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Background
Caenorhabditis elegans (C. elegans) is a small, common worm that can live freely in the 
soil. The adult worms are about 1 mm long and feed on bacteria. Compared with other 
model organisms, it is characterized by small size, strong reproductive capacity, short 
and accurate life cycle, multiple sensitive detection indicators [1], easy cultivation in lab-
oratory, conservative genetic background, low cost, easy preservation, fast passage and 
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transparent body. Because of these properties, C. elegans is widely used in many areas 
of biology, including aging, behavior, neuroscience and development [2–5]. C. elegans is 
one of the most widely used model organisms in the field of life science. Because of its 
sensitivity to exogenous compounds, C. elegans has unique advantages in multi-genera-
tion toxicity studies. C. elegans have been used in toxicity assessment and toxicological 
studies of many toxicants, including organic pollutants [6–8], metals [9, 10], pesticides 
[11–13] and medical drugs [14–16]. For example, Li et al. studied the plasticizer di(2-
ethylhexyl) phthalate (DEHP), an emerging organic pollutant in environmental science. 
By studying the locomotive behaviors of worms exposed to DEHP for a long period, it 
is demonstrated that long-term exposure to DEHP leads to multigenerational defects in 
locomotive behaviors, increasing potential health and ecological risks [6]. Wang et  al. 
studied the combined behavioral toxicity of multiple pesticides and their binary mix-
tures to worms. The toxicity of various pesticides was assessed by locomotive behav-
iors such as head thrashes and body bends. The results showed that the four insecticides 
and their binary mixed rays could significantly inhibit the locomotive behavior of worms 
[11].

Locomotive behaviors are a rapid evaluation indicator reflecting whether the nerv-
ous system of worms is damaged [17], and has been proved to be sensitive to chemi-
cal toxicity [1]. In many toxicological studies, worm head thrashes frequency and body 
bends frequency were selected as two locomotive behaviors indicators to measure the 
lifespan and vitality of worms [6–16]. In the research of locomotive behaviors of worms, 
thrashing frequency was defined as the number of wavelengths that the worm moved 
through in 1 min [18]. In previous studies, the number of head thrashes was manually 
counted, which is time-consuming and labor-intensive. In addition, when the worm’s 
head thrashes fast, the manual counting would result in some error.

In this paper, an automation counting method for counting head thrashes of worms is 
presented. After selecting worm video randomly from C. elegans behavioral phenotype 
database [19], the video is first divided into frames and each frame of gray image is pre-
processed to segment worm body. The proposed algorithm combines binary image and 
gray image to increase the accuracy of head recognition. According to three criteria “the 
worm’s head is rounder than the tail”, “the worm’s tail is darker than the head” and “the 
head distance between two consecutive frames”, image processing algorithm for calcula-
tion of worm morphology features and calculation of mean gray values of head and tail 
are used to locate the head of worm accurately. Next, the worm skeleton is extracted 
and marker points are placed to divide worm skeleton equally. The angle formulas are 
used to calculate the bending angle of the head. Finally, the number of head thrashes is 
counted according to the bending angle of the head in each frame. In addition, we test 
parameters related to the number of head thrashes of worms with different lifespans and 
analyze worm vitality. At the same time, the proposed algorithm can be applied to toxi-
cological research to reduce time and labor consumption.

Methods
In this section, the proposed algorithm is described in detail. Firstly, the video is seg-
mented into frames to get the original gray image, the gray image is preprocessed to 
detect the worm. Secondly, the binary image and gray image are combined to recognize 
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the worm’s head. Thirdly, the worm skeleton is extracted and divided into equal parts. 
Fourthly, the bending angle of head in each frame is calculated. Finally, the number of 
head thrashes of worms is counted from the head bending angle curve. The proposed 
algorithm flow chart is shown in Fig. 1.

Image acquisition and preprocessing

The videos in the experiment are downloaded from C. elegans behavioral phenotype 
database [19]. In order to get the image data, the original gray images are extracted from 
video. The process of image preprocessing is shown in Fig.  1. Since the worms in the 
video behave spontaneously on food, the worms in the video have more shadows around 
them. In order to obtain a better binary image, the original grayscale image is selected 
for cutting, and then the maximum gray value of the image’s four corners (at least one 
corner point always does not belong to the worm body) is obtained to determine the 
background intensity level of the original gray image. After the background level ( b ) of 
the image is determined, an adaptive local threshold algorithm is applied to the image. 
Firstly, a 5 × 5 moving window is used to scan the image and calculate the mean ( m ) and 
standard deviation ( s ) of pixels inside the window at each pixel position. If m < 0.7b or 
s > 0.3m , the center pixel in the moving window is assigned to 1 as a part of the worm’s 
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Fig. 1  The general description of the proposed algorithm implementation process
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body. Otherwise, the center pixel in the moving window is assigned a value of 0 as the 
background [20–22]. Next, a morphological closing operator (binary dilation followed 
by erosion) [23] is used to remove small spots in worms. Finally, the sequential algo-
rithm for component labeling is used to remove unwanted isolated small objects [24]. 
Each pixel of the image is scanned in the x and y directions. Those with the same pixel 
value are divided into the same group, and the connected components are marked. Sub-
sequently, the connected components of all pixels in the image are obtained. In order 
to ensure that there is only one object in the binary image, it is necessary to select the 
largest component among all components, the worm. In addition, in order to make sub-
sequent processing more convenient, the binary image is reversed processing.

Algorithm for head recognition

To increase the accuracy of recognizing the head, the proposed algorithm use three cri-
teria. The first criterion is that the worm’s head is rounder than the tail; The second cri-
terion is that the worm’s tail is darker than the head; The third criterion is based on the 
head distance between two consecutive frames [22]. Criterion 1 and 2 are used to recog-
nize the worm’s head in the first frame of the video. Criterion 3 is used to recognize the 
worm’s head during the tracking of worm movement.

The worm’s head is rounder than the tail. First, the edge detection algorithm is used to 
detect the worm contour. Next, the detected worm contour data are smoothed to obtain 
the coordinate data of each edge point. Then, the contour points of the worm are re-
sampled, that is, the fixed distance with a linear interpolation method is used to evenly 
sample the worm [25]. The contour is divided into equal distances, and the coordinate 
information of each partition point is recorded. The re-sampled points can be defined as 
Pi , i = 1,…n , the sharpness of a boundary point relative to its neighbors can be calculated 
as

where k is the index increment, θi is the acute angle between two intersection vectors, lk 
is the length of the vector corresponding to the index increment. A larger Sk ,i indicates a 
smaller θi and sharper boundary point. Since Sk ,i is the sharpest point on the worm body 
contour, the tail of the worm can be identified by calculating Sk ,i . In order to avoid the 
deviation caused by k value, the length of the size vector was combined and the worm 
tail point Pt is defined as

The worm head point Ph is defined as

where w is the region width to exclude the tail area. Here, we set w = n/4 , l1 = n/40 , and 
l2 = n/100.
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The worm’s tail is darker than the head. In order to increase the accuracy of head 
recognition, the proposed algorithm recognizes the worm’s head by gray value 
according to the coordinates of head and tail calculated in the first criterion. First, the 
coordinate index of the head and tail calculated in binary image is used as the coor-
dinate index of the original gray image. Next, the proposed algorithm divided the two 
points and the surrounding points into two groups and calculated the median bright-
ness of the two endpoints. Compare the mean values of the two groups, and if the dif-
ference between the two means is at least 10% of the larger mean, then the group with 
the higher mean brightness value and the corresponding endpoint is the worm’s head.

The result of head recognition is shown in Fig.  2B. The recognition results of the 
two methods were compared. If the recognition results are consistent, the proposed 
algorithm proceeds to the next step. If the recognition results are inconsistent, the 
resulting graph recognized by the two methods will be displayed, and the user will 
be prompted whether to exchange the head and tail coordinates. According to the 
user’s judgment, if the result is consistent with the first criterion, there is no need 
to exchange the head and tail coordinates; If the result is consistent with the second 
rule, change the head and tail coordinates and proceed to the next step.

In each subsequent frame, the head and tail coordinates of the previous frame are 
used as the reference standard. For example, in recognizing the head of the second 
frame, the distance between the head coordinates of the first frame and the two end-
points obtained after the skeleton extraction of the second frame is calculated sepa-
rately. As mentioned in Ref. [22], among the four offsets of head and tail in worm 
coordinates for two consecutive frames, the corresponding offsets of head-head and 

A B C
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(e) (f)

(c)
D

Fig. 2  A–D Calculation process of head bending angle. A Binary images after preprocessing. B Result graph 
of head recognition. The figure on the left recognizes the head by calculating the worm morphological 
features; The figure on the right recognizes the head by calculating the average gray value of the head 
and tail of the worm. C Marker points were placed to divide the worm skeleton equally. (a–f ) Different 
phenotypes of worms were selected to place marker points and divide the skeleton equally. D Calculation of 
bending angle of head
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tail–tail are the smallest. Therefore, the endpoint with the shortest distance between 
the head of frame 1 and the endpoint of frame 2 is the worm’s head.

Skeleton extraction and bisecting

To simplify the calculation, the skeleton of the worm is extracted. First of all, we have 
obtained the coordinates of worm contour points in the previous step and calculated 
the midpoint coordinates through the two points on the dorsal and ventral sides of the 
worm. Next, the cubic spline interpolation of the midpoint is performed to obtain the 
spline curve, which is the skeleton of the worm [26]. Then, the worm is divided into N  
segments by placing N + 1 marker points isometric (the value of N  is determined by the 
degree of bending of the head of the worm). In this paper, different phenotypes of worms 
are selected to place marker points and divide the skeleton equally. The resulting graph 
is shown in Fig.  2C. Six representative phenotypes are shown and according to these 
marks, the bending angle of head can be calculated accurately. Here, we set N  = 7.

Calculation of head bending angle

The worm is divided equally by placing marker points, and the first three points from 
the head are selected to calculate the bending angle of the head. A schematic diagram for 
calculating the bending angle of the worm head is shown in Fig. 2D.

Define three points as Pa,Pb and Pc . According to the law of cosines α can be calculated 
as

where la is the distance between Pa and Pb , lb is the distance between Pb and Pc , lc is the 
distance between Pa and Pc . The worm head thrash angle β can be calculated as

In the case of excessive head bending in Fig.  2C(d), the angle calculated by these 
formulas is more than 90. In order to avoid deviation in counting the number of head 
thrashes, the angle value more than 90 was set to 90.

Count the number of head thrashes

In previous studies, head thrashes were defined as one head thrashing when the body 
bending of worm reached half of its body length [18]. This counting method has some 
limitations, it cannot be calculated for the small amplitude of the head thrashes. In 
Fig. 3A(i), the worm’s head is bent up to half its body length; In Fig. 3A(ii), the worm’s 
head is bent up to one-third of its body length; In Fig. 3A(iii), the head of the worm is 
bent up to a quarter of its body length; In Fig. 3A(iv), the head of the worm is bent up to 
one-sixth of its body length. For the various head thrashes cases shown in Fig. 3A, there 
will be a large deviation in the results calculated by only referring to the judgment crite-
ria in Ref. [18].

Herein, the worm’s head from side to side and back again is recorded as a head thrash. 
First, the head and tail positions of worms in the first frame are recognized, worm 
skeleton is extracted, marker points were set to divide worm skeleton equally, and the 
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bending angle of head is calculated by using the first three points from the head. Then, 
in each subsequent frame, the head and tail coordinates of the previous frame are used 
as the reference standard. For example, in recognizing the head of the second frame, the 
distance between the head coordinates of the first frame and the two endpoints obtained 
after the skeleton extraction of the second frame is calculated separately. As mentioned 
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Fig. 3  A The graph of the head thrashes of worm. From (i) to (v), the amplitude of head thrashes decreased 
gradually. The situation shown in (v) may be a foraging behavior. The proposed algorithm reduce the bias 
caused by foraging behavior by setting a threshold. (B, C) Head bending angle curves. The red point is the 
inflection point where the bending angle of head changes from large to small and then becomes large again, 
and it is also the reference point for calculating the number of head thrashes. In area II of B, head thrashes of 
worm violently, with the head bending angle ranging from 0 to 90 and the maximum head bending angle 
reaching 90. In area I of B, head thrashes of worm frequently, with the head bending angle ranging from 10 
to 50. In area III of C, head thrashes of worm slightly, with the head bending angle ranging from 25 to 35. 
In area IV of C, straight line appears in the figure, this indicated that the head of worm remained stationary 
during this period
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in Ref. [22], among the four offsets of head and tail in worm coordinates for two con-
secutive frames, the corresponding offsets of head-head and tail–tail are the smallest. 
Therefore, the endpoint with the shortest distance between the head of frame 1 and the 
endpoint of frame 2 is the worm’s head.

Each subsequent frame needs to calculate the bending angle of head according to the 
first frame standard. Finally, the number of head thrashes of worm is calculated accord-
ing to the change of angle. The curve of angle change is shown in Fig. 3. The red point 
is the inflection point where the bending angle of head changes from large to small and 
then becomes large again, and it is also the reference point for calculating the number of 
head thrashes. In area II of Fig. 3B, head thrashes of worm violently, with the head bend-
ing angle ranging from 0 to 90 and the maximum head bending angle reaching 90. In 
area I of Fig. 3B, head thrashes of worm frequently, with the head bending angle ranging 
from 10 to 50. In area III of Fig. 3C, head thrashes of worm slightly, with the head bend-
ing angle ranging from 25 to 35. In area IV of Fig. 3C, straight line appears in the figure, 
this indicated that the head of worm remains stationary during this period.

In addition, worms rapidly wiggle their noses to explore the environment during for-
aging [27]. The proposed algorithm reduces the bias caused by foraging behavior by set-
ting a threshold value, calculating the angle difference between two consecutive frames, 
putting it into an array, iterating over the number array and removing the value with an 
absolute value less than 5.

Results
In this section, experimental verification is performed to verify the effectiveness of the 
proposed algorithm. First of all, experimental verification is performed to verify the 
accuracy of the head recognition algorithm. Secondly, the robustness of the proposed 
algorithm is evaluated by comparing the counting results of the manual counting. To be 
specific, a trained human observer is selected to count the number of head thrashes of 
the worm. Then, to exploit the relationship between the vitality of worms with lifespan, 
the number of head thrashes of different worm strains is counted by the proposed algo-
rithm and the results are analyzed and discussed.

C. elegans strains

Wild-type (Schafer Lab N2, Bristol) and 6 mutants ser-1(ok345), daf-7(m62), egl-8(n488), 
daf-5(e1386), ser-4(ok512) and unc-10(md1117) of C. elegans are obtained from C. 
elegans behavioral phenotypes database [19]. Worms culture methods and video data 
acquisition are described as [19]. In these experiments, all the worms used in the analysis 
are young adults, spontaneously behaving on food. Before video data of worms were col-
lected, all worms were kept under strictly controlled conditions [2]. And the worms were 
picked and moved to their tracking plate to acclimate for 30 min before being tracked. 
In the process of collecting worms video data, in order to improve the resolution of the 
video taken, the camera magnification was set between 3.5–4.5 microns/pixel (a corre-
sponding FOV of, approximately, 2.5 × 2 mm at 640 × 480 resolution). At the same time, 
to avoid potential indoor conditions leading to measurement bias, the recording was dis-
tributed as randomly as possible across multiple trackers. The frame rate of the video in 
the C. elegans behavioral phenotype database [19] is 20–30 frames per second.
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Head recognition

The head and tail recognition algorithm is tested on the first frame of 210 1-minute 
videos from 7 mutant types. During the experiment, the algorithm marks the worm’s 
head for verification by human observers. The experimental results are shown in Table 1. 
The rate of conflict between curvature-based and grayscale-based head recognition 
methods is 3.8%. If the grayscale-based method is used as the judgment criterion when 
conflicts occur, the final head recognition error rate is around 2.9%. Manual checking 
is used to ensure that the head recognition in the first frame is correct when conflicts 
occur. Because in each subsequent frame, the head and tail coordinates of the previ-
ous frame are used as the reference standard. For example, in the head recognition of 
the second frame, the distance between the head coordinates of the first frame and the 
two endpoints obtained after the skeleton extraction of the second frame is calculated 
respectively. As mentioned in Ref. [22], among the four offsets of head and tail in worm 
coordinates for two consecutive frames, the corresponding offsets of head-head and 
tail–tail are the smallest. Therefore, the endpoint with the shortest distance between the 
head of frame 1 and the endpoint of frame 2 is the head of worm. By using this method, 
the head recognition accuracy of each subsequent frame could be guaranteed.

Algorithm verification by human observers

To evaluate the accuracy and robustness of the algorithm, the algorithm for automati-
cally counting the number of head thrashes was tested in 210 1- minute videos. Wild-
type (Schafer Lab N2, Bristol) and 6 mutants daf-5(e1386), daf-7(m62), egl-8(n488), 
ser-1(ok345), ser-4(ok512) and unc-10(md1117) of C. elegans are obtained from C. ele-
gans behavioral phenotypes database [19]. Each strain has 30 videos. First, a trained 
human observer is selected to count the number of head thrashes in each video and 
record the results. Then the proposed algorithm is used to count the number of head 
thrashes in each video and record the results. Experimental results of manual count and 
program count are shown in Fig. 4. The results of manual count and program count show 
the linear distribution and the average absolute error is 3.0714, the Pearson Correlation 

Table 1  Recognition of the head for various strains

a The number of conflict the between curvature-based and grayscale-based head recognition methods
b The error that occurred in curvature-based method when conflict occurs
c The error that occurred in grayscale-based method when conflict occurs
d The error that occurred in recognition of the head when no conflicts occur

Worm type Number of 
videos

Number of 
conflictsa

Curvature-based 
wrongb

Grayscale-based 
wrongc

Recognition 
wrongd

ser-1 (ok345) 30 0 0 0 1

daf-7 (m62) 30 2 1 1 1

egl-8 (n488) 30 2 2 0 0

N2 30 0 0 0 0

daf-5 (e1386) 30 3 2 1 2

ser-4 (ok512) 30 0 0 0 0

unc-10 (md1117) 30 1 1 0 0

Total 210 8 6 2 4
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Coefficient between manual counting results and program counting results is 0.9463, 
indicating that our algorithm is very robust.

The difference of head thrashes frequency of different worm strains

In order to analyze the difference of head thrashes frequency of different worm strains 
which have different lifespans, select N2 of C. elegans, the strains with longer lifespan 
are ser-1(ok345), daf-7(m62) and egl-8(n488) of C. elegans, the strains with shorter 
lifespan are daf-5(e1386), ser-4(ok512) and unc-10(md1117) of C. elegans [1, 17, 
28–32]. We randomly select 30 groups of 1-min videos for worms of each strain and 
counted the number of head thrashes manually and programmatically. Then calcu-
late the mean and standard deviation of manual count and program count of worms 
of each strain and the results are shown in Fig. 5. In this paper, the number of head 
thrashes were counted by setting a threshold value on the bending angles differences 
between consecutive frames. Figure 5 shows the program count results with various 
threshold values (0, 5 and 10). In the process of human eye observation, when the 
worm head thrashes frequently or with a small amplitude, manual counting is prone 
to error and human bias, resulting in a lower result of manual counting than program 
counting. In addition, the manual counting would lead to counting underestimation. 
To reduce this bias, the threshold value is set as 5 in the program count. The number 
of head thrashes of N2 of C. elegans is about 55 times per minute; The number of 
head thrashes of ser-1(ok345) of C. elegans is about 58 times per minute; The num-
ber of head thrashes of daf-7(m62) of C. elegans is about 58 times per minute; The 
number of head thrashes of egl-8(n488) of C. elegans is about 57 times per minute; 
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Fig. 4  Results for counting the number of head thrashes manually and programmatically. The horizontal 
axis is the number of head thrashes is manually counted and vertical axis is the number of head thrashes is 
programmatically counted. The solid red line is a straight line with slope k = 1. The two green dotted lines are 
error lines with slope k = 1 and intercept b = 10. Dots of different colors and shapes represent different strains 
of worms
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The number of head thrashes of daf-5(e1386) of C. elegans is about 45 times per min-
ute; The number of head thrashes of ser-4(ok512) of C. elegans is about 43 times per 
minute; The number of head thrashes of unc-10(md1117) of C. elegans is about 42 
times per minute. The results showed that the head thrashes frequency of the long 
lifespan worm strains are higher than that of N2 of C. elegans, while the head thrashes 
frequency of the short lifespan worm strains are lower than that of N2 of C. elegans. 
Head thrashes behavior is a key indicator of locomotive behaviors in toxicological 
studies [6–8]. Vitality refers to the rate at which age-related physiological changes 
occur during an organism’s lifespan. Vitality is related to locomotory rates in worms. 
C. elegans shows age-related decline in vitality, which is manifested by reduced body 
locomotory [33–39]. The seven strains have the same culture conditions, and the 
experiment results show that the head thrashes frequency of the long-lived worms 
is higher than that of the short-lived worms. It can be inferred that the long lifespan 
worm strains show higher vitality.

In order to better understand the difference in head thrashes frequency and amplitude 
between different strains of worms, we plot the head bending angles curve as shown in 
Fig. 6. Three 300 frames of video sequence are randomly selected from worms of each 
strain to plot the head bending angles curve. As can be seen from Fig. 6(a–d), the head 
bending angles of N2, ser-1(ok345), daf-7(m62) and egl-8(n488) of C. elegans converge at 
20 to 50 degrees. With a lot of great head bending close to 90 degrees. The head bend-
ing angle changes frequently between adjacent frames. It illustrates that head thrashes 
of N2, ser-1(ok345), daf-7(m62) and egl-8(n488) of C. elegans are strong. These four 
strains show high vitality. As can be seen from Fig. 6(e–g), the head bending angles of 
daf-5(e1386), ser-4(ok512) and unc-10(md1117) of C. elegans show high variability. For 
example, as can be seen from Fig. 6(g), the blue curve is almost always horizontal and 
has a small bending angle from frames 90 to 150, indicating that the worm’s head is 
almost stationary during this period. The orange curve has a smaller oscillation ampli-
tude, indicating that the head thrashes amplitude slightly and may be accompanied by 
foraging behavior during this period. But compared to the first four strains, the head 
bending angle changes slowly between adjacent frames. It illustrates that head thrashes 
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daf-5(e1386), ser-4(ok512) and unc-10(md1117) of C. elegans are variable, sometimes 
head thrashes of worm frequently, sometimes head thrashes of worm slightly, and 
sometimes the head of worm remained stationary. From a macro perspective, the head 
thrashes frequency of the last three strains was lower than that of the first four strains. 
The latter three strains show relatively low vitality.

Discussion
A new method is proposed to automatically count the number of head thrashes of 
worms. This algorithm makes it possible to count the number of head thrashes from the 
worm videos collected by the automatic tracking system. A trained human observer is 
selected to count the number of head thrashes in experimental video. The experimental 
results show that the counting results of the proposed algorithm are comparable to those 
of human observers. In previous studies, the number of head thrashes was obtained 
through observation and counting, which is a time-consuming and labor-intensive 

0 30 60 90 120 150 180 210 240 270 300

Frames

0

10

20

30

40

50

60

70

80

90

H
ea

d 
be

nd
in

g 
an

gl
e

N2(a)

0 30 60 90 120 150 180 210 240 270 300

Frames

0

10

20

30

40

50

60

70

80

90

H
ea

d 
be

nd
in

g 
an

gl
e

ser-1(ok345)(b)

0 30 60 90 120 150 180 210 240 270 300

Frames

0

10

20

30

40

50

60

70

80

90

H
ea

d 
be

nd
in

g 
an

gl
e

daf-7(m62)(c)

0 30 60 90 120 150 180 210 240 270 300

Frames

0

10

20

30

40

50

60

70

80

90

H
ea

d 
be

nd
in

g 
an

gl
e

egl-8(n488)(d)

0 30 60 90 120 150 180 210 240 270 300

Frames

0

10

20

30

40

50

60

70

80

90

H
ea

d 
be

nd
in

g 
an

gl
e

daf-5(e1386)(e)

0 30 60 90 120 150 180 210 240 270 300

Frames

0

10

20

30

40

50

60

70

80

90

H
ea

d 
be

nd
in

g 
an

gl
e

ser-4(ok512)(f)

0 30 60 90 120 150 180 210 240 270 300

Frames

0

10

20

30

40

50

60

70

80

90

H
ea

d 
be

nd
in

g 
an

gl
e

unc-10(md1117)(g)

Fig. 6  Head bending angles curves of different worm strains. In panel (a–g), the blue, green and orange 
curves are three groups of worms randomly selected from the same strain to show the head bending angles 
of worms
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process. Worm head thrashes frequency is a key locomotive behaviors indicator in toxi-
cological research. Automatic counting of head thrashes will play an important role in 
toxicological research.

In addition, the proposed algorithm not only counted the number of head thrashes 
of N2 of C. elegans, but also selected three long lifespan strains: ser-1 (ok345), daf-7 
(m62) and egl-8 (n488) of C. elegans, and three short lifespan strains: daf-5 (e1386), ser-4 
(ok512) and unc-10 (md1117) of C. elegans. The statistical results show that the average 
number of head thrashes of long-lived worms is higher than that of N2 of C. elegans. 
The average number of head thrashes of worms with short lifespan is significantly lower 
than that of N2 of C. elegans. All experimental worms have the same age, indicating that 
the worm with long lifespan has higher vitality. The proposed algorithm test parameters 
related to the number of head thrashes of worms with different lifespans, it is proved 
that the relationship between worm vitality and lifespan [33–39].

Comparison to related work

To increase the recognition accuracy of worm’s head, the proposed algorithm use three 
criteria. The first criterion is that the head of the worm is rounder than the tail; The 
second criterion is that the tail of the worm is darker than the head; The third criterion 
is based on the head distance between two consecutive frames. FIMTrack method [40] 
used criterion 1 to recognize the worm’s head in each frame during the tracking pro-
cess of worm movement. In the tracking process, if the head of one frame is recognized 
incorrectly, it will cause great errors to the final calculation result. In this paper, the pro-
posed algorithm adds criterion 2 to criterion 1 and reduces the error rate of head recog-
nition by 0.8%. In addition, we use criterion 3 during the tracking of worm movement. 
As mentioned in Ref. [22], among the four offsets of head and tail in worm coordinates 
for two consecutive frames, the corresponding offsets of head-head and tail–tail are the 
smallest. Therefore, the recognition accuracy of the worm head in each frame and algo-
rithm efficiency could be improved.

Many systems can measure specific behavioral parameters of worms, but none can 
automatically count the number of head thrashes. However, some systems can calcu-
late the bending angles. For example, the software FIMTrack in [40] proposed a method 
to judge the bending direction of the worm body by calculating the bending angles. 
FIMTrack calculated the bending angles based on the coordinates of the three points of 
the head, midpoint of the spine and tail. The calculated bending angles range from 0 to 
360 degrees. Our method computes the bending angles by selecting three consecutive 
equipartition points starting from the head. The calculated bending angles range from 
0 to 90 degrees. In order to compare the bending angles calculated by the two meth-
ods, we standardize the bending angles calculated by FIMTrack method. The curves 
of bending angles calculated by the two methods are shown in Fig.  7. As can be seen 
from Fig.  7A(a), when the head, midpoint and tail of worm are in a straight line, the 
head bending angle calculated by FIMTrack method is 180 degrees, which is 0 degrees 
after standardized, corresponding to area II in Fig. 7B. It can be seen from Fig. 7 that 
FIMTrack method cannot accurately calculate the small amplitude head thrashes behav-
ior of worms. In addition, the system Multi-Worm Tracker (MWT) in [41] proposed a 
method to judge “end wiggle” of the worm by calculating the bending angles. Angle in 
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radians between the last 20% of the body and the rest of thebody (using whichever end 
shows a greater angle). In the calculation process, MWT method could not automati-
cally recognize the worm’s head, but chose the end with the largest angle as the calcu-
lation result. The curves of bending angles calculated by MWT method are shown in 
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Fig. 7. As can be seen from Fig. 7, the bending angles calculated by MWT method are 
higher than that calculated by our method in most cases. As can be seen from Fig. 7A(e), 
the bending angle of the tail is greater than that of the head, so the bending angle of the 
head or tail is calculated by using MWT method. Compared with MWT method, the 
proposed algorithm can accurately recognize the head position of worm in each frame 
and change the number of equipartition points according to the size of worm, thus mak-
ing the calculated head bending angles more accurate. Compared with the proposed 
algorithm, the bending angles calculated by FIMTrack and MWT methods cannot be 
directly used to count head thrashes. The proposed algorithm can not only calculate 
the head bending angles of worms with different shapes and sizes, but also calculate the 
head thrashes frequency automatically.

Applications for the proposed algorithm

The proposed algorithm is useful for automatically quantifying the head thrashes behav-
ior of worms, which would facilitate the high-throughput forward genetic screens or 
drug-candidate screens using the worm [6–16]. For videos recorded under different con-
trast, lighting condition, background and other conditions, if worms are directly identi-
fied or unified image preprocessing methods are used, certain errors will be caused to 
the experimental results. Therefore, worms need to be placed on a tracking plate with a 
clean background and uniform light during the recording process. In addition, there can 
only be one worm per video. In future studies, we will consider simultaneous detection 
of multiple nematodes in a video to enhance the usability of the algorithm.

Experiments on another database [42] are conducted to prove the robustness of the 
proposed algorithm. More detailed information on data collection can be obtained from 
[43]. In brief, young L4-stage N2 of C. elegans were imaged with a video tracking micro-
scope at f = 32 Hz. Worms grow at 20˚C under standard conditions [44]. First of all, the 
worms were removed from bacteria-laden agar plates with a platinum worm pick and 
rinsed with water. Let them swim in the NGM buffer for one minute. Then they were 
transferred to an analysis plate (a 9 cm Petri dish) containing copper rings (5.1 cm inside 
diameter) that were pressed into the agar surface to prevent the worms from reach-
ing the sides of the plate. The recording starts about 5  min. After transfer, it lasts for 
35 min. A total of 12 worms were recorded [42]. We randomly select three one-minute 
video sequences from each worm video. A total of 36 one-minute videos are selected. 
The proposed algorithm is used to count the number of head thrashes in each video and 
record the results. Experimental results of manual count and program count are shown 
in Fig. 8. The results of manual count and program count show the linear distribution 
and the average absolute error is 2.0857, the Pearson Correlation Coefficient between 
manual counting results and program counting results is 0.9414, indicating that our 
algorithm is very robust.

Conclusions
In order to reduce the time and manpower consumption in toxicological studies, a new 
method is proposed to automatically count the number of head thrashes of worms. The 
robustness of the proposed algorithm is evaluated by comparing the counting results of the 
manual counting. It is proved that the proposed algorithm can recognize the occurrence of 
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head thrashes of C. elegans of different strains. In addition, we analyze the difference of the 
head thrashes behavior of different worm strains, it is proved that the relationship between 
worm head thrashes behavior and lifespan [33–39]. The proposed algorithm will play an 
important role in toxicological research and worm vitality research.
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