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Decision Support for Breast Cancer Detection:
Classification Improvement Through
Feature Selection
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Abstract
Several statistical-based approaches have been developed to support medical personnel in early breast cancer detection. This
article presents a method for feature selection aimed at classifying cases into categories based on patients’ breast tissue measures
and protein microarray. The effectiveness of this feature selection strategy was evaluated against the commonly used Wisconsin
Breast Cancer Database—WBCD (with several patients and fewer features) and a new protein microarray data set (with several
features and fewer patients). Features were ranked according to a feature importance index that combines parameters emerging
from the unsupervised method of principal component analysis and the supervised method of Bhattacharyya distance. Obser-
vations of a training set were iteratively categorized into malignant and benign cases through 3 classification techniques: k-Nearest
Neighbor, linear discriminant analysis, and probabilistic neural network. After each classification, the feature with the smallest
importance index was removed, and a new categorization was carried out until there was only one feature left. The subset yielding
maximum accuracy was used to classify observations in the testing set. Our method yielded average 99.17% accurate classifi-
cations in the testing set while retaining average 4.61 out of 9 features in the WBCD, which is comparable to the best results
reported by the literature on that data set, with the advantage of relying on simple and widely available multivariate techniques.
When applied to the microarray data, the method yielded average accuracy of 98.30% while retaining average 2.17% of the original
features. Our results can aid health-care professionals during early diagnosis of breast cancer.
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Introduction

Breast cancer (BC) is one of the most reported types of cancer

around the world and the third leading cause of death among

women, exceeded only by lung cancer and heart diseases.1 As

most types of cancers, BC genetic drivers are not yet com-

pletely defined, leading to a lack of effective medical diagnosis

strategies.2 Nevertheless, early diagnosis is the best way to

achieve higher survival rates among patients.3,4

Different systems to classify samples have been proposed,

aimed to aid technical personnel during the processing of data

gathered from BC laboratory examinations. Some of the first

classifier systems developed were proposed by Street et al5 and

Fogel et al.6 A classifier can be defined as an expert system

capable of reaching a conclusion by analyzing some type of
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data. In the case of BC, this system may analyze images or

laboratorial examinations and classify the given sample as

either malignant or benign. Several rationales may guide the

classification, although the majority are based on artificial

neural networks (eg, Marcano-Cedeño et al7) or fuzzy theory

(FT; eg, Abonyi and Szeifert8). Classifiers support analysts’

decisions leading to more accurate and uniform evaluations,

particularly when fatigue takes place.

Two main factors can be pointed out as crucial to determine the

efficiency of a classifier system: relevance and accuracy. First, the

data presented to the classifier should be relevant for the classifi-

cation problem being analyzed. In light of that, data should usu-

ally be preprocessed to enhance classification accuracy, using

techniques such as standardizing or scaling the input features

and/or eliminating the irrelevant or redundant information (ie,

feature selection [FS]). Second, the classification algorithm

should be able to produce reliable and accurate results assessed

by different performance indicators, such as sensitivity and spe-

cificity. In this study, both relevance and accuracy are discussed.

Several frameworks relying on techniques of different com-

plexity and performance have been proposed in recent years to

select the most relevant features of BC data. One of the bench-

marking data sets for FS in this field is the Wisconsin Breast

Cancer Dataset (WBCD; UCI Repository of Machine Learning

Databases). In such data set, 9 features were analyzed on

images from fine-needle breast tissue aspirates obtained from

699 individuals, for which a diagnosis was also provided.

For example, Marcano-Cedeño et al7 proposed a neural

network-based classifier that simulates the biological property

of metaplasticity on a multilayer perceptron algorithm with

backpropagation using 60% of the entries in the WBCD as

training set and running 100 experiments with varying network

parameters with 100 repetitions each. Metaplasticity was

defined as the induction of synaptic changes also depending

on prior synaptic activity. Their best classification accuracy

was 99.26%. In a similar study,9 they have achieved an accu-

racy of 99.63% in the same data set.

Onan10 proposed a classification model based on 3 phases,

integrating a fuzzy-rough approach to a reranking algorithm.

The classification procedure relies on a fuzzy-rough nearest

neighbor algorithm; the proposed method yielded 99.71%
accurate classifications. Kong et al11 proposed a new FS and

discriminant analysis (DA) for sparse subspace learning and

applied on the WBCD data set. The novel method, called

Jointly Sparse Discriminant Analysis, achieved a maximum

accuracy of 93.85% and also allowed the investigation of the

most relevant factors for BC identification.

Table 1 summarizes the accuracy performance of several

frameworks for WBCD classification. The classifiers presented

below may be categorized according to the theoretical founda-

tions on which they are based: statistics/support vector machine

(S/SVM), decision trees/linear programming, neural network

(NN), FT, FS, and DA.

In this study, we propose a method for FS and classification

of cases into benign or malignant categories by deriving a

feature importance index from the combination of principal

component analysis (PCA) parameters (ie, weights and var-

iance explained by each retained component) with the Bhatta-

charyya Distance (BD) method. Including the BD, which is a

supervised method, along with PCA (which is unsupervised),

information about classes of the training data is also included in

the analysis, enhancing the selection of the most relevant fea-

tures.22 The current study also investigates the potential inte-

gration of 2 additional classification tools in the framework

originally proposed in Fogliatto and Anzanello22: probabilistic

NN (PNN) and linear DA (LDA).

The index intended to merge the PCA ability to spot the

features responsible for explaining most of the data variability

with the BD skill to identify the features whose distributions

mostly differ in terms of inserting observations into classes.

The observations (ie, cases) of a training set were classified

into 2 classes (benign or malignant) using a series of classifi-

cation techniques: k-nearest neighbor (KNN), PNN, and LDA.

The sets of features leading to the maximum accuracy were

chosen and used to classify observations in the testing set.

Measures of sensitivity, specificity, positive, and negative pre-

dicted values were also used for comparison.

The effectiveness of this FS strategy was evaluated against

the commonly used WBCD and a new protein microarray data

set.23 The WBCD was used as a baseline for comparison to the

literature because of its known results of FS in machine learn-

ing methods. Another data set from a study of Syed et al23 was

included for further comparison regarding the use of protein

microarray analysis to evaluate the sera from patients with BC

(malignant and benign) and control patients. Microarray data

are usually comprised of hundreds or thousands of high corre-

lated features, leading to data sets where the number of features

Table 1. Classification Accuracies Obtained in the Wisconsin Breast
Cancer Database With Propositions From the Literature.

Source Method Accuracy (%)

Kong et al11 FS and DA 93.85
Quinlan12 DT/LP 94.74
Nauck and Kruse13 FS and NN 95.06
Lee et al14 FS 95.14
Abonyi and Szeifert8 FS 95.57
Verikas and Bacauskiene15 NN 96.44
Setiono16 NN 96.58
Setiono17 NN 96.70
Street et al5 DT/LP 97.30
Peña-Reyes and Sipper18 FS 97.80
Fogel et al6 NN 98.05
Abbass19 NN 98.10
Polat and Günes20 S/SVM 98.53
Albrecht et al21 DT/LP 98.80
Marcano-Cedeño et al7 NN 99.26
Akay2 S/SVM 99.51
Marcano-Cedeño et al9 NN 99.63
Onan10 FT 99.71

Abbreviations: DA, discriminant analysis; DT/LP, Decision Trees/Linear Pro-
gramming; FS, feature selection; FT, fuzzy theory; NN, neural network; S/SVM,
statistics/support vector machine.
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is extremely larger than the number of samples (contrary to the

WBCD in which the number of features is smaller than the

number of patients). In both data sets, however, the selection

of the most discriminant features plays an essential role and

provides clinical information about the potential biomarkers

that can aid in early cancer detection.

Materials and Methods

Databases

Our study did not require an ethical board approval because it

was based on publicly available information from 2 online

databases. The first was the WBCD, which is comprised of

699 samples (16 of which with missing values) obtained from

fine-needle aspirates of human breast tissues. The fine-needle

aspirates test allows investigating malignancy in breast masses

in a rather cost-effective, noninvasive manner.21 Nine features

were measured in each sample, and observed values were writ-

ten using an integer value scale of 10 points, in which 1 denotes

the closest to benign situation; the features are listed in Table 2.

A class label (benign or malignant) is associated with each

sample. Considering the 683 complete samples, there are 339

malignant and 444 benign cases. The data set is available

online (http://www.ics.uci.edu/*mlearn/MLRepository). Fea-

tures are assessed by physicians upon analysis of 10 features

related to the size, shape, and texture of cell nuclei (a complete

description of these features is available in Street et al5). Three

outcomes are automatically obtained for each feature: their

mean and largest values and their standard deviations. The 30

resulting outcomes support the decision on the 9 features in

Table 2. The evaluation process is highly subjective and depen-

dent on the physician’s skill and experience.

The second database was the protein microarray database,

which is comprised of 642 features regarding the levels of

protein expression analyzed by means of microarray chips23

and is available online at http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc¼GSE34555. Out of the total features, 284

clones were used in which 181 proteins were identified. The

study assessed 60 serum samples from patients and healthy

women: 24 were related to malignant tumors, 16 to benign

tumors, and 20 to healthy controls. The detailed experimental

procedures and data acquisition are covered in Syed et al.23 The

FS procedure and classification used led to a classification

accuracy of 93% using 50 features. They also reported 100%
sensitivity and 85% specificity.

Data Analysis Techniques

Two methods were used to generate a feature importance index

aimed at guiding feature removal: PCA and BD. The PCA is a

widely used method of dimension reduction. This technique com-

bines the original J features described in a matrix X into new

uncorrelated features called principal components24; each new

principal component explains as much as possible variance in the

original data. Rencher24 points out that the number of principal

components extracted from the original data can be defined by the

amount of explained variance. Two parameters derived from the

PCA are of typical interest: the weight associated with feature

j, wjr, which is determined in a way that the variance between the

components is maximized, and the percentage of variance

explained by each retained component r ðr ¼ 1; . . . ;RÞ, lr.
25

Bhattacharyya distance is a supervised technique that mea-

sures the similarity of 2 probability distributions,26 in which

each distribution refers to 1 of the 2 classes. The distance

between class b (ie, denoting a benign case) and m (ie, denoting

a malignant case) can be expressed by the sum of the similarity

of each feature j at a given time, Bj(b, m).27 Equation 1 shows

how these factors are related, considering variance s2 and

mean m of the statistical distributions of the jth feature for

classes b and m. According to Jung et al,28 the larger the BD

of a feature, the farther away the distributions that describe the

classes are. Aligned with the FS purpose of this study, features

giving rise to large Bj(b, m) are deemed relevant for correct

diagnosis (ie, correct case assignment).

Bjðb;mÞ ¼ 1
4
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Three classification techniques were selected to test our

hypotheses to improve discrimination of the FS methods:

KNN, (LDA, and PNN. k-Nearest Neighbor is a technique that

assigns a sample to the same class of the closest KNN. The

algorithm computes the (Euclidean) distance from the current

sample to the already trained observations and assigns it to the

most frequent class of the nearest k training observations. The

number of k neighbors can be defined via cross-validation on

the training set.29

Linear discriminant analysis is a method used to find linear

combinations of the original features to define new features

with similar characteristics, also named components. The goal

is to maximize the discriminability in each component by max-

imizing the Fisher ratio, which is equivalent to minimizing

intraclass variability and maximizing interclass variability at

the same time. The new observations are transformed accord-

ing the dimensions of the components of LDA.24 In other

words, each observed value is compared to a trained threshold

and then assigned to the correspondent class of events.

Finally, PNN is an adaptation of NNs for classification

developed by Specht.30 Neural networks consist of input units

that are linearly combined in the hidden layers, which are later

integrated to an activation function (eg, logistic). The result is

Table 2. Code and Description of Features in the Wisconsin Breast
Cancer Database.

Code Description Code Description

F1 Clump thickness F6 Bare nuclei
F2 Uniformity of cell size F7 Bland chromatin
F3 Uniformity of cell shape F8 Normal nucleoli
F4 Marginal adhesion F9 Mitosis
F5 Single epithelial cell size
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then summed to produce an output. In PNN, the activation

function is replaced by a statistically derived function asymp-

totically approaching the Bayes optimal decision surface.31

Additional classification performance measures were evalu-

ated for the testing set: sensitivity, specificity, positive predictive

value, and negative predictive value. Sensitivity (Equation 2) is

the probability of a sample to be classified as positive when it is

truly malignant, and specificity (Equation 3) is the probability of

a truly benign sample to be classified as negative. Positive and

negative predictive values (Equations 4 and 5, respectively) rep-

resent a true positive and a true negative result, that is, the correct

classification of the malignant and the benign cases.

Sensitivity ¼ TP
TP þ FN

: ð2Þ

Specificity ¼ TN

TN þ FP
: ð3Þ

Positive predictive value ¼ TP

TP þ FP
: ð4Þ

Negative predictive value ¼ FN

FN þ TN
: ð5Þ

Procedure for Data Analysis

The method to select features that best classify the data sets

observations into 2 classes relies on 4 operational steps: (1)

split original data set into training and testing sets and apply

both PCA and BD to the training set; (2) generate attribute

importance indices based on parameters emerging from PCA

and BD; (3) classify the data set using each of the tested clas-

sification techniques and compute the classification accuracy

and eliminate the feature with the lowest importance index,

classify the data set again, and recompute the accuracy and

continue the iterative process until 1 feature is left; and (4)

choose the subset of features yielding the maximum classifica-

tion accuracy and classify the testing set based on those fea-

tures. These operational steps are detailed as follows.

In step (1), the data set was separated into training and

testing sets. The training set was used to select key features,

and the testing set was used to represent the new observations

to be classified based on the selected features. Different pro-

portions of training and testing sets were tested (see step 4).

Three proportions of training to testing sets were used: 0.60 (ie,

60% of observations were kept in the training set and 40% in

the testing set), 0.75, and 0.90. For each proportion, 1000 repli-

cates were run on different training and testing sets obtained by

randomly shuffling observations in the data sets. (Averaging

performance metrics tend to give rise to more reliable measure-

ment of the method’s performance than a sole estimation

obtained from a single partition of the data set into training and

testing sets, which might lead to unreliable results.)

We then applied both PCA and BD methods to the training

sets. The PCA’s outputs of interest included the component

weights ðwjrÞ and the percentage of variance lr explained by

each retained component r ðr ¼ 1; . . . ;RÞ. The BD’s method

was applied to a matrix comprised of the features of the original

data sets and the class each sample belonged to. The method

devised a parameter Bj(b, m) proportional to the distance (or

overlap) between the distributions for feature j in each class.

The parameter was used to identify features whose distribu-

tions contributed the most in the categorization procedure.

In step 2, a feature importance index was generated to guide

the removal of irrelevant features. Feature j’s index was

denoted by vj, j ¼ 1; . . . ; J , and was generated based on PCA

weights wjr (percentage of variance lr explained by each

retained component) and on the BD output Bj(b, m), as detailed

in Equation 6. Features with large wjr, lr, and Bj(b, m) were

preferred, since they represent high variability that enable bet-

ter discrimination of observations into classes.19 That is, the

higher the vj, the more important feature j was in categorizing

observations into classes.

vj ¼ Bjðb;mÞ �
XR
r¼1
jwjrjlr; j ¼ 1; . . . ; J : ð6Þ

In step 3, training observations were classified into 2 classes

considering all J features using each of the 3 testing methods

for categorization (KNN, LDA, and PNN). The feature with the

smallest vj was identified and removed, and a new classifica-

tion was done using the J � 1 remaining features. The classi-

fication accuracy was computed again, and this procedure was

repeated removing the next attribute with the smallest vj until a

single feature was left.

In step 4, the subset of features yielding the maximum accu-

racy was selected. In case there was more than one subset with

identical accuracy values, the one with the smallest number of

retained features was selected for parsimony. Next, the testing

set was classified using the selected features and resulting

accuracy was computed. We also computed sensitivity, speci-

ficity, positive-predictive value, and negative-predictive value

for validation of the models.

In order to evaluate the consistency of the proposed method,

steps 1 to 4 were conducted on different proportions of training and

testing sets to assess the method’s performance on small and large

training data sets. The different data sets were generated by ran-

dom shuffling and splitting of the data set being analyzed, certify-

ing that all observations appeared at least once in the training set.

The average classification criteria and number of retained features

for each proportion was computed for final analysis, in which the

subset of features yielding the best performance was identified. A

value close to 1 in sensitivity, specificity, positive-predictive

value, and negative-predictive value is preferred, since these

metrics are related to classification performance. A smaller value

is preferable when evaluating the number of retained features.

Results and Discussion

The WBCD

Table 3 depicts the average classification performance in the

testing set and number of retained features for different classi-

fication techniques and data set partitions. The highest average

4 Cancer Control



accuracy (99.17%) was yielded by the PNN technique when

applied to a proportion training to testing of 90% to 10%. This

accuracy level was obtained when 4.61 features (out of the 9

original ones) were retained on average. This technique ranks

among the best frameworks intended to classify WBCD

observations, mostly due to the feature importance index

based on PCA and BD parameters. Although our method does

not outperform the benchmarking accuracy (99.71%10), the

fact that it relies on straightforward and widely available

multivariate techniques favors its use by researchers and

practitioners.

When assessing the average performance of the tested tech-

niques (regardless of data set partitions), PNN yielded average

98.20% of correct classifications, followed by KNN (97.46%)

and LDA (96.64%). Probabilistic NN was also the best choice

in terms of average sensitivity, specificity, and negative-

predictive value results. In other words, taking all observations

into account for the classification procedure (as proposed in the

PNN fundamentals) led to better results than using a limited

number of nearest observations (ie, KNN) or finding a linear

combination of features (ie, LDA). Regarding the average

number of retained features, there were no substantial differ-

ences on the performance of the tested techniques: Results

ranged from 4.44 to 4.68 features when the 90% to 10% parti-

tion was considered.

As for the effect of different data set partitions upon the

assessed metrics, results suggested that larger training sets pro-

vided the model with additional information to build a classi-

fier aimed to rank features’ importance in a more consistent

way. Table 3 also presents the average standard deviation for

different data set partitions and classification techniques. Prob-

abilistic NN presents smaller deviations in most of the assessed

metrics, suggesting that the technique is less impacted by dif-

ferent partitions of training and testing sets as replications were

carried out. In light of the aforementioned results, PNN appears

to be the best classification technique, with superior perfor-

mance, intuitive fundamentals, and large availability in statis-

tical packages.

Table 4 depicts the performance criteria when the 9 original

features are used for classification. Overall, average accuracy

using the selected subsets increased 0.3% when compared to

categorization on all the original features. Although that incre-

ment in accuracy is not substantial, we emphasize that slight

improvements are expected when classification performance is

around 100%. In addition, the fact that almost 5 of the 9 orig-

inal features for proportion 90%/10% are not relevant for clas-

sification significantly reduces the number of features to be

measured on each patient, yielding simpler and cheaper data

collection. That corroborates the FS procedure from a practical

perspective.

Protein Microarray Database

In this data set, the 60 samples were divided based on breast-

nodule positive and control.23 The breast-nodule positive class

contained 40 samples of malignant and benign tumors, and the

control contains the 20 healthy samples. Table 5 presents the

average classification performance and the average number of

retained features for the protein microarray database. Different

from the previous data set, KNN led to the highest average

Table 3. Average Performance and Standard Deviation of Proposed Method for Different Data Set Partitions and Classification Techniques in
the Wisconsin Breast Cancer Database.

Data Set Partitions (% Training–% Testing) Average Performance Criteria on Testing Set

Classification Technique

KNN LDA PNN

Mean SD Mean SD Mean SD

60%–40% Accuracy 0.9717 0.0089 0.9649 0.0101 0.9742 0.0080
Sensitivity 0.9637 0.0221 0.9328 0.0247 0.9768 0.0151
Specificity 0.9766 0.0096 0.9830 0.0075 0.9731 0.0104
Positive predictive value 0.9565 0.0186 0.9674 0.0148 0.9507 0.0200
Negative predictive value 0.9798 0.0133 0.9634 0.0152 0.9872 0.0088
Retained features 6.1050 1.8167 6.3250 1.7506 6.4450 1.7413

75%–25% Accuracy 0.9745 0.0118 0.9663 0.0142 0.9802 0.0097
Sensitivity 0.9713 0.0256 0.9388 0.0335 0.9838 0.0197
Specificity 0.9769 0.0114 0.9820 0.0113 0.9789 0.0123
Positive predictive value 0.9575 0.0219 0.9652 0.0224 0.9563 0.0235
Negative predictive value 0.9836 0.0156 0.9666 0.0204 0.9929 0.0121
Retained features 5.5650 1.9089 5.9400 1.8394 5.9750 1.8740

90%–10% Accuracy 0.9777 0.0178 0.9680 0.0208 0.9917 0.0168
Sensitivity 0.9808 0.0289 0.9402 0.0490 0.9921 0.0268
Specificity 0.9777 0.0214 0.9848 0.0155 0.9924 0.0192
Positive predictive value 0.9578 0.0421 0.9688 0.0325 0.9770 0.0362
Negative predictive value 0.9877 0.0204 0.9665 0.0314 0.9990 0.0177
Retained features 4.4450 1.8667 4.6800 2.1028 4.6100 1.9431

Abbreviations: KNN, k-Nearest Neighbor; LDA, linear discriminant analysis; PNN, Probabilistic Neural Network; SD, standard deviation.
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accuracy when 90% of the data set was used in the training

portion. The model achieved an average accuracy of 98.30%
while retaining an average of 13.96 of 642 features. Syed et al23

reported an accuracy of 93% retaining 50 features from the

original data set. In that sense, our propositions outperformed

the results originally obtained by such authors.

The average performance of the 3 classification tools was

91.59% for KNN, closely followed by PNN, with average

Table 4. Average Performance and Standard Deviation for Different Data Set Partitions and Classification Techniques in the Wisconsin Breast
Cancer Database Consisting of the 9 Original Features.

Data Set Partitions (% Training–% Testing) Average Performance Criteria on Testing Set

Classification Technique

KNN LDA PNN

Mean SD Mean SD Mean SD

60%–40% Accuracy 0.9654 0.0073 0.9650 0.0089 0.9748 0.0074
Sensitivity 0.9542 0.0196 0.9351 0.0199 0.9780 0.0132
Specificity 0.9714 0.0103 0.9810 0.0078 0.9730 0.0091
Positive predictive value 0.9476 0.0176 0.9637 0.0145 0.9514 0.0156
Negative predictive value 0.9755 0.0102 0.9658 0.0102 0.9881 0.0071
Retained features 9 0 9 0 9 0

75%–25% Accuracy 0.9686 0.0104 0.9663 0.0118 0.9763 0.0102
Sensitivity 0.9607 0.0218 0.9364 0.0253 0.9810 0.0171
Specificity 0.9728 0.0134 0.9822 0.0109 0.9737 0.0125
Positive predictive value 0.9501 0.0234 0.9658 0.0204 0.9525 0.0217
Negative predictive value 0.9792 0.0113 0.9669 0.0128 0.9898 0.0091
Retained features 9 0 9 0 9 0

90%–10% Accuracy 0.9753 0.0168 0.9706 0.0196 0.9798 0.0165
Sensitivity 0.9750 0.0312 0.9436 0.0456 0.9841 0.0260
Specificity 0.9755 0.0213 0.9847 0.0170 0.9776 0.0201
Positive predictive value 0.9557 0.0372 0.9708 0.0317 0.9594 0.0352
Negative predictive value 0.9871 0.0159 0.9714 0.0226 0.9917 0.0135
Retained features 9 0 9 0 9 0

Abbreviations: KNN, k-Nearest Neighbor; LDA, linear discriminant analysis; PNN, Probabilistic Neural Network; SD, standard deviation.

Table 5. Average Performance and Standard Deviation of Proposed Method for Different Data Set Partitions and Classification Techniques in
the Protein Microarray Database.

Data Set Partitions (% Training–%
Testing) Average Performance Criteria on Testing Set

Classification Technique

KNN LDA PNN

Mean SD Mean SD Mean SD

60%–40% Accuracy 0.8610 0.0034 0.8330 0.0047 0.8707 0.0036
Sensitivity 0.9210 0.0039 0.8808 0.0047 0.9323 0.0038
Specificity 0.7410 0.0087 0.7375 0.0082 0.7475 0.0091
Positive predictive value 0.8807 0.0035 0.8722 0.0038 0.8849 0.0037
Negative predictive value 0.8392 0.0070 0.7656 0.0082 0.8606 0.0070
Retained features 83.1591 6.4487 90.0245 10.0433 89.7315 8.4195

75%–25% Accuracy 0.9037 0.0043 0.8629 0.0057 0.9027 0.0045
Sensitivity 0.9540 0.0037 0.9128 0.0053 0.9732 0.0032
Specificity 0.8032 0.0109 0.7632 0.0109 0.7616 0.0117
Positive predictive value 0.9122 0.0045 0.8893 0.0049 0.8966 0.0047
Negative predictive value 0.9100 0.0072 0.8282 0.0101 0.9431 0.0068
Retained features 57.3426 5.3238 61.7002 8.2735 49.3899 5.7071

90%–10% Accuracy 0.9830 0.0040 0.9580 0.0070 0.9730 0.0051
Sensitivity 0.9867 0.0041 0.9587 0.0075 0.9907 0.0035
Specificity 0.9720 0.0105 0.9560 0.0130 0.9200 0.0172
Positive predictive value 0.9930 0.0026 0.9873 0.0038 0.9797 0.0044
Negative predictive value 0.9520 0.0120 0.9067 0.0156 0.9080 0.0176
Retained features 13.9635 2.2408 12.8601 2.3936 14.5373 3.3225

Abbreviations: KNN, k-Nearest Neighbor; LDA, linear discriminant analysis; PNN, Probabilistic Neural Network; SD, standard deviation.
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accuracy of 91.54%. The LDA presented the worst perfor-

mance in all assessed partitions, yielding average accuracy of

88.46%. Although KNN performed better regarding accuracy,

PNN presented higher sensitivity (96.54% compared to 95.39%
of KNN). As for the average number of retained features, both

PNN and KNN performed similarly, with KNN retaining aver-

age 0.2688 more features. For this metric, LDA was outper-

formed by the other classification techniques: It retained

average 54.86 features, while KNN retained 51.48. The only

scenario in which LDA outperformed the other techniques was

in the 90% to 10% data partition condition, retaining 12.86

features on average.

Table 5 also presents the variability in the results, measured

as the standard deviation of the average performance criteria.

k-Nearest Neighbor presented the best result for most perfor-

mance metrics, only outperformed by PNN in sensitivity. It is

noteworthy that the standard deviation of the average retained

features decreased as the training proportion increased. Con-

sidering these facts, we recommend using the KNN algorithm

with as much data to train the model as possible. Results

achieved by the recommended method outperformed the ones

currently available in the literature for this data set, leading to a

more accurate and parsimonious model.

Conclusions

Early identification of BC increases the chance of remission

given that there is no effective way to prevent the disease. In

light of that, correctly classifying patients based on different

data (eg, tissues biopsy or gene expression) can aid health-care

professionals during the diagnosis process. Thus, multivariate

frameworks aimed at reducing data set dimension and enhan-

cing classification performance are highly desirable.

We proposed a framework that selects the most relevant fea-

tures for categorizing patients into malignant or benign cases.

For that matter, we first ranked features using a new feature

importance index based on PCA and BD parameters; the com-

bination of parameters derived from such methods was used to

highlight features with higher variance and discriminant power.

Next, our method iteratively classified patient records into

proper classes through 3 classification techniques (KNN, LDA,

and PNN): The less important feature indicated by the index was

removed and classification was performed on the remaining

features until a single feature was left. This method correctly

classified average 99.17% instances of the WBCD using average

4.61 of the 9 original features. For the protein microarray data-

base, the method yielded an average accuracy of 98.30% retain-

ing an average of 16.96 of 642 features of the initial data set.

Alternative performance metrics, such as sensitivity and speci-

ficity, also increased by means of the FS. The obtained perfor-

mance may be paired with that of more complex classifications

schemes available in the literature.

Further developments include the testing of more robust

multivariate techniques to identify the most relevant features,

and its integration to alternative data mining tools for classifi-

cation. The transformation of original data using Kernel

techniques aimed at improving classification performance of

data mining tools is also intended. All scripts used in this manu-

script are available as Supplemental Material.
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