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Bursting endemic bubbles in an adaptive network
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The spread of an infectious disease is known to change people’s behavior, which in turn affects the spread of
disease. Adaptive network models that account for both epidemic and behavioral change have found oscillations,
but in an extremely narrow region of the parameter space, which contrasts with intuition and available data. In
this paper we propose a simple susceptible-infected-susceptible epidemic model on an adaptive network with
time-delayed rewiring, and show that oscillatory solutions are now present in a wide region of the parameter
space. Altering the transmission or rewiring rates reveals the presence of an endemic bubble—an enclosed region
of the parameter space where oscillations are observed.
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I. INTRODUCTION

The spread of an infectious disease changes the behavior of
individuals, and this, in turn, affects the spread of the disease
[1]. Broadly speaking, responses to an epidemic fall into
two categories: coordinated and uncoordinated. Coordinated
responses include vaccination and quarantine schemes, travel
restrictions, and information spread through mass media. Un-
coordinated responses cover individuals adapting their behav-
ior based on their own perceived risk; this includes improved
hygiene regimens and avoiding crowded places and public
transport during outbreaks. Surveys consistently identify such
precautionary measures taken by individuals during epidemic
outbreaks [2,3]. Fear of becoming infected during the 2003
SARS epidemic in Hong Kong caused huge behavioral shifts;
air travel into Hong Kong dropped by as much as 80% [4].
Responses to a large study covering numerous European and
Asian regions revealed that, in the event of an influenza
pandemic, 75% of people would avoid public transport, and
20–30% would try to stay indoors [5]. These behavioral shifts
change the potential routes for transmission and can alter the
size and time scale of an epidemic [6].

In the context of epidemic models on networks, perhaps, the
most widespread approach to couple epidemics and behavior is
by using adaptive networks, where behavioral changes are cap-
tured by link rewiring based on the disease status of nodes [6,7].
Gross et al. [8,9] considered a simple susceptible-infected-
susceptible (SIS) model with rewiring, in which susceptible
nodes disconnect from infected neighbors at rate ω, and
immediately reconnect to a randomly chosen susceptible node.
This simple model led to bistability and to oscillatory solutions,
albeit with oscillations limited to an extremely narrow region
of the parameter space. This rewiring procedure has since been
extended to consider scenarios where both the susceptible and
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infected nodes can rewire, and diseases with a latent period
[10]. Zhang et al. [11] presented a further alternative, where
news about past prevalence influences whether nodes choose to
disconnect edges. The authors found an estimate of the critical
delay that induces a Hopf bifurcation, thus causing periodicity.
Tunc et al. [12] studied a network model with temporary deac-
tivation of edges between susceptible and infected individuals.
On a growing network, Zhou et al. [13] showed that cutting
links between susceptible and infected individuals can lead
to epidemic reemergence, with long periods of low disease
prevalence punctuated by large outbreaks.

Periodic cycles and disease reemergence are evident in real-
world data. Many diseases are subject to seasonal peaks, which
have been studied extensively [14,15]. Often a sinusoidal or
other form of time-varying transmission parameter is used
to imitate seasonality, which can lead to multiennial peaks
[16]. A number of models have identified other possible
causes of periodicity in epidemic dynamics. To give one
example, Hethcote et al. [17] showed that in a well-mixed
population temporary immunity in susceptible-infected-
recovered-susceptible (SIRS)- or susceptible-exposed-
infected-recovered-susceptible (SEIRS)-type models as
represented by a time delay can result in the emergence of
periodic solutions when the immunity period exceeds some
critical value.

One should note that seasonality alone cannot explain all
cases of oscillations. In both the United Kingdom and the
United States, the 2009 H1N1 pandemic occurred in two
distinct waves separated by a few months [18,19]. Other
diseases have shown more long-term trends. Incidence reports
of mycoplasma pneumonia have found evidence of epidemic
cycles in many different countries, with periodicity of three
to five years [20,21]. Recently, it has been suggested that
syphilis exhibits periodic cycling [22], although these findings
have been subsequently questioned [23]. While it is difficult to
pinpoint the specific causes of periodicity in the dynamics of
these diseases, if syphilis epidemics are indeed cyclical, then
changes in human behavior have been proposed as the likely
explanation [24].

Intuitively, and as shown by empirical observations, one
would expect oscillations to appear in epidemic models where
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behavior is considered. If an individual is aware of the state of
their neighbors and responds accordingly, then times of high
prevalence will be associated with greater caution, curbing
further spread. Conversely, without advance warning, behavior
will return to normal as prevalence wanes, enabling a sec-
ond wave of the epidemic. Despite this intuition, adaptive
network models have so far not been able to show such
robust oscillations over reasonable regions of the parameter
space. To tackle this problem, we introduce a simple SIS
model on an adaptive network with N nodes. Infected nodes
transmit the disease to susceptible neighbors at rate β across
links, and recover and become susceptible again at rate γ ,
independently of the network. Susceptible nodes cut links that
connect them to infected neighbours at rate ω and, after a
fixed time delay of length τ , reconnect to susceptible nodes
chosen uniformly at random from all such available nodes.
The delay between cutting and reconnecting is crucial. It is
unrealistic to expect that alternative contacts can be identified
and established arbitrarily quickly. The delay represents both
people’s hesitance to make new contacts and also the potential
lack of availability of such new contacts when an epidemic is
spreading thorough a population [5].

II. MODEL DERIVATION

To construct the mean-field model, we use the pairwise
approximation method [25]. The number of nodes in the
susceptible or infected state at time t is denoted by [S] and
[I ], respectively; [SS], [SI ], and [II ] denote the number of
connected pairs of nodes in the respective states, with all pairs
being doubly counted. The explicit dependence on time is
dropped for simplicity. For the moment closure approximation
we use the assumption that once a node is fixed, typically a
susceptible node, then the states of the neighbors are Poisson
distributed [26]. This leads to

[ABC] = [AB][BC]

[B]
, A,B,C ∈ {S,I }, (1)

to express the number of connected triples [8,25].
The delay before an S-I edge is rewired to an S-S edge

introduces a complication, as not all newly formed edges
will be between two susceptible nodes. To see this, con-
sider an example of a susceptible node with two or more
infected neighbors. At some time t1 it disconnects from one
of these neighbors. Then, in the interval (t1,t1 + τ ) another
infected neighbor transmits the disease to it. If it then remains
infected until time t1 + τ , the new edge will be of an I -S type
rather than S-S. To deal with this issue we use a technique
similar to that used by Kiss et al. [27] for a pairwise model
with an infectious period of fixed length. Consider yp(t) to
be the cohort of susceptible nodes that have cut a link at time
t − τ and are waiting to reconnect. The expected number of
infected neighbors a susceptible node has is approximated by
[SI ]/[S]. Therefore, the rate at which nodes in the cohort
become infected over the interval (t − τ,t) is

ẏp = −βyp

[SI ]

[S]
.

The solution to this ordinary differential equation is

yp(t) = ω[SI ](t − τ ) exp

(
−β

∫ t

t−τ

[SI ](u)

[S](u)
du

)
, (2)

since yp(t − τ ) = ω[SI ](t − τ ).

A member of the cohort infected at some time u ∈ (t − τ,t)
may recover before time t . To ensure that we only consider
nodes which remain infected, we must include the probability
that a node infected at time u remains infected until time t in
the integral term of (2). This is the survival probability of the
recovery process, and it is given by e−γ (t−u). Therefore, the
rate at which new S-S edges are formed is

y(t) := ω[SI ](t − τ ) exp

(
−β

∫ t

t−τ

[SI ]

[S]
e−γ (t−u) du

)
. (3)

If the exponential term in (3) is denoted by x(t), the rate
at which new I -S edges are formed is ω[SI ](t − τ )[1 − x(t)].
With this in mind, the mean-field model is

˙[S] = −β[SI ] + γ [I ],

˙[I ] = β[SI ] − γ [I ],

˙[SS] = 2γ [SI ] − 2β
[SS][SI ]

[S]
+ 2ω[SI ](t − τ )x(t),
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FIG. 1. Comparison between the solution of (4) and numerical
simulation. Three sets of results are shown, ω = 0 (top), ω = 1 (mid-
dle), and ω = 1.4 (bottom). Other parameters are β = 0.6, γ = 1,
τ = 6, and 〈k〉 = 10. Simulation results are averaged across 100
iterations on random networks of 1000 nodes. All simulations begin
by randomly selecting a node to infect at time t = 0. Simulation runs
which die out are discarded and performed again.
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˙[SI ] = −(β + γ + ω)[SI ] + β[SI ]

(
[SS]

[S]
− [SI ]

[S]

)

+ γ [II ] + ω[SI ](t − τ )[1 − x(t)],

˙[II ] = −2γ [II ] + 2β

(
[SI ][SI ]

[S]
+ [SI ]

)
,

ẋ = −x

{
γ ln x + β

(
[SI ]

[S]
− [SI ](t − τ )

[S](t − τ )
e−γ τ

)}
. (4)

When τ = 0, the dynamics of (4) are equivalent to the well-
known model of Gross et al. [8].

III. ANALYSIS AND SIMULATIONS

Figure 1 shows a comparison between the solution of the
new model (4) and numerical simulation. The agreement is
excellent despite the simplicity of the model and the fact
that the moment closures do not reflect the changing network
structure. In particular, both the solution and simulation results
exhibit similar oscillatory behavior for the same parameter
values. These results validate the model and allow us to
analyze its behavior.

First, consider the basic reproductive ratio, R0, defined
as the expected number of secondary infections caused by
a single typical infectious node in an otherwise wholly
susceptible population. One can find R0 for the delayed

rewiring model (4) via linear stability analysis near the disease-
free equilibrium (DFE), ([S]∗,[I ]∗,[SS]∗,[SI ]∗,[II ]∗,x∗) =
(N,0,〈k〉N,0,0,1). Performing this analysis gives

R0 = β〈k〉
γ + ω

. (5)

Note that increasing the rewiring rate decreases the epidemic
threshold R0, but the length of the delay, τ , has no effect on
the threshold. However, as we will show later, it does affect
the final outcome of the epidemic.

System (4) also has an endemic steady state, but its value
is determined by a transcendental equation which can only be
solved numerically. Using this result in the numerical linear
stability analysis of (4) allows us to analyze the stability of the
endemic equilibrium. As shown in Fig. 2(a), changes to both
τ and ω are capable of destabilizing the endemic equilibrium.
Regardless of the value of τ , eventually high values of the
rewiring rate make the DFE stable again. For most values
of τ this coincides with the point where the endemic steady
state becomes biologically infeasible (less than or equal to
zero), leaving the DFE as the only plausible steady state for
the system. However, for sufficiently small values of τ , the
endemic steady state remains feasible, and there is a small
region of bistability. Qualitatively, this behavior is the same
for any choice of the other parameters, as long as the endemic
steady state remains biologically feasible, as illustrated for
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FIG. 2. (a) A two-parameter bifurcation diagram indicating different dynamical regimes in the behavior of model (4) with β = 0.6. (b) The
endemic bubble for model (4) for τ = 6. The endemic equilibrium is stable on the gray surface and unstable on the green surface. The green
surface is constructed using the minima and maxima of oscillations and shows the shape of the endemic bubble. (c) The value of the endemic
equilibrium plotted against the rewiring delay τ for β = 0.6 and ω = 2. Increasing τ decreases the expected number of infected individuals
at endemic equilibrium until the Hopf bifurcation point, beyond which the amplitude of oscillations grows. (d) The average behavior from
100 numerical simulations on random networks of 1000 nodes compared to the mean-field model (4). The solid black line (circles) denotes
the prevalence of the disease in the mean-field model (simulations), and the red dashed line (diamonds) denotes the normalized mean degree
calculated from (6). Parameter values are β = 0.55, ω = 1.5, τ = 5.5, γ = 1, 〈k〉 = 10. Simulations in which epidemic outbreaks died out
were discarded and performed again.
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FIG. 3. Real part of the maximum characteristic eigenvalue of the endemic equilibrium of (4) for β = 0.2 (a), 0.4 (b), and 0.6 (c). Other
parameters are the same as in Fig. 2(a). The endemic equilibrium is unstable in the red/yellow region, stable in the green/blue region, and
biologically infeasible in the white region.

different values of β in Fig. 3. This figure shows that increasing
the disease transmission rate allows the endemic steady state
to be feasible for a wider range of link-cutting rate ω, and it
also lowers the critical time delay τ , at which this steady state
becomes unstable.

Figure 2(b) shows the endemic equilibrium, as well as the
minima and maxima of oscillations for a range of β and ω

values, with oscillations being observed in a significant part
of the parameter space. One can clearly see the formation of
an endemic bubble that has been discovered earlier in other
epidemic models [28,29]. Interestingly, both ω and β appear
to play similar roles in the formation of the endemic bubble,
namely, they open it through a supercritical Hopf bifurcation of
the endemic equilibrium and then close it through a subcritical
Hopf bifurcation.

Increasing the length of the delay can only induce a
supercritical Hopf bifurcation, resulting in the emergence of
stable oscillations, beyond which point larger values of τ only
increase the amplitude of oscillations until it settles on some
steady level, as shown in Fig. 2(c). One should note that the
minima of oscillations get closer to zero for larger τ , suggesting
that for large rewiring times there are periods of time with
negligible disease prevalence, followed by major outbreaks,
as illustrated in Fig. 2(d). In the limit τ → ∞, disconnected
edges are never redrawn and the epidemic dies out, partially
due to the network becoming sparser.

For the case without time delay, Gross et al. [8] found
bistability in a large region of the parameter space, and periodic
oscillations in a much smaller region. By contrast, results
shown in Fig. 2 demonstrate a large region in the parameter
space with oscillatory behavior. Delay differential equation
(DDEs) are known to often produce oscillatory dynamics, and
bubbles similar to those shown in Fig. 2(b) have been reported
in other biological and epidemic models [28,29].

IV. DISCUSSION

Let us now discuss the origins of oscillatory behavior in our
model. The delay between disconnecting an edge and drawing
a new one means that the total number of edges, and thus also
the mean degree, is not constant. Whenever a susceptible node
chooses to rewire, the total number of edges in the network
decreases by two (since all edges are bidirectional) until time
τ passes, and the edge is redrawn. The mean degree k(t) at any

time t can be calculated directly from this argument as follows:

k(t) = 〈k〉 − 2ω

∫ t

t−τ

[SI ](u) du. (6)

Figure 2(d) shows that oscillations are driven by the dynamics
of k(t). During the early stages of an outbreak with a high
rewiring rate, k(t) falls rapidly, as susceptible nodes cut links
in response to the propagation of the disease. If the value of τ is
large enough, then after a certain time the number of edges in
the network is small enough to effectively starve the disease of
transmission routes, and prevalence falls. These edges are then
redrawn at the same rate as they were cut τ time ago, and k(t)
grows, which allows the disease to spread again. Figure 2(d)
illustrates this behavior both in simulation and in the mean-
field model (4), showing how after the initial outbreak each
new wave of infection is preceded by the recovery of network
connectivity.

The effect of oscillatory interactions between network con-
nectivity and the propagating disease may be more pronounced
in network simulations. Gross et al. [8] found that adaptive
rewiring without delay can lead to the formation of highly
connected clusters of susceptible nodes that are vulnerable to
disease once any one node becomes infected. Since the model
(4) does not account for changes in network structure, i.e., the
closure is the same for all times and it does not depend on
the average degree or degree distribution, this can potentially
explain the small discrepancy between the solution of the
deterministic and simulation models observed in Fig. 1.

To get a better understanding of the interplay between
network topology and dynamics, it is worth looking at how
delayed rewiring alters degree distribution. Time snapshots of
several large networks in Fig. 4 show the evolution of the degree
distribution at various key points of an epidemic in an oscilla-
tory regime. The initial network topology (black solid lines) is
quickly reorganized to a peaked distribution. The oscillations
in prevalence cause slight but repeated changes in the degree
distribution. Unsurprisingly, when prevalence is at or near its
peak, nodes with a lower degree are more common. When the
prevalence falls, the distribution curves shift to the right, and
the shape of the distribution flattens slightly. When the endemic
steady state is stable, the degree distribution stabilizes to a
peaked distribution between the two extremes of the oscillatory
regime. A very important observation is that, irrespective of the
initial network topology, due to rewiring different networks
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FIG. 4. Snapshots of the degree distribution for networks of 104 nodes. In each plot the black (solid) line is the initial degree distribution,
the blue (dashed) line is for the early growth phase, red (dotted) shows an early peak, and green (dash-dotted) and magenta (squares) show later
snapshots. Disease parameters are β = 0.6, γ = 1, ω = 1.4, τ = 6. (a) Erdős-Rényi network with 〈k〉 = 10. (b) Homogeneous network with
k = 10 for all nodes. (c), (d) Truncated scale-free networks with the scaling exponents α = 2 and 3, respectively.

eventually settle on a very similar skewed degree distribution.
This implies that earlier conclusions derived for the specific
closure (1) appropriate for Erdős-Rényi graphs are actually ap-
plicable to modeling long-term dynamics of different types of
networks, for which the influence of the initial topology is low
since a significant amount of rewiring has already taken place.

The particular strength of this model lies in its ability
to exhibit rich behavior from a simple system of DDEs.
Time delay captures the fact that finding alternative contacts
takes time, and also during an epidemic many people try to
temporarily reduce the number of their contacts. Such behavior
can be modeled using this delayed rewiring process. Previous
work separated the processes of edge destruction and creation,
and with edge creation occurring at a fixed rate the number of
edges in the network was bounded only by the network size
[24,30]. In the model presented above, edge creation is reduced
to replenishing global network connectivity towards its original
level. Therefore, this model is fundamentally different from
earlier models, even when parameters are matched.

During the initial growth phase it is the rate at which
potential transmission is avoided by cutting a link, not the delay
before drawing a new edge, that determines whether a major
outbreak will occur. Although the delay does not affect the
basic reproductive ratio R0, it does impact the outcome of the
epidemic [see Fig. 2(c)]. The result of introducing the delay
is that oscillations occur in a large region of the parameter
space. This happens due to the interplay between the spread
of the disease and the behavioral changes in response to the
epidemic. When the length of the delay is significant, the
network becomes more sparse, healthy individuals are at lower
risk of infection, and over time the prevalence falls. When the
new edges are then formed, the disease is once again able to
spread, and the cycle repeats.

Understanding the nature and cause of oscillations may
provide opportunities to eradicate the disease. For example,
if public awareness campaigns can lead to an increase in the
length of the delay, the prevalence of the disease will naturally

fall close to zero, at which time a relatively minor intervention,
such as quarantining those who remain infected, may be
enough to eradicate the disease from the population entirely.

Currently, the model assumes that only susceptible nodes
rewire. However, in reality, infected nodes are also likely
to change their behavior. Risau-Gusman and Zanette [10]
considered a model of rewiring where infected nodes rewire
with a given probability. It would be of great value to examine
a similar situation under delayed rewiring, with time delay
representing the time for which infected nodes partially isolate
themselves before rewiring, in accordance with advice given
by public health authorities. This would alter the nature of the
variable x(t) in the model. For example, if only infected nodes
rewire, x(t) ≈ e−γ τ . Preliminary tests of this rewiring scheme
show behavior similar to the present model.

Numerical simulations have shown that a similar oscillatory
behavior is observed for other initial network topologies,
including scale-free networks. Furthermore, since rewiring
nodes choose their new neighbors uniformly at random from
all available susceptible nodes, the initial network topology
itself is transient, as shown in Fig. 4, and, as a result, over
time our model becomes more relevant. Future work will look
at how the degree distribution and oscillations are affected in
the case when the network links are rewired not randomly but
according to a preferential attachment or some fitness-based
rule. This could result in some interesting new dynamics
due to the competition between the increased probability of
highly connected nodes receiving new links, and the increased
probability of infection.
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