area, but that farm is located near low ranking exponential

grid points and some constant grid points.
Temporal analysis. The increase of the temporal nMR-

fraction is largest when the increase in cases is largest (week 19).

The distance between the temporal and final hotspots stabilizes

from week 8, following the first five notified cases (2%).

Multiple source simulation
Figure 4 shows the distance between the sources and the

hotspots as function of the distance between the two sources. If

from visual inspection it was unclear which hotspot belonged to

which source, the distance to both hotspots was determined. If

only one hotspot appeared (grey labels at x-axis), then the distance

from both sources to that hotspot was determined.

In principle, a hotspot was defined as the area with nMR.0.9.

However, since we normalized MR
��!

, a second hotspot could be

characterized by nMR,0.9. Therefore, we traced local maxima

visually and depicted these with triangles in Figure 4.

The results in Figure 4 show that source detection is most clear

if the distance between the sources is either relatively small or

Figure 2. Maps of the normalized measures of risk (nMR) of the areas A, B, and C with a grid radius of 5000 m. Results are based on all
cases in 2009. Diamonds indicate suspected farms; positive non-dairy farms are indicated by a star. Hotspots are the areas with a nMR$0.9. For
completeness, wind plots of the weeks 15–25 (area A), 11–17 (B), and 11–23 (C) are added. These are the weeks when approximately 90% of the cases
was infected, corrected for an incubation period of 20.7 days for Q fever [31].
doi:10.1371/journal.pone.0080412.g002
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relatively large. That is, if the two sources are located close to each

other, they are in general detected as one common source. If, on

the other hand, they are located far from each other, they are in

general detected as two individual sources. For intermediate

distances, the confidence of detection is lower.

Discussion

General
We developed a model to identify the most likely source in an

airborne infectious disease outbreak area based on human cases.

From a public health perspective, it is desirable to identify the

actual source rapidly, not only to reduce source-to-human

transmission, but also to reduce the risk of source-to-source

transmission. As a case study, we retrospectively analyzed three Q

fever outbreaks in the Netherlands in 2009, with suspected

exposure from a single large dairy goat farm in each area.

Distances from the hotspots to the suspected farms varied from

300–1500 m. The suspected farms were calculated as the most

likely source out of 18 (area A), 4 (area B), and 5 (area C) large

farms.

Table 1. Status information and number of goats/sheep of all dairy and non-dairy farms within the spatial grids of the areas A, B,
and C that either reported abortions .5% [9] (‘‘AB’’), or that were tested either in the BTM programs in 2008 and 2009 [8,10]
(‘‘BTM08’’, and ‘‘BTM09’’), or in the non-systematical vaginal swab program [11,12] (‘‘VS’’).

Area Type # Goats # Sheep nMR-value Test Status

A Dairy farma 1295 - 0.56 BTM08, BTM09, VS Positive

Non-dairy farm 3 11 0.29 VS Positive

Non-dairy farm 5 14 - VS Positive

B Dairy farma 791 - 0.57 AB, VS, BTM08, BTM09 Positive

Non-dairy farm - 175 0.45 VS Positive

Non-dairy farm - 133 - VS Positive

C Dairy farma 1135 - 0.89 AB, BTM08, BTM09 Positive

Dairy farm 1325 - - BTM08, BTM09 All negative

Also, the nMR-value of the closest grid point is listed. Farms located near a constant grid point do not have a nMR-value.
aSuspected farms.
doi:10.1371/journal.pone.0080412.t001

Figure 3. Cumulative number of cases per week (solid lines) and the temporal nMR-fraction (‘‘tf-nMR’’) (i.e. the spatial cumulative
nMR-values per week as fraction of spatial cumulative nMR-values using all cases of 2009) (dashed lines) for the areas A (green), B
(red), and C (blue).
doi:10.1371/journal.pone.0080412.g003
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Regarding the time series results, the temporal nMR-fractions

show the largest increase during the week with the highest increase

of new notifications. The distance between the temporal and final

hotspots declines rapidly in time and stabilizes below 1000 m

when 10% (area A), 8% (area B), and 2% (area C) of the cases had

been notified.

The two-source simulations show that source detection is most

clear if the distance between the sources is either relatively small or

relatively large. That is, if the two sources are located close to each

other, they are in general detected as one common source. If they

are located far from each other, they are in general detected as two

individual sources. For intermediate distances, in general one of

the two sources is identified and the other is not, possibly caused

by ‘overlapping’ incidence curves resulting in a less clear source

detection.

Our model does not require input of wind speed and wind

direction data since it is a radially-symmetric model: it selects the

data uniformly in all directions within a chosen radius. In our

study, we used a radius of Z = 5000 m (see supporting information

in Text S1 and Figure S1), but it might differ according to specific

airborne pathogen (e.g., the Highly Pathogenic Avian Influenza

Virus [24]). Furthermore, it might be necessary to increase the

radius under certain environmental conditions, such as high wind

speeds from one prevailing direction. In our study however, the

wind direction was very variable during the weeks with most

notified cases in all three areas (see wind plots in Figure 2).

In addition, further information may improve the model, such

as land-use characteristics. In area B, for instance, a forest is

situated between the suspected farm and the calculated hotspot.

High vegetation densities promote the deposition of particles,

thereby reducing the probability that the actual source was

situated north of the forest.

Possible applications for the model do not only include

outbreaks of airborne pathogens from livestock and industries

(e.g., the foot-and-mouth disease virus and Legionalla bacteria),

but also deliberate pathogen releases, e.g., a release of Bacillus

anthracis (anthrax) as a biological weapon.

Animal factors (exposure)
Next to source-to-human transmission, there is also the risk of

source-to-source transmission [25], which in the Dutch outbreaks

may have contributed to the final large number of positive dairy

goat and sheep farms. However, from the reported abortions and

BTM-results in 2008 and 2009, we assumed there were no

additional large goat farms infected in the areas under consider-

ation.

The lists of farms with positive vaginal swabs [11,12] also

contained non-dairy farms. However, a difficulty is that these tests

were performed non-systematically, i.e. only a fraction of the non-

dairy farms were tested. Also, individual goat vaginal swab

sampling is not directly comparable to BTM sampling, due to

differences in sensitivity, subject representation (BTM samples

represent whole populations), and sampling period.

From our results, infection from non-dairy farms was in general

less likely to have played a role. In area A, one non-dairy farm is

located near a grid point with a low nMR-value, and the other one

Figure 4. Two source simulations with the distance from the two sources to their closest hotspot as function of the distance
between the two sources. The one source is indicated in red; the other in blue. The distance to all grid cells with nMR.0.9 is listed by small open
circles; the grid cell with the maximum nMR-value in the hotspot is indicated by a large closed circle. If a local maximum with nMR-values,0.9
appeared, then triangle symbols are used, taking into account all grid cells with nMR-values of 0.10 lower than the local maximum. If a source could
not be attributed to a single hotspot, then the distance to both hotspots was indicated (e.g., at x = 3.2 km). Results with just one hotspot are
indicated by the grey rectangles at the x-axis.
doi:10.1371/journal.pone.0080412.g004

Identification of Sources of Airborne Pathogens

PLOS ONE | www.plosone.org 7 December 2013 | Volume 8 | Issue 12 | e80412



is located near no high ranking exponential grid points and

constant grid points. The latter is also true for one of the non-dairy

farms in area B. The other non-dairy farm in area B might have

played a role, since it is located close to the high-risk zone.

Formal validation of the model in terms of sensitivity and

specificity is not possible, since in general only dairy farms with

.50 goats/sheep were tested and the majority of the farms in the

outbreak areas are small non-dairy farms. Nevertheless, by visual

inspection, and considering farm characteristics (number of

animals, positivity), we believe that the model is capable of

allocating regions where the actual source is most likely located.

Sampling all sources in an outbreak area is expensive and time-

consuming. However, initially testing the sources within or near a

hotspot as indicated by the model is much more feasible, and may

thus contribute to a possible early detection of the actual source.

Human factors (risk)
In the current study we used the residential addresses of notified

cases as a proxy for the location of exposure. The airborne

transmission route might have been either direct (i.e. bacteria

emitted from a source are directly transmitted to a person) or

indirect (i.e. emitted bacteria are first deposited in the environment

and transmitted at a later moment due to re-emission). In our

approach, basically both routes are incorporated since we only

take into account farm and case notifications. This has great

advantages, since the exact time and place of infection is unknown.

Although Dutch people spend about 70% of the day at home [26],

they could have been infected outdoor, for instance when cycling

to work or school, during recreation, or at work. Environmental

contamination of C. burnetii is possible [27,28], although it is also

said to be a minor contributor with respect to direct airborne

transmission [29].

Also, our model does not include information about risk factors

like socioeconomic status or smoking behavior. Dijkstra et al.

(2012) [5] concluded that men, smokers and people aged 40–60

years were at increased risk. We did not use data on the spatial

distribution of smokers, gender, and age.

The decrease in notified cases in 2010 compared to 2009 may

be an effect of reduced exposure (vaccination and culling) [13], but

also of an increased immunity in the general population [5]. This

might influence the effectiveness of the model in future Q fever

outbreaks in the Netherlands, as the number of susceptible people

might have decreased.

Our model is more robust than other epidemiological tools such

as circular ring attack rate analyses [30], as it does not make use of

coarse discretization methods. Therefore, it is less sensitive to

relatively low incidences. Also, we have applied formal statistical

criteria to determine the likelihood of a farm to be the actual

source, whereas these formal criteria are absent in concentric ring

analyses.

Finally, the method is usable for real-time monitoring systems

both to automatically detect outbreak areas and to use it as a first

detection tool before taking samples from putative sources and

their surrounding environments. This way not only time can be

gained, but also costs and the number of human and source-to-

source infections can be reduced.

Conclusions

Using the data from three Q fever outbreak areas in the

Netherlands in 2009, the suspected sources are identified as the

most likely source of infection with hotspots at 300–1500 m. The

areas of high risk (hotspots) are detected in the early stages of the

outbreaks. The method is applicable to other comparable airborne

pathogens, although for each pathogen a sensitivity analysis should

be performed on the spread distance (Z) and the integration

distance (L). Also, a possible pathogen inactivation rate should be

incorporated.

Our model is more robust than other epidemiological tools such

as circular ring attack rate analyses, as it does not make use of

coarse discretization methods. Therefore, it is less sensitive to low

case numbers. Furthermore, our method uses a case-to-source

approach and no wind data are used, whereas Gaussian dispersion

models are generally based on a source to case approach using

wind measurements. Also our method is usable for real-time

monitoring systems to both detect outbreak areas automatically

and to use as a first detection tool before taking samples from

putative sources and their surrounding environments. Thus time

can be gained, and costs and the number of human and source-to-

source infections can be reduced.
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