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Abstract

Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, 

but it is unknown whether such loci are generalizable to the general population. In a genome-wide 

search for loci associated with upper vs. lower 5th percentiles of body mass index, height and 

waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, 

we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in 

the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for 

clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure 

and distribution of variants between traits based on extremes and the general population and little 

etiologic heterogeneity between obesity subgroups.

Twin studies have established a strong heritable component to body mass index (BMI; 

h2~40-70%),1,2 and height (h2~70-90%).3 Previous meta-analyses of genome-wide 

association studies (GWAS) have identified 36 genetic loci associated with BMI,4-6 14 loci 

with waist-hip ratio adjusted for BMI (WHR) reflecting fat distribution,7,8 and 180 loci with 

height9, and contributed to our understanding of the genetic architecture of complex traits. 

However, established loci for complex traits only account for a small proportion of trait 

heritability, as discussed recently.10,11 Some postulated explanations for this include 

undiscovered low frequency variants with larger effects, imperfect tagging of causal 

variants, epistasis, gene-environment interaction, and phenotype heterogeneity. This has led 

to increasing interest in approaches exploiting extremes of the trait distribution, where there 

may be less locus heterogeneity, greater genetic contribution, and enrichment for highly 

penetrant variants. Utilization of extremes has also been proposed to improve cost-

efficiency, since effect sizes may be larger, fewer subjects may be needed for genotyping, 

and a smaller proportion of the variance may be attributable to environmental factors. 
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Indeed, several prior studies have used extreme designs to discovery novel loci for various 

complex traits, such as obesity and lipid fractions using microarray genotyping12-16 or 

sequencing methods.17-20 However, the few previous studies that have systematically 

addressed differences between genetic architecture of the overall distribution with extremes 

for complex traits have been small,21-23 and hence, it remains largely unknown whether 

genetic loci affecting the extremes are generalizable to the general population.

Studies of extremely obese individuals have reported thirteen loci at or near genome-wide 

significance (P<5×10-7),14-16,22-26 but not all have shown evidence of association with BMI 

in the general population.4,27 For example, variants in PCSK1 (rs6232) and PTER have been 

convincingly associated with severe obesity,14,25 but have at best shown nominal evidence 

of association with BMI in large-scale meta-analyses.4,28 Although it is possible that other 

genetic or environmental factors modify the manifestation of these variants producing an 

extreme phenotype only in selected individuals, it is also conceivable that the extremes are, 

at least in part, etiologically distinct. Within the extremes of the distribution, there may be 

etiologically discrete subgroups or enrichment for less common causal variants.19 Although 

analyzing the full distribution is generally more powerful, in cases where there is 

heterogeneity, analyzing extremes by case-control design may offer superior power.29

The extremes for anthropometric traits, particularly BMI, have been defined in numerous 

ways, including using tails of the full population distribution (e.g. >95th or >97th percentile) 

and absolute cutpoints (e.g. ≥40 kg/m2) based on clinical or standard references, and some 

studies have used a combination of definitions for their discovery and replication. The 

common denominator for studies addressing ’extremes’ (herein used as a more generic term) 

is that they have dichotomized the trait distribution and analyzed data using a case-control 

design. Studies suggest that the percentile cutpoint choice and ascertainment strategy 

utilized may impact the observed risk and subsequent power;30,31 however, the 

consequences of these extreme definitions on discovery and characterization of loci for 

complex traits have not been systematically evaluated. In the present study, we have used 

the term ‘tails’ to describe analyses comparing the upper and lower 5th percentiles of the 

trait distributions; ‘clinical classes of obesity’ to describe analyses where controls were 

subjects with BMI <25 kg/m2 and cases were defined as BMI ≥25 kg/m2 for overweight, 

BMI ≥30 kg/m2 for obesity class I, BMI ≥35 kg/m2 for obesity class II, and BMI ≥40kg/m2 

for obesity class III32; and ‘extremely obese’ to describe studies using different sampling 

designs for selecting their extremely obese cases and controls.

The overall aim of the present study was to use and compare different distribution cutoffs 

for identification of genetic loci of anthropometric traits. The two specific aims were: 1) to 

systematically compare findings using these cutoffs with those from the full population 

distribution, as well as with studies utilizing a different ascertainment strategy; and 2) to 

draw inferences about the value of these different approaches for sampling within a 

population-based study. Our focus was primarily on BMI, which is a major risk factor for 

multiple chronic diseases and of important public health significance,33 but we also 

examined height and waist-hip ratio adjusted for BMI (WHR; as a measure of body fat 

distribution) to verify if our findings could be generalized to other traits. To address these 

aims, we performed a genome-wide search for genetic determinants of the tails (defined as 
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the upper vs. lower 5th percentile of the trait distribution) of BMI, height and WHR and for 

comparison, clinical classes of obesity drawn from populations within the GIANT (Genetic 

Investigation of ANthropometric Traits) consortium. Association analyses were conducted 

in a study base (or sampling frame) of up to 168,267 individuals with follow-up of the 273 

most significantly associated loci in a study base of up to 109,703 additional individuals. 

Further, systematic comparisons were conducted to assess differences in genetic inheritance 

and distribution of risk variants between the extremes and general population for these 

anthropometric traits.

Results

To first evaluate the contribution of common SNPs to the tails and clinical classes of obesity 

and discover new loci, we conducted meta-analyses of GWAS of six obesity-related traits 

(tails of BMI and WHR, overweight, obesity class I, II and III), as well as tails of height, 

utilizing results for ~2.8 million genotyped or imputed SNPs. Stage 1 analyses included 51 

studies with study bases of 158,864 (BMI), 168,267 (height) and 100,605 (WHR) 

individuals of European ancestry (see Supplementary Table 1 for number of cases and 

controls per phenotype; Supplementary 2-5 for study characteristics). We observed an 

enrichment of SNPs with small P-values compared to the null distribution for all seven traits 

(Q-Q plots, Supplementary Fig. 1-2). The excess was diminished after exclusion of loci 

previously established for the overall distributions or extremes of these traits, but some 

enrichment remained, especially for tails of height and to a lesser extent for overweight, 

obesity class I and II. In total, 69 loci (defined as separated by at least 1 Mb) were associated 

at P<5×10-8 with at least one trait (Supplementary Fig. 3-4).

To identify and validate loci for these traits, SNPs for which associations reached P<5×10-6 

in the stage 1 analyses were taken forward for follow-up (stage 2) in 12 studies with in silico 

GWAS data and 24 studies with Metabochip data with study bases of 109,703 (BMI), 

107,740 (height) and 75,220 (WHR) (Supplementary Tables 1-5).

BMI-Related Traits

Seventeen SNPs were taken forward to stage 2 in up to 4,900 and 4,891 individuals from the 

upper and lower tails of BMI, respectively. Ten SNPs reached genome-wide significance 

(P<5×10-8) in the joint meta-analysis of stage 1 and stage 2, but all had been previously 

identified as loci associated with BMI in the general population.4 A total of 118 SNPs were 

included in stage 2 for clinical classes of obesity, which included up to 1,162 cases and 

22,307 controls for obesity class III, and 65,332 cases and 39,294 controls for overweight. 

Of the 62 SNPs that showed P<5×10-8 in the joint meta-analyses for at least one obesity 

class (Supplementary Table 6), seven were novel, explaining an additional 0.09% of the 

variability in BMI (Supplementary Table 7). These included one locus for overweight 

(RPTOR), three loci for obesity class I (GNAT2, MRPS33P4, ADCY9), two loci for obesity 

class II (HS6ST3, ZZZ3), and one locus associated with both overweight and obesity class I 

(HNF4G) (Table 1, Supplementary Fig. 5-7). Although these loci were identified for specific 

clinical classes of obesity, all novel loci showed consistent effect direction across the tails of 

BMI and the other class of obesity, and most P-values were significant (P<0.007, 
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Bonferroni-corrected for 7 SNPs), except for obesity class III and the tails of BMI 

(presumably due to lower statistical power for these traits; Table 2).

Among the novel obesity loci, at least four are located near genes of high biological 

relevance. In particular, rs7503807 for overweight, is located within the regulatory 

associated protein of the MTOR, complex 1 gene (RPTOR), which regulates cell growth in 

response to nutrient and insulin levels,34 and within 500 kb of the BAI1-associated protein 2 

(BAIAP2), which encodes a brain-specific angiogenesis inhibitor (BAI1)-binding protein 

that regulates insulin uptake in the central nervous system. The overweight and obesity class 

I SNP rs4735692 is located downstream of the hepatocyte nuclear factor 4-gamma gene 

(HNF4G). Mutations in HNF4A, a closely related gene that forms a heterodimer with 

HNF4G to activate gene transcription,35 cause maturity onset diabetes of the young type 1,36 

and a common variant near HNF4A was found to be associated with type 2 diabetes (T2D) 

in east Asians.37 The obesity class I SNP rs2531995 is located within adenylate cyclase 9 

(ADCY9), which catalyzes the formation of cyclic AMP from ATP. This SNP was found to 

be associated with ADCY9 expression in several tissue types (Supplementary Table 8). Loci 

near other adenylate cyclase genes have been associated with several T2D-related traits, 

such as glucose homeostasis and susceptibility to T2D (ADCY5).38,39 The obesity class II 

SNP rs17024258 is located 207kb from the lipid-related gene sortilin (SORT1), which is 

expressed in multiple cell types and has been reported to be involved in insulin 

responsiveness in adipose cells.40 Decreased levels of sortilin have been observed in adipose 

tissues of morbidly obese humans and mice, and in skeletal muscle of obese mice.41 A more 

comprehensive summary of the biological relevance of the genes nearest to all novel loci is 

given in the Supplementary Note.

Tails of Height

A total of 134 SNPs from stage 1 were taken forward to stage 2 in up to 4,872 and 4,831 

individuals from the upper and lower tails of height, respectively. Of the 95 SNPs that 

reached P<5×10-8 in the joint meta-analysis of stage 1 and stage 2 (Supplementary Table 6), 

four novel loci (IGFBP4, H6PD, RSRC1, PPP2R2A) were identified for tails of height 

(Table 1, Supplementary Fig. 8). The contribution of the four loci to the overall height 

variability was ≤0.02% (Supplementary Table 7).

Two of the novel loci are located near genes that seem particularly relevant to height. 

rs584438 is located approximately 500 bp upstream of IGFBP4, which codes for insulin-like 

growth factor binding protein 4, and is in linkage disequilibrium (r2=0.87) with another SNP 

(rs598892) that results in a synonymous amino acid change in IGFBP4. IGFBP4 binds to 

IGF1 and IGF2,42 which have an important role in childhood growth. In blood, this same 

SNP showed a significant association with the expression of TNS4 (Supplementary Table 8), 

which interacts with beta-catenin,43 a critical component of the canonical Wnt pathway 

related to bone formation.44 The height SNP rs2362965 lies 285 kb from SHOX2, a homolog 

to the X-linked, pseudoautosomal SHOX (short stature homeobox) gene family, which plays 

a major role in skeletal limb development.
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Tails of Waist-Hip Ratio

Ten SNPs were taken forward to stage 2 in 3,351 and 3,352 individuals from the upper and 

lower tails of WHR, respectively. The four SNPs that reached genome-wide significance 

(P<5×10-8; Supplementary Table 6) have been previously identified as WHR loci in the 

general population.7

Comparisons of novel and known loci on the tails, obesity classes, and full distribution

We assessed the impact of our novel loci on the full distribution of these anthropometric 

traits using data from studies included in stage 1 and stage 2. In the full distribution, 

evidence of association (P<0.005, Bonferroni-corrected for 11 SNPs) with consistent effect 

direction was observed with BMI for all novel obesity-related trait loci and with height for 

all novel loci identified for tails of height (Table 2). None of the loci were associated with 

WHR, suggesting that these obesity loci are primarily associated with overall adiposity, 

rather than with fat distribution.

Within GIANT, we previously identified 32 loci associated with BMI.4 There is 

considerable overlap of samples with the current study, so it is not unexpected that we 

observed that the effects of all established BMI loci were directionally consistent between 

the prior study of overall BMI and the obesity-related traits in the present study 

(Supplementary Table 9). Twenty-seven out of 32 SNPs were significantly associated with 

the tails of BMI (P<0.0016, Bonferroni-corrected). Although only half of the SNPs were 

significantly associated with obesity class 3, presumably due to the smaller sample size and 

reduced power, the majority of SNPs were significantly associated with obesity class 2 and 

all with obesity class 1 and overweight.

Impact of ascertainment strategy on discovered and known loci

Effect of our novel loci in other studies of extremely obese—Both empirical16 

and theoretical work29 has shown that genetic architecture may differ, the more extreme the 

selection, suggesting that the ascertainment strategy may impact observed results.31 To 

evaluate impact of ascertainment strategy, we also performed in silico look-ups of all SNPs 

we found to be associated with BMI-related traits in five studies that applied other 

ascertainment strategies for defining extremely obese (Supplementary Tables 2-5, bottom 
panel; total ncases=6,848; ncontrols=7,023). Four studies recruited participants from 

specialized clinics or hospitals based on absolute or percentile-derived cutoffs, and one 

study utilized liability-based (women) and standard-based (men) percentile cut-points. We 

performed a meta-analysis of these five studies and observed directionally consistent 

associations for all BMI-associated SNPs (Supplementary Table 10). The effect sizes in 

these extreme obesity studies were similar to those observed for tails of BMI in our analysis 

(Pheterogeneity>0.007 for all SNPs, Bonferroni-corrected). Four out of seven novel obesity-

related loci displayed significance at P<0.007 (Bonferroni-corrected) in these extremely 

obese studies.

Effect of loci previously identified in extremely obese samples in our study—
Previous studies of extreme childhood and/or adult obesity using different ascertainment 

strategies have reported genome-wide significant or near genome-wide significant 
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associations (P<5×10-7) with FTO, MC4R, TMEM18, FAIM2, TNKS, HOXB5, OLFM4, 

NPC1, MAF, PTER, SDCCAG8, PCSK1 (rs6235 and rs6232) and KCNMA1.14-16,22-26 With 

the exception of PCSK1 (rs6232) for tails of BMI and MAF for tails of BMI and obesity 

class II, all associations showed consistent directions of effect across the BMI-related 

outcomes (Supplementary Table 11). Of the 13 loci, replication at a significance level of 

P<0.004 (Bonferroni-corrected) was observed for four SNPs (FTO, MC4R, TMEM18, 

FAIM2) for the tails of BMI and all clinical classes of obesity Two loci, MAF and KCNMA1, 

which have thus far only been reported for extreme obesity, were not significantly 

associated with any of our traits at either a Bonferroni-corrected or nominal significance 

threshold (P<0.05).

Empirical power comparison of the extremes and full distribution

If the extremes have different genetic inheritance or are etiologically more homogenous than 

the full distribution, analyzing extremes or tails of the distribution by case-control design 

may offer superior power. To test this empirically, we conducted meta-analyses of the full 

distributions of BMI and height with all studies included in stage 1 and stage 2. Only two 

(IGFBP4 and H6PD) out of four novel loci for tails of height reached genome-wide 

significance (P<5×10-8) using the full height distribution (Table 2). Four (GNAT2, ZZZ3, 

HNF4G, and RPTOR) out of seven novel loci identified for clinical classes of obesity 

achieved genome-wide significance for the full BMI distribution. The remaining loci had P-

values <5×10-5 in the full distribution and thus, would likely have been detected with a 

larger sample size.

Systematic comparisons of the genetic inheritance and distribution of SNPs between the 
tails and full distribution

To investigate differences in genetic architecture between the tails and full distributions, we 

estimated whether the observed genetic effects in tails of BMI, height and WHR were 

different from what would be expected based on the full distributions of corresponding 

traits. To do this, we first estimated the expected effect for each SNP in the tails based on 

the full distribution in each study and then meta-analyzed the expected associations across 

studies. The Q-Q plots of P-values testing differences between the observed and expected 

(Fig. 1 and Supplementary Fig. 9) did not show any enrichment, indicating that effect sizes 

observed in tails and those expected based on the overall distribution were similar. Further, 

comparable results were observed for the 32 SNPs previously associated with BMI in 

Speliotes et al4, as well as for previously published and novel extreme obesity loci 

(Supplementary Table 12).

To further compare genetic inheritance of the tails with the full distribution, we used a 

‘polygene approach.’45 The meta-analysis results of tails and full distribution were used to 

create two polygenetic scores (by summing the number of risk alleles at each SNP) in six 

studies (Supplementary Table 13). We found that the polygene score based on the full BMI 

distribution consistently explained more of the variance than the score based on the tails 

(e.g. 15.3% vs. 6.4% at P<0.05) (Fig. 2, Supplementary Table 14). Similar results were 

observed for height and WHR (Supplementary Fig. 10). On liability scale, the variance 

explained by the two polygene scores was similar for different BMI-related outcomes 
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(Supplementary Fig. 11) and different percentile cutpoints used to define the tails (data not 

shown), suggesting that the fraction of the overall variance explained by SNPs is not 

influenced by the outcome categorization, but by the ability to accurately rank and estimate 

the beta coefficients of the association, which is better achieved by using the entire study 

population instead of the tails. Our results also indicate that genetic determinants for the tails 

are similar to those for the full distribution and that common variant loci contribute to 

extreme phenotypes. However, it should be noted that our analyses of the upper and lower 5 

percentiles of the distribution (tails) does not necessarily extend to more extreme cut-offs, 

such as the top and bottom 1st percentiles.

Allelic heterogeneity at known and discovered loci

To explore enrichment for allelic heterogeneity in the tails and clinical classes of obesity, we 

performed conditional analyses using a method recently described by Yang et al.46 In these 

analyses, we found secondary signals that reached genome-wide significance (P<5×10-8) at 

17 loci, including one locus for tails of BMI (FTO), 13 loci for tails of height (PTCH1 [two 

signals], GHSR, EDEM2, C6orf106, CRADD, EFEMP1, HHIP, FBXW11, NPR3, C2orf52, 

BCKDHB, EFR3B), one for tails of WHR (RSPO3), two for overweight (MC4R, FANCL), 

and one for obesity class I (FANCL; Supplementary Table 15). Whereas the secondary 

signals for tails of BMI (FTO) and WHR (RSPO3), and overweight and obesity class I 

(FANCL) have not been established previously, all 13 height loci identified here, as well as 

the MC4R locus have previously been shown to have allelic heterogeneity in the general 

population,7,9 suggesting that there is no enrichment in the tails for secondary signals 

(Supplementary Fig. 12-14).

We also looked for evidence of enrichment of unobserved low-frequency variants by 

conducting haplotype analyses within known and novel loci, since haplotypes constructed 

from common SNPs may tag low-frequency variants that are enriched in the tails of the trait 

distributions, but are rarer in the general population. Using genotype data from the largest 

studies, three signals of association were observed for tails of height that exceeded 

conservative prior odds of association of one in 30,000: ID4 (Bayes factor: 118,839), 

LIN28B (Bayes factor: 105,478) and DLEU7 (Bayes factor: 66,599) (Supplementary Table 

16). However, for all three loci, association signals were characterized by two clusters of 

haplotypes (both common and rare) and were not consistent with an enrichment of 

unobserved low-frequency causal variants in the distribution tails.

Discussion

In our meta-analysis of genome-wide association studies of up to 263,407 individuals of 

European ancestry, we identified 165 loci associated with tails (upper vs. lower 5th 

percentile) of BMI, height, and WHR and/or clinical classes of obesity. Eleven of these loci 

have not previously been associated with anthropometric traits. Several of the novel loci 

were located near strong biological candidate genes, such as IGFBP4 and SHOX2 for tails of 

height, and HNF4G and ADCY9 for overweight/obesity class I, suggesting future areas of 

research. Although by using different distribution cutoffs we discovered additional loci that 

would not have been identified as genome-wide significant using the full distribution of the 
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same study samples, there is no evidence to suggest that the clinical classes of obesity are 

etiologically distinct, and the majority of evidence indicates that the extremes share many of 

the same loci with the general population.

To assess the impact of different distribution cutpoints on genetic variants associated with 

the extremes, we chose to evaluate the 5% tails of the distribution and clinical classes of 

obesity, specifically obesity classes II and III. Although others have ascertained extremes 

differently, all variants associated with obesity-related traits in our meta-analysis were found 

to have directionally consistent results in five independent studies of extremely obese 

samples. Of the 13 loci previously identified as associated with extreme obesity,14-16,22-26 

nearly all (except PCSK1 rs6232 and MAF) showed a consistent direction of effect for the 

tails of BMI. Only two loci (MAF and KCNMA1), originally identified for early-onset and 

morbid adult obesity,14,26 failed to replicate for any of our BMI-related outcomes. While it 

is possible that we had insufficient power if there was a substantial winner’s curse present in 

the initial publications, it is also conceivable that these susceptibility loci are population-

specific, only contribute to risk at younger ages,47 represent false positive findings, or tag 

rare causal variants that are difficult to detect in population-based samples.

Since our study was based on GWAS data, we were not well suited to address the role of 

rare variants in extreme traits. Although the haplotype-based analyses revealed strong 

associations of haplotypes in three genes with tails of height, which could suggest that they 

are tagged by rare variants, such putative variants could not be established using our 

approach. The suggestion that rare variants could be more important in extremes of complex 

traits needs to be addressed using other designs, such as resequencing projects or using the 

new Exome Chip microarrays that are currently being analyzed in many large study 

samples.

Our systematic comparisons between extremes and full distribution yielded several 

important insights that also may be informative for other complex traits. When comparing 

observed genetic effects in tails with expected effects extrapolated from overall distributions 

of corresponding traits, we did not observe any systematic differences. Further, we showed 

that the polygene score based on the full distribution explained a larger proportion of 

variance than the score based on the tails. Taken together with the finding that half of our 

novel loci were associated at genome-wide significant level in the overall distribution, this 

implies that there is limited etiologic heterogeneity in these anthropometric traits. Our 

analysis shows that while some common variants can have larger effects in the extremes, 

these effects as a whole are not larger than expected based on the effects in the overall 

distribution. Further, while rare variants specific to the extremes may still exist, the extremes 

share most of the common loci with the overall distribution.

Conclusions that can be drawn from these observations are that when having access to data 

for the full distribution, case-control analyses using extremes can be useful to find additional 

loci. Although the analyzing the full distribution is generally more powerful, small amounts 

of heterogeneity in the distribution may allow for the identification of additional loci by 

analyzing the data using different cut-points, such as the tails. Further, as in most cases 

when resources are limited, our results indicate that a strategy with selection of individuals 
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from the extremes for genetic analyses could be a cost-effective approach and will likely 

yield loci that are relevant and largely generalizable to the full population. Compatible with 

those of recent, smaller studies,21-23 our results show convincingly that this theoretically 

appealing approach also holds empirically.

In conclusion, in our large GWAS meta-analysis including up to 263,407 individuals, we 

identified four new loci influencing height detected at the tails, as well as seven new loci for 

clinical classes of obesity. Consistent with theoretical predictions and previous smaller 

studies, our results show that there is a large overlap in terms of genetic structure and 

distribution of variants between traits based on different distribution cutoffs with those from 

population-level studies, but additional insight may still be gained from evaluating the 

extremes. Our results are informative for designing future genetic studies of obesity as well 

as other complex traits.

Online Methods

Detailed methods descriptions are available in the Supplementary Note.

Discovery and joint meta-analyses

Study design—We conducted a two-stage study for the tails of three anthropometric traits 

(BMI, WHR, and height) and four clinical classes of obesity (overweight and obesity classes 

I, II, and III), followed by a combined analysis of the two stages. Stage 1 consisted of a 

meta-analysis of GWAS utilizing data from a study base (or sampling frame) of up to 

168,267 adult individuals of European ancestry from 51 studies participating in the Genetic 

Investigation of ANthropometric Traits (GIANT) consortium (Supplementary Tables 1-5). 

In stage 2, 273 SNPs with P-values < 5×10-6 were followed up in up to 109,703 additional 

individuals of European descent, which included 67,243 individuals from 24 studies with 

data from the Metabochip (a custom-designed array of ~200,000 SNPs with prior evidence 

of suggestive association with metabolic traits), and 42,460 individuals from 12 studies with 

in silico replication GWAS data (Supplemental Tables 1-5). This gave us a study base of up 

to 276,007 individuals of European descent for the joint meta-analysis of stage 1 and stage 

2. For full details about the discovery and replication stages, analysis of data, and meta-

analyses, see Supplementary Note.

Phenotype definitions—The tails of the three anthropometric traits (BMI, height, and 

WHR) were defined as the upper 5th percentile (cases) and lower 5th percentile (controls) of 

the distribution stratified by sex and disease status after controlling for the following 

covariates: age, age2 and principal components for BMI; age and principal components for 

height; and age, age2, BMI and principal components for WHR. For the clinical obesity 

classes, cases were defined as BMI ≥25 kg/m2 for overweight, BMI ≥30 kg/m2 for obesity 

class I, BMI ≥35 kg/m2 for obesity class II, and BMI ≥40 kg/m2 for obesity class 3. Controls 

were subjects with BMI <25 kg/m2. A minimum of 30 cases and 30 controls for each study-

specific stratum was required.

Association analyses and meta-analyses—Each study conducted single marker 

association analyses assuming an additive genetic model taking genotype imputation 
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uncertainty into account. Analyses were stratified by sex (except for studies with related 

individuals where analyses accounted for family structure) and disease status for studies that 

ascertained participants based on a relevant disease (e.g., diabetes). Before meta-analyzing 

data, results from each study were extensively reviewed using standardized quality control 

procedures to identify potential problems, such as strand issues, discrepancies between the 

reported standard errors and p-values, and allele frequency differences. SNPs with poor 

imputation quality scores or estimated minor allele count ≤ 20 (i.e. 2 × N × minor allele 

frequency) in each stratum (men/women or pooled for family-based studies) of each study 

were removed from analysis. For the discovery stage 1, each stratum- and study-specific 

GWAS was corrected for genomic control. Meta-analyses were performed for each 

phenotype in METAL48 using the fixed effects inverse variance method based on the β 

estimates and standard errors from each study. The results of the discovery meta-analysis 

were followed by an additional genomic control correction. Similar methods were employed 

for the replication and joint discovery and replication analysis.

Association testing in extremely obese studies

We tested the association of all SNPs reaching P<5×10-8 in the joint analysis of stage 1 and 

stage 2 results for the BMI-related traits, in five studies of extremely obese individuals 

(Supplementary Tables 2-5). For the four case-control studies (French Extreme Obesity 

Study, Essen Case-Control GWAS, GEO and GOYA), a fixed effects inverse variance 

method was used to meta-analyze the results. A fifth study (Essen Obesity Trio GWAS) that 

has a nuclear family structure was meta-analyzed with the four case-control studies using a 

weighted z-score method that takes into account the direction but not the magnitude of the 

association.

Systematic comparison of the genetic structure between tails and overall distribution

For these analyses, we included all GWAS studies that provided genome-wide results for 

both the full distribution and tails of BMI, height and WHR. First, we used the results for the 

full distribution to calculate, for each genotype, the expected number of individuals in the 

upper and lower 5% tails. We used these values to perform a logistic regression, comparing 

the upper and lower tails, and obtained the ‘expected beta’ and ‘expected standard error’. 

Second, we tested the differences between the ‘expected betas’ and the ‘observed betas’ 

obtained from the meta-analyses of the tails of the distributions. The standard error of the 

differences was estimated as: sqrt[expected standard error ˆ2 + observed standard error ˆ2 - 

2*0.65*(expected standard error* observed standard error)], where 0.65 is the correlation 

between ‘expected betas’ and ‘observed betas’ obtained from TWINGENE by 

bootstrapping. Finally, differences between ‘expected betas’ and ‘observed betas’ were 

meta-analyzed using the inverse variance method in METAL.

Polygene comparison of genetic determinants of the BMI tails and overall distribution

Within each trait (BMI, height and WHR), we aimed to compare variance explained in tails 

of the trait by two genetic scores (polygene scores) obtained from (1) the meta-analyses of 

the tails of the trait and (2) the meta-analyses of the full distribution. To make the scores 

comparable, we limited the polygene score construction to the studies that provided genome-
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wide meta-analysis results for both tails and overall distribution. After LD filtering (using 

r2≥0.05 and 1 Mb distance) and excluding SNPs present in <50% of samples, we created 

polygene scores, as weighted sum of risk alleles, using the method proposed by the 

International Schizophrenia Consortium.45 For the BMI analysis, the association between 

the polygene scores and tails of BMI was investigated in four samples of extremely obese 

and two independent cohort studies using the same definition of tails (Supplementary Table 

13). Only the two independent cohorts were used for the height and WHR analysis. To 

estimate the phenotypic variance explained, we fit logistic or linear regression models 

including age, sex, study-specific covariates and the polygene score as predictors, and tails 

of the trait or overall trait as outcomes, in separate models. The phenotypic variance 

explained by the polygene scores was defined as the difference in R2 (linear regression) or 

Nagelkerke R2 (logistic regression) between these models and a basic model including only 

age, sex and study-specific covariates as predictors.

Secondary signals analysis

To identify potential secondary signals, we utilized the approximate conditional and joint 

analysis proposed by Yang et al,46 which uses summary-level statistics and the LD structure 

from a reference sample to approximate conditional p-values. The meta-analysis results for 

each trait were analyzed separately with LD correction between SNPs estimated from 6,654 

unrelated individuals from the ARIC cohort.

Haplotype-based analyses

Using data from ten of the largest studies, we tested the association between the tails of 

height, BMI and WHR and haplotypes across each established and novel locus separately 

for males and females within each study, using GENEBPM.49 The haplotypes were 

estimated from GWAS SNP data by means of an expectation-maximization algorithm and 

then clustered according to their allelic similarity. Within a logistic regression-modelling 

framework, haplotypes within the same cluster were assigned the same allelic effect, 

reducing the required number of parameters. Markov-chain Monte Carlo techniques were 

employed to sample over the space of haplotype clusters and regression model parameters. 

Evidence in favour of a haplotype association with the trait was assessed by summing log10 

Bayes factors across studies.

eQTL analyses

We examined the cis associations between SNPs that reached genome-wide significance (P 

< 5 × 10-8) and expression of nearby genes in multiple tissues from 5 studies described 

previously: 1) subcutaneous adipose tissue (n=603) and whole blood (n=747) from 

deCode50; 2) lymphoblastoid cell lines (n=830) from a childhood asthma study51; 3) liver 

(n=707), subcutaneous fat (n=870) and omental fat (n=916) tissue from a bariatric surgery 

study52; 4) subcutaneous abdominal (N=52) and gluteal (N=62) adipose tissue and whole 

blood (n=65) from MolOBB53; and 5) cortical brain tissue (n=193) survey study.54 SNPs 

were tested for cis associations with transcripts within 500 kb or 1 Mb, assuming an additive 

effect of the BMI allele or using an ANOVA test with study-specific p-value thresholds used 

to account for multiple testing. Conditional analyses were performed for all expression data, 
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except for cortical tissue, by conditioning the trait-associated SNP on the most significant 

cis-associated SNP for that particular gene transcript and vice versa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Harst, Folkert W Asselbergs; (QIMR) Nicholas G Martin, Grant W Montgomery, Andrew C 

Heath, Pamela A Madden; (RS-II) Marjolein Peters, Mariano Dei; (Swedish Twin Reg.) 
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Erik Ingelsson, Patrik K Magnusson, Nancy Pedersen; (THISEAS / AMCPAS / 

CARDIOGENICS) Kathleen Stirrups; (TRAILS) Albertine J Oldehinkel, Ilja M Nolte, Jana 

V Van Vliet-Ostaptchouk; (Tromsø 4) Lori L Bonnycastle; (TWINGENE) Erik Ingelsson, 

Anders Hamsten, Nancy Pedersen; (ULSAM) Erik Ingelsson; (Whitehall II) Claudia 

Langenberg; (WTCC-T2D) Mark I McCarthy

Other contributing studies: clinically extremes

(French Extreme Obesity Study) David Meyre, Philippe Froguel; (GEO-IT) Davide 

Gentilini; (GOYA) Lavinia Paternoster, David M Evans

Phenotyping of contributing studies

Stage 1 – Genome-wide association studies

(ARIC) Eric Boerwinkle; (B58C) David P Strachan; (BRIGHT study) John M Connell; 

(CAPS) Henrik Grönberg; (CHS) Bruce M Psaty; (CoLaus) Peter Vollenweider, Gérard 

Waeber; (COROGENE) Juha Sinisalo, Marja-Liisa Lokki; (EGCUT) Andres Metspalu, 

Krista Fischer; (EPIC) Ruth JF Loos; (ERF) Ben A Oostra, Cornelia M van Duijn; (FamHS) 

Ingrid B Borecki, Michael A Province, Mary F Feitosa; (Fenland) Ruth JF Loos; (FRAM) 

Caroline S Fox; (Genmets) Antti Jula, Veikko Salomaa; (GerMIFS1) Stefan Schreiber; 

(GerMIFS2) Annette Peters; (GOOD) Claes Ohlsson, John-Olov Jansson, Mattias 

Lorentzon, Liesbeth Vandenput; (MGS) Pablo V Gejman, Alan R Sanders, Douglas F 

Levinson; (NFBC 1966) Anna-Liisa Hartikainen, Jaana H Laitinen, Anneli Pouta; (NHS) Lu 

Qi; (Nijmegen Biomedical Study) Femmie de Vegt, Martin den Heijer, Sita H Vermeulen; 

(NSPHS) Åsa Johansson, Ulf Gyllensten; (NTR and NESDA) Gonneke Willemsen; 

(ORCADES) Harry Campbell, Sarah H Wild; (PLCO) Sonja I Berndt; (RS-I) Fernando 

Rivadeneira, André G Uitterlinden; (SASBAC) Per Hall; (SHIP) Sabine Schipf; (Sorbs) 

Anke Tönjes; (TwinsUK) Massimo Mangino, Tim D Spector; (VIS) Ozren Polasek; 

(WTCC-T2D) Mark I McCarthy; (WTCCC-CAD) Anthony J Balmforth, Alistair S Hall, 

Nilesh J Samani; (YFS) Mika Kähönen, Olli Raitakari, Jorma Viikari

Stage 2 – Metabochip/in silico replication

(AMC-PAS) Hanneke Basart, Mieke D Trip; (B58C) Chris Power, Elina Hyppönen; (BHS) 

Lyle J Palmer, John Beilby, Arthur W Musk; (DPS) Jaana Lindström; (EPIC, Fenland and 

Ely) Ruth JF Loos; (GLACIER) Paul W Franks, Dmitry Shungin; (Go-DARTS (Dundee)) 

Colin NA Palmer, Andrew D Morris; (Hypergenes) Daniele Cusi, Paolo Manunta; (KORA 

S3) Barbara Thorand; (KORA S4) Annette Peters; (LifeLines Cohort Study) Bruce HR 

Wolffenbuttel, Melanie M Van der Klauw; (METSIM) Alena Stančáková, Pablo V Gejman; 

(NSHD) Diana Kuh; (PIVUS) Erik Ingelsson, Lars Lind; (PLCO2) Sonja I Berndt; 

(PREVEND) Gerjan Navis; (QIMR) Nicholas G Martin, Andrew Heath, Pamela Madden; 

(RS-II) M Carola Zillikens; (RS-III) Jacqueline CM Witteman; (Swedish Twin Reg.) Erik 

Ingelsson, Patrik K Magnusson, Nancy Pedersen; (THISEAS) Maria Dimitriou, Eirini V 

Theodoraki; (TRAILS) Ronald P Stolk; (TWINGENE) Erik Ingelsson, Nancy Pedersen; 

(ULSAM) Erik Ingelsson; (Whitehall II) Meena Kumari; (WTCC-T2D) Mark I McCarthy
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Other contributing studies: clinically extremes

(Essen Obesity Study, Essen Case-Control GWAS & Essen Obesity Trio GWAS) Johannes 

Hebebrand, Anke Hinney; (GEO-IT) Antonio Liuzzi, Stefano Signorini; (GOYA) Thorkild 

IA Sørensen, Ellen A Nohr

Analyses of contributing studies

Stage 1 – Genome-wide association studies

(ADVANCE) Lindsay L Waite; (AGES) Albert V Smith; (ARIC) Kari E North, Anne E 

Justice, Keri L Monda; (B58C) David P Strachan; (BRIGHT study) Toby Johnson; (CAPS) 

Erik Ingelsson, Reedik Mägi; (CHS) Barbara McKnight, Guo Li; (CoLaus) Diana Marek; 

(COROGENE) Markus Perola; (deCODE) Valgerdur Steinthorsdottir, Gudmar 

Thorleifsson; (DGI) Elizabeth K Speliotes, Sailaja Vedantam; (EGCUT) Krista Fischer, 

Tõnu Esko, Evelin Mihailov; (EPIC) Jing Hua Zhao; (ERF) Najaf Amin; (FamHS) Mary F 

Feitosa; (Fenland) Jian’an Luan; (FRAM) L A Cupples, Nancy L Heard-Costa, Julius S 

Ngwa; (Genmets) Ida Surakka; (GerMIFS1) Michael Preuss; (GerMIFS2) Inke R König; 

(GOOD) Claes Ohlsson, John-Olov Jansson, Mattias Lorentzon, Liesbeth Vandenput; 

(HBCS) Niina Eklund; (KORA S3) Claudia Lamina; (KORA S4) Eva Albrecht; (MGS) 

Douglas F Levinson, Jianxin Shi; (MICROS (SOUTH TYROL)) Jennifer E Huffman, Åsa 

Johansson; (MIGEN) Elizabeth K Speliotes, Sailaja Vedantam; (NFBC 1966) Anneli Pouta, 

Reedik Magi, Joshua C Randall; (NHS) Lu Qi, Tsegaselassie Workalemahu; (NSPHS) Åsa 

Johansson; (NTR and NESDA) Jouke- Jan Hottenga, Marleen H. de Moor; (ORCADES) 

Åsa Johansson; (PLCO) Kevin B Jacobs, Sonja I Berndt; (PROCARDIS) Martin Farrall, 

Anuj Goel, John F Peden; (RS-I) Fernando Rivadeneira, Karol Estrada, Carolina Medina-

Gomez; (SardiNIA) Jennifer L Bragg-Gresham, Serena Sanna; (SASBAC) Erik Ingelsson, 

Reedik Mägi; (SEARCH) Jonathan Tyrer; (SHIP) Alexander Teumer; (Sorbs) Reedik Mägi, 

Inga Prokopenko; (TwinsUK) Massimo Mangino, Nicole Soranzo; (VIS) Åsa Johansson; 

(WGHS) Daniel I Chasman; (WTCC-T2D) Cecilia M Lindgren, Reedik Magi, Joshua C 

Randall; (WTCCC-CAD) Reedik Magi, Joshua C Randall; (WTCCC-NBS (UKBS-CC)) 

Antony P Attwood, Reedik Magi, Joshua C Randall, Jennifer G Sambrook, Jonathan C 

Stephens; (YFS) Olli Raitakari, Terho Lehtimäki

Stage 2 – Metabochip/in silico replication

(B58C) Elina Hyppönen, Teresa Ferreira; (BHS) Gemma Cadby; (DILGOM) Kati 

Kristiansson; (DPS) Anne U Jackson; (DR’s EXTRA) Anne U Jackson; (EPIC, Fenland and 

Ely) Jian’an Luan, Ken K Ong; (FIN-D2D 2007) Anne U Jackson; (FUSION) Anne U 

Jackson; (GLACIER) Paul W Franks, Dmitry Shungin; (HNR) Sonali Pechlivanis, Carolin 

Pütter; (HUNT 2) Anne U Jackson; (Hypergenes) Francesca Frau, Zoltán Kutalik; 

(IMPROVE) Rona J Strawbridge; (KORA S3) Iris Heid, Thomas W Winkler; (KORA S4) 

Martina Müller-Nurasyid; (LifeLines Cohort Study) Marcel Bruinenberg, Lude Franke; 

(LURIC) Marcus E Kleber; (METSIM) Anne U Jackson; (NSHD) Andrew Wong, Jian’an 

Luan; (PIVUS) Erik Ingelsson, Stefan Gustafsson; (PLCO2) Sonja I Berndt, Zhaoming 

Wang; (PREVEND) Pim van der Harst, Irene Mateo Leach; (QIMR) Sarah E Medland, Jian 

Yang; (RS-II) Marjolein Peters; (Swedish Twin Reg.) Erik Ingelsson, Stefan Gustafsson; 
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(THISEAS / AMCPAS / CARDIOGENICS) Stavroula Kanoni; (TRAILS) Ilja M Nolte, 

Jana V Van Vliet-Ostaptchouk; (Tromsø 4) Anne U Jackson; (TWINGENE) Erik Ingelsson, 

Stefan Gustafsson; (ULSAM) Erik Ingelsson, Andrea Ganna, Stefan Gustafsson; (WTCC-

T2D) Reedik Magi, Teresa Ferreira

Other contributing studies: clinically extremes

(French Extreme Obesity Study) David Meyre, Cecile Lecoeur, Boris Skrobek; (GEO-IT) 

Anna Maria Di Blasio, Davide Gentilini; (Essen Obesity Study, Essen Case-Control GWAS 

& Essen Obesity Trio GWAS) André Scherag, Ivonne Jarick; (GOYA) Lavinia Paternoster, 

David M Evans
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Figure 1. 
Q-Q plot of the −log10 p-values for the difference between the observed association for the 

tails of BMI and expected association based on the overall BMI distribution.
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Figure 2. Variance in extreme obesity explained by common genetic variants
The phenotypic variance explained is higher when SNPs with lower degrees of significance 

are included in the polygenetic prediction model. The y-axis represents the proportion of 

variance explained (Nagelkerke R2) of extreme obesity in six studies not included in the 

discovery meta-analysis. In panel A, the prediction model was based on the results from the 

stage I meta-analysis of tails of BMI. The thicker lines represent the weighted average; 95% 

confidence intervals are reported as double-headed arrows. In panel B, the prediction model 

was based on BMI from the full distribution (modified version of the previous GIANT meta-

analysis by Speliotes et al4). * Essen Obesity Study was not adjusted by age.
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