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Metalloradical Reactivity of RuI and Ru0 Stabilized by an Indole-
Based Tripodal Tetraphosphine Ligand

Fenna F. van de Watering, Jarl Ivar van der Vlugt, Wojciech I. Dzik,* Bas de Bruin,* and
Joost N. H. Reek*[a]

Abstract: The tripodal, tetradentate tris(1-(diphenylphos-
phanyl)-3-methyl-1H-indol-2-yl)phosphane PP3-ligand 1
stabilizes Ru in the RuII, RuI, and Ru0 oxidation states. The
octahedral [(PP3)RuII(Cl)2] (2), distorted trigonal bipyramidal

[(PP3)RuI(Cl)] (3), and trigonal bipyramidal [(PP3)Ru0(N2)] (4)
complexes were isolated and characterized by single-crys-

tal X-ray diffraction, NMR, EPR, IR, and ESI-MS. Both open-

shell metalloradical RuI complex 3 and the closed-shell Ru0

complex 4 undergo facile (net) abstraction of a Cl atom

from dichloromethane, resulting in formation of the corre-
sponding RuII and RuI complexes 2 and 3, respectively.

Metals of the 4 d and 5 d row of the periodic table, particularly
late transition metals in low oxidation states, strongly prefer

closed-shell 16 or 18 valence electron configurations. As a
result, open-shell complexes of these metals are rare, and have

a strong tendency to convert into closed-shell products.[1] RuI

metalloradical complexes are particularly rare[2] and only two
types of RuI complexes have been successfully isolated thus

far. Peters and co-workers reported a five-coordinate 17-elec-
tron [RuIN2(SiPiPr

3)] complex supported by an anionic tripodal

tetradentate (SiPiPr
3)@ ligand (SiPiPr

3 = (2-iPr2PC6H4)3Si). Besides
RuI, this platform also stabilizes complexes in oxidation states

ranging from Ru0 to RuIII.[3] Interestingly, the RuI complex was

shown to catalyze coupling of aryl azides to azoarenes.[4] Re-
cently, the group of Gretzmacher reported the remarkable 4-

coordinate 15-electron complex [RuI(tropPPh2)2]BF4 featuring
two bidentate tropPPh2 ligands (trop = 5H-dibenzo[a,d]cyclo-

hepten-5-yl)). Besides RuI, this ligand scaffold stabilizes rutheni-
um complexes in oxidation states ranging from Ru0 to RuII.[5]

No further reactivity with this complex has been reported to
date.

Inspired by these intriguing examples, we wondered wheth-

er stable metalloradical RuI complexes could be accessed in a
rigid tripodal PP3 ligand environment for subsequent reactivity

evaluation. The above-mentioned RuI complexes feature either
a strongly s-donating anionic tripodal (SiPiPr

3)@ ligand or two

neutral p-accepting bidentate (tropPPh2) ligands. Hence, we
surmised that the use of a tripodal tetradentate ligand featur-

ing both s-donor and p-accepting phosphorus groups could

allow for isolation and reactivity studies of well-defined RuI

metalloradicals. We turned our attention to the tripodal, tetra-

dentate tris(1-(diphenylphosphanyl)-3-methyl-1 H-indol-2-yl)-
phosphane ligand (1)[6, 7] (Figure 1), which we previously used

to stabilize the metalloradical rhodium complex [RhII(1)Cl]PF6.[6]

We further wondered whether the corresponding ruthenium(0)

complex could also be accessible and if these low-valent spe-

cies would display interesting reactivity.

First, we aimed at the synthesis of the RuII complex with

ligand 1, as this species could allow entry to the desired low-
valent ruthenium species by subsequent selective reduction.

The desired complex [Ru(1)(Cl)2] (2) was readily prepared by re-
acting stoichiometric amounts of 1 and [Ru(Cl)2(C6H6)]2 in re-

fluxing THF in good yield (Scheme 1).

The 31P NMR spectrum of complex 2 displays a triplet of
doublets (d= 101.0 ppm, JP-P = 26.4, 25.5 Hz), an apparent trip-

let (d= 77.8 ppm, JP-P = 26.5 Hz), and a triplet of doublets (d=

48.5 ppm, JP-P = 27.9, 26.9 Hz) with the integral ratio 1:2:1. The

presence of three different phosphorus NMR signals points to
a geometry in which two equatorial aminophosphine donors

Figure 1. Ligand systems capable of stabilizing isolable RuI species.
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are equivalent (d= 77.8 ppm), whereas the third side-arm

donor P3 (d= 101.0 ppm) experiences a different coordination
environment. The pivotal, axial phosphine P4 is assigned to

the signal at d= 48.5 ppm. RuII complexes with tripodal tetra-
phosphine ligands often display five-coordination with either

square pyramidal or trigonal bipyramidal geometries around

the metal center,[8] however in case of complex 2, an octahe-
dral geometry could not be excluded. Single crystals of 2, suit-

able for single crystal X-ray diffraction, were obtained by layer-
ing a dichloromethane solution with pentane. The molecular

structure (Figure 2) reveals a distorted octahedral geometry,
with ]P1–Ru1–P2 of 160.04(3)8 (See the Supporting Informa-

tion, Table S1) for the two mutually trans aminophosphines in

the equatorial plane. The P donors oriented trans to the chlori-
do ligands have shorter Ru@P distances (Ru1–P3 (2.2671(9) a;

Ru1–P4 (2.1932(9) a) compared to the mutually trans P donors
(Ru1–P1 (2.3727(9) a; Ru1–P2 (2.3189(9) a).[9]

To explore the capability of 1 to stabilize low oxidation
states of ruthenium, we attempted to determine the RuII/RuI

and RuI/Ru0 reduction potentials of 2. The cyclic voltammo-
gram of 2 in dichloromethane did not show any reduction

wave within the solvent window (Emin =@2.5 vs. Fc/Fc+), and
the poor solubility of 2 in THF, DMF, acetonitrile, or toluene
prevented determination of the reduction potentials of 2
below @2.5 V. Thus, reduction of complex 2 to the desired
complex [Ru(1)Cl] (3) requires a stronger reducing agent than

the previously reported RuI complexes [@1.24 V (RuII/RuI) and
@2.14 V (RuI/Ru0) for the SiPiPr

3 system in THF; + 0.4 V (RuII/RuI)

and @0.3 V (RuI/Ru0) for the tropPPh2 complex] . Therefore, we
used KC8 to access the desired RuI and Ru0 species chemically

(Scheme 2).

The addition of one molar equivalent of KC8 to a yellow sus-
pension of 2 in THF resulted in a brown solution. The product

formed proved to be NMR silent, suggestive of formation of a
paramagnetic RuI species formed by one-electron reduction. X-

band EPR spectroscopy confirmed the presence of the metal-
loradical species [Ru(1)Cl] (3). The EPR spectrum reveals a

rhombic (albeit almost axial) g-tensor, characteristic of an S =
1=2 system (Figure 3). Hyperfine coupling interactions (HFIs)
with two P atoms are resolved, in line with previous observa-

tions for tripodal tetradentate phosphine RuI complexes.[2c,e, 3]

Figure 2. X-ray crystal structure of 2 (CCDC 1555408). Thermal ellipsoids are
set at 50 % probability. Solvent molecules and hydrogen atoms have been
omitted for clarity.

Scheme 2. Reactivity of 2 with 1 or 2 equiv KC8 to form 3 or 4, respectively.

Figure 3. Experimental (black) and simulated (red) X-band EPR spectrum of 3
measured in frozen THF ([Bu4N][PF6] was added to obtain an improved
glass). Experimental conditions: Temperature 20 K, microwave power
0.063 mW, field modulation amplitude 4 G, microwave frequency
9.3646 GHz. The simulated spectrum was obtained with the parameters
shown in Table S2.

Scheme 1. Synthesis of [Ru(1)(Cl)2] (2).
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These results are in agreement with a geometry that is distort-
ed from a trigonal bipyramidal toward a (distorted) square pyr-

amidal RuI coordination geometry. Preference for such a Jahn–
Teller distorted trigonal bipyramidal geometry has also been

observed for other d7 transition metal complexes.[10]

Simulation of the experimental EPR spectrum revealed the

parameters shown in Table S2 (see also the captions of Fig-
ures 3 and 5). The geometry of 3 was optimized with DFT (Tur-
bomole, BP86, def2-TZVP), and the EPR parameters were com-

puted with Orca and ADF. The DFT-computed EPR parameters
(Table S2) are in qualitative agreement with the experimental

data. The computations reveal a mainly metal-centered spin
density distribution, as evident from the singly occupied mo-
lecular orbital (SOMO) and spin density plots of 3 (Figure 4).

The SOMO of the metalloradical complex (spin population at

Ru = 62 %) is essentially the Ru dz2 orbital pointing in the direc-
tion of the apical P donor (P3) of the distorted trigonal bipyra-

mid (Figure 4, left). As a result, the spin population of the axial
P donor (P3) is significant (ca. 12 %; Figure 4, right), thus ex-

plaining the observed large HFIs with this donor atom. The
two P donors in the distorted equatorial plane bind rather

asymmetrically, leading to a larger spin population at one (8 %,

P2) compared to the other (5 %, P1) P donor. The spin popula-
tion at the connecting P donor trans to the chlorido ligand is

small and negative (@0.8 %, P4). The resolved HFIs in the ex-
perimental X-band EPR spectrum are thus well-explained by
the electronic structure of 3. The g-anisotropy of complex 3 is
quite small for a metalloradical complex, but this is fully under-

standable considering the large energy separation (Turbomole,
BP86, def2-TZVP) between the dz2 -dominated SOMO and the
filled dxz and dyz-dominated MOs (1.4 eV and 1.6 eV, respective-

ly).[1d]

The small g-anisotropy of 3 allows for recording the isotropic

EPR spectrum in THF solution at room temperature (Figure 5).
Simulation reveals a giso value of 2.047 and HFIs with three

equivalent P atoms (Aiso
P = 143 MHz). The measured giso value is

close to the average value of the anisotropic g-tensor compo-
nents (gav = (gx + gy + gz)/3 = 2.043). Detection of HFIs with

three equivalent P atoms in solution points to rapid positional
exchange of the axial and equatorial PPh2 donors on the EPR

timescale. In line with this, the measured Aiso
P values measured

in solution are close to the averaged values of the resolved

anisotropic A-tensor components stemming from the PPh2

donors measured in frozen solution (Aav
P = (Ax

P1 + Ay
P1 + Az

P1 + Ax
P2 +

Ay
P2 + Az

P2)/9 = 157 MHz).

Layering of a THF solution of 3 with pentane resulted in the
formation of brown needles suitable for single-crystal X-ray dif-

fraction analysis. The molecular structure (Figure 6) is in good
agreement with the EPR data and the DFT-optimized structure.

The t-value of 0.70 confirms a geometry in-between a trigonal
bipyramid and a square pyramid.[11] The one-electron reduction

of 2 to 3 is accompanied by the loss of one chlorido ligand

and shortening of most of the Ru@P bonds (Ru–P1 =

2.2940(12); Ru–P2 = 2.2930(12) a) and decrease of the ]P1–

Ru–P2 angle to 134.84(5)8 (See the Supporting Information,
Table S1).

As one-electron chemical reduction of complex 2 led to the
selective formation of the stable RuI complex 3, we also ex-
plored two-electron reduction of complex 2. Addition of two

equivalents of KC8 to a THF suspension of 2 under N2 atmos-

Figure 4. Singly occupied molecular orbital (SOMO; left) and spin density
plot (right) of 3 (top view).

Figure 5. Experimental (black) and simulated (red) X-band EPR spectrum of 3
in isotropic solution (THF). Experimental conditions: Temperature 298 K, mi-
crowave power 2.0 mW, field modulation amplitude 4 G, microwave fre-
quency 9.3498 GHz. The simulated spectrum was obtained with giso = 2.0465,
Aiso

P = 143 MHz (3 equivalent P atoms), Wiso = 25 MHz.

Figure 6. X-ray crystal structure of 3 (CCDC 1555409). Thermal ellipsoids are
set at 50 % probability. Solvent molecules and hydrogen atoms have been
omitted for clarity.
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phere led to formation of the Ru0 dinitrogen complex
[Ru0(1)(N2)] (4). IR spectroscopy reveals the presence of an ab-

sorption at nN2
= 2125 cm@1, which indicates the formation of a

coordinated dinitrogen ligand that is weakly activated.[12] The
31P NMR spectrum shows a doublet and a quartet in a 3:1
ratio, both with a coupling constant JP-P of 39 Hz. This coupling
is in agreement with a C3-symmetric complex with three equiv-
alent peripheral phosphine atoms that couple with the central
P atom in the axial position.

Brick-red colored crystals of 4 suitable for X-ray diffraction
were grown by diffusion of pentane into a THF solution of the
filtered reaction mixture. The molecular structure confirms for-
mation of complex 4 with dinitrogen coordinated to the ruthe-
nium (Figure 7). Complex 4 has a trigonal bipyramidal geome-

try (t= 0.93) with equal Ru@Pequatorial bond lengths (Ru–P1 =

Ru1 P1 2.2747(12); Ru–P2 = 2.2752(11); Ru–P3 = 2.2774(11)),
and ]P–Ru–P angles that are close to 1208. Additionally, the
P4–Ru bond (2.2133(11) a) trans to N2 is elongated relative to
2 and 3. This is likely a result of weakening of the p backbond-

ing between Ru and P4 attributable to competition for the
same metal orbital with the p-acidic dinitrogen ligand. The

general shortening of all Ru@P bonds on progressing from RuII

via RuI to Ru0 in complexes 2, 3, and 4 is somewhat unexpect-
ed, as a lower oxidation state of the metal center is intuitively

expected to result in weaker binding of s-donor ligands. The
stronger metal–phosphorus interactions observed instead are

likely the result of several contributing effects. Going from an
octahedral six-coordinate species (RuII) to a distorted trigonal

bipyramidal (RuI) and a trigonal bipyramidal (Ru0) five-coordi-

nate species lowers the steric hindrance between the phos-
phorus atoms and allows for better overlap of Ru and P orbi-

tals, resulting in shortening of the Ru@P bonds. Another factor
that can play a role is that the P1 and P2 phosphorus donor

atoms compete strongly for the same metal orbital as they are
in a trans arrangement in complex 2. Binding to separate

metal orbitals becomes possible upon decreasing the ]P1–
Ru–P2 angle, which is observed in going from 2 (160.04(3)8) to

4 (122.85(4)8), thus explaining the shortening of the Ru–P1 and
Ru–P2 bonds. Moreover, the p-acidic character of the amino-

phosphines P1, P2, and P3 can become dominant over their s-
donating capacities in the electron-rich Ru0 complex 4.

With the low oxidation state ruthenium complexes 3 and 4
in hand, we decided to explore their reactivity. Both Roper and
Grubbs reported the formation of dichlorido RuII carbenes
upon addition of a,a-dihalide and trihalide compounds to Ru0

complexes, where both the chloride and the carbene ligands
originate from the organohalide.[13] The reaction was proposed
to proceed through oxidative addition of the Cl@C bond, fol-

lowed by a-chloride elimination of the Cl@R species yielding
the dichlorido ruthenium carbene. However, RuII complexes are

known to undergo halide atom transfer reactions with organo-

halides (e.g. catalyzing the Kharash reaction)[14] and thus a radi-
cal reaction between complex 3 or 4 and organohalides could

not be excluded. Given our interest in the chemistry of metal-
loradicals and metallocarbenes,

[10, 15] we decided to investigate

the reaction of the low-valent RuI and Ru0 complexes with di-
chloromethane.

Dissolving 4 in dichloromethane resulted in the formation of

2 as evidenced by in situ 31P NMR spectroscopy (see the Sup-
porting Information). As no other complexes were detected in

the 31P NMR spectrum, the formation of a metallocarbene in-
termediate seemed unlikely. We hypothesized that the forma-

tion of 2 from 4 could proceed via a radical mechanism in
which two chlorine atoms are stepwise abstracted from di-

chloromethane by the ruthenium complex, leading to two se-

quential one-electron oxidations of the metal center. This
would imply that the RuI complex 3 should be an intermediate.

To test this hypothesis, we added two drops of CH2Cl2 to a so-
lution of 3 in [d8]THF. This brown solution turned into a light-

brown-colored suspension within 3 days and 31P NMR spectros-
copy indicated clean formation of 2. No signals corresponding
to residual 3 were observed by EPR spectroscopy, which

indeed shows that 3 can undergo one-electron oxidation
through chlorine atom transfer from dichloromethane. Com-
plex 2 is stable in CH2Cl2 or CHCl3. Having established that 2
can be formed by chlorine atom transfer to 3, we investigated

whether complex 3 can be formed from 4 by the same type of
transformation. When 1 molar equivalent of CH2Cl2 was added

to an in situ-generated solution of 4 in THF a strong EPR signal
characteristic for formation of 3 was observed after 20 h. This
observation indeed points to radical-type reactivity of the

closed-shell Ru0 complex 4.
In conclusion, although the formation of RuI and Ru0 com-

pounds is rare, we found that the tripodal tetraphosphine scaf-
fold 1 can accommodate ruthenium metal center in the oxida-

tion states RuII, RuI, and Ru0. These complexes are sufficiently

stable to be isolated and analyzed by X-ray analysis. Initial re-
activity studies show that both open-shell RuI and closed-shell

Ru0 complexes can undergo facile (net) abstraction of a
Cl·atom from dichloromethane, resulting in the formation of

the corresponding RuII and RuI complexes 2 and 3. These re-
sults show that indole-based tetraphosphorus ligands provide

Figure 7. X-ray crystal structure of 4 (CCDC 1555410). Thermal ellipsoids are
set at 50 % probability. Solvent molecules and hydrogen atoms have been
omitted for clarity.
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a useful scaffold to explore the chemistry of low-valent ruthe-
nium species. Future studies should aim at application of these

systems in catalytic atom transfer reactions.
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