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Abstract 

Novel biomarkers of type 1 diabetes (T1D) are needed for earlier detection of disease and 

identifying therapeutic targets. We identified biomarkers of T1D by combining plasma cis and 

trans protein QTLs (pQTLs) for 2,922 proteins in the UK Biobank with a T1D genome-wide 

association study (GWAS) in 157k samples. T1D risk variants at over 20% of known loci 

colocalized with cis or trans pQTLs, and distinct sets of T1D loci colocalized with immune, 

pancreatic secretion, or gut-related proteins. We identified 23 proteins with evidence for a 

causal role in using pQTLs as genetic instruments in Mendelian Randomization which included 

multiple sensitivity analyses. Proteins increasing T1D risk were involved in immune processes 

(e.g. HLA-DRA) and, more surprisingly, T1D protective proteins were enriched in pancreatic 

secretions (e.g. CPA1), cholesterol metabolism (e.g. APOA1), and gut homeostasis. Genetic 

variants associated with plasma levels of T1D-protective pancreatic enzymes such as CPA1 

were enriched in cis-regulatory elements in pancreatic exocrine and gut enteroendocrine cells, 

and the protective effects of CPA1 and other enzymes on T1D were consistent when using 

instruments specific to acinar cells. Finally, pancreatic enzymes had decreased acinar 

expression in T1D, including CPA1 which was altered prior to onset. Together, these results 

reveal causal biomarkers and highlight processes in the exocrine pancreas, immune system, 

and gut that modulate T1D risk. 
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Introduction 

Type 1 diabetes (T1D) is a complex disorder characterized by autoimmune destruction of 

insulin-producing beta cells in the pancreatic islets and subsequent hyperglycemia. Identifying 

biomarkers for T1D can inform disease prediction and diagnosis, selection of individuals for 

therapies, and identification of new therapeutic targets. Seroconversion to islet-specific 

autoantibodies precedes dysglycemia and the development of T1D1 in the majority of cases, 

and therefore represents a robust biomarker of T1D. It is unknown; however, whether islet-

specific autoantibodies play a role in disease pathogenesis directly and thus may not represent 

modifiable factors to prevent T1D2. Furthermore, recent work has argued that beta cell 

dysfunction already exists at the time of seroconversion3,4,5,6. There is therefore a need for novel 

biomarkers of T1D for both earlier detection of disease as well as to identify modifiable factors 

that prevent disease.  

 

Identifying robust biomarkers of T1D, however, has thus far had limited success. Cellular 

biomarkers such as infiltrating antigen-specific and cytotoxic T-cells are tissue-localized to the 

site of autoimmune attack in the pancreas and are difficult to distinguish in circulating blood7,8. 

Other studies have identified altered circulating plasma levels of proteins and metabolites 

preceding T1D onset, although in limited sample sizes9. Furthermore, few studies have 

assessed whether circulating biomarkers are causally linked to the development of T1D10. 

Mendelian randomization (MR) is a technique that can assess whether exposures such as 

circulating protein levels have a causal effect on T1D using human genetic association data11. 

Studies using MR have revealed exposures with both evidence for causality in T1D such as 

childhood BMI12,13 and levels of several circulating proteins14 and clarified those unlikely to play 

a causal role in T1D such as vitamin D levels15 and pancreatic volume16. Statistical 

colocalization is an orthogonal technique that can identify exposures associated with T1D risk at 

individual loci based on shared causal variants. This method has been applied to T1D primarily 

in the context of gene expression QTLs. For both approaches a key limitation to date has been 

the availability of studies of sufficient scope and sample size which are needed to establish 

robust relationships to disease.  

 

In this study, we evaluated circulating proteins for a causal role in T1D risk by utilizing QTLs for 

plasma levels of 2,922 proteins from 35k individuals in the UK Biobank Pharma Proteomics 

Project (UKB-PPP)17. We performed colocalization and MR analyses of plasma protein QTLs 
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(pQTLs) with a T1D genome-wide association study (GWAS) in 157k samples1. We then 

characterized potential mechanisms of proteins with evidence for a causal role in T1D using 

genetic association and single cell genomics data.  

 

Results 

 

Colocalization of T1D loci with plasma protein QTLs 

 

We identified T1D risk loci genome-wide with evidence for affecting circulating protein levels. 

We utilized genome-wide association data for T1D in a meta-analysis of 157k samples 

(Supplementary Table 1), as well as cis and trans quantitative trait loci for plasma levels of 

2,922 unique proteins (pQTLs) in 35k samples from the UKB-PPP project and performed 

statistical colocalization. In total, across 92 known T1D loci, 20 (21.7%) were colocalized with 

plasma pQTLs (PPH4 >0.8, r2 between lead variants >0.5) using coloc18 (Fig. 1a, 

Supplementary Table 2). Most loci were colocalized with pQTLs for a single protein, although 

three loci (SH2B3, FUT2, IRF1) colocalized with more than 50 proteins each (Fig. 1a). The 

majority of colocalized pQTLs were for trans signals. 

 

Colocalizations with plasma pQTLs provided novel, and in some cases unexpected, insight into 

the potential mechanisms of risk variant activity at many loci. For example, the RNLS locus is 

colocalized with plasma levels of colipase (CLPS), which is a co-factor of pancreatic lipase 

produced specifically in pancreatic acinar cells. Risk variants at RNLS are also colocalized with 

an expression QTL for the PTEN gene in pancreas in the GTEx database19, supporting a 

potential function of this locus in pancreatic acinar cells. The GLIS3 locus is colocalized with 

plasma levels of thyroglobulin (TG), which is produced in follicular cells of the thyroid, and 

GLIS3 is an essential transcriptional regulator of thyroid hormone production20,21. Although the 

RNLS and GLIS3 loci are both implicated in beta cell function from previous studies22,23, pQTL 

colocalization results suggest risk variants at these loci may also affect other systems.  

 

We next performed hierarchical clustering of all T1D risk loci with at least one colocalized pQTL 

to determine whether loci could be grouped based on their colocalization profiles (Fig. 1b). The 

three loci with many colocalizations SH2B3, FUT2, and IRF1 had largely non-overlapping sets 

of colocalized proteins. SH2B3, in particular, had over 200 strongly colocalized proteins with 

many immune-related pQTLs sharing the same direction of effect as T1D risk. Three other loci 
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CTRB2, CENPW, and NOTCH2 clustered together, where four proteins strongly colocalized 

with all three loci and an additional seven proteins colocalized with two of the three loci. Proteins 

colocalizing with these three loci included multiple pancreatic enzymes (CPA1, CPB1, PNLIP, 

CELA2A/3A) as well as pancreatic enzyme-associated proteins (PNLIPRP1, a pancreatic lipase 

related protein, and SERPINI2, a serpin peptidase inhibitor). Interestingly, T1D protective alleles 

at these loci were correlated with increased pancreatic enzyme levels. The FUT2 locus was also 

colocalized with multiple pancreatic enzymes, including those not colocalized with other T1D 

loci such as amylase (AMY2A/B). 

 

Pathway enrichment of shared proteins for each T1D risk locus with more than two colocalized 

pQTLs (see Methods) revealed further insight into potential mechanisms of these loci (Fig. 1c). 

For example, pQTLs colocalized with the SH2B3 locus were enriched for cytokine-cytokine 

receptor interactions (FDR=5.65x10-8) and viral interactions with cytokine receptors 

(FDR=2.06x10-7), SH2B3 and FUT2 were enriched for cell adhesion molecules (FDR=5.10x10-

11, FDR=1.93x10-3), and IRF1 was enriched for RAP1 and RAS signaling (FDR=6.43x10-3, 

FDR=1.53x10-3). By comparison, colocalized pQTLs at the CTRB2, CENPW, NOTCH2 loci, as 

well as FUT2, were all enriched for pancreatic enzyme-related pathways such as pancreatic 

secretions (FDR=2.26x10-13, FDR=2.37x10-11, FDR=1.45x10-5, FDR=9.90x10-6) and protein 

digestion and absorption (FDR=5.07x10-8, FDR=1.22x10-7, FDR=1.31x10-3). 

 

Together these results reveal a large proportion of T1D loci colocalized with plasma cis and 

trans pQTLs and implicate cytokine receptor interactions and pancreatic enzymes, among other 

processes such as gut homeostasis, in T1D risk at individual loci. 

 

Plasma proteins with a causal role in T1D using Mendelian randomization. 

 

We next assessed whether circulating levels of specific proteins may be causally linked to T1D 

pathogenesis. For each protein, we defined genetic instrumental variables consisting of all 

independent cis or trans QTL signals strongly associated with plasma levels of the protein (see 

Methods). We then tested instruments for association to T1D using the inverse variance 

weighted (IVW) method for Mendelian randomization (MR)24.  

 

In total, we identified 23 proteins with evidence for a causal role in T1D when using combined 

cis and trans pQTLs (FDR<0.1) (Fig. 2a, Supplementary Table 3). Among these 23 proteins, 
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increased circulating levels of 12 proteins were protective for T1D, whereas increased 

circulating levels of 11 proteins increased risk of T1D. Proteins with the largest protective effects 

on T1D included DXO, PRSS2, TGFA, and CPA1, while proteins with the largest risk effects 

included HLA-DRA, CASP8, and APBB1IP. The 12 protective proteins were significantly 

enriched for pathways related to cholesterol metabolism (LRPAP1, APOC1, APOA1; 

FDR=3.49x10-3), pancreatic secretions (PNLIPRP1, CPA1, PRSS2; FDR=5.75x10-3), fat 

digestion/absorption (PNLIPRP1, APOA1; FDR=2.34x10-2), and protein digestion/absorption 

(CPA1, PRSS2; FDR=8.32x10-2) (Fig. 2b). Several other proteins showing protective effects on 

T1D, ALPI and TGFA, are involved in gut homeostasis. By comparison, the 11 proteins that 

increased T1D risk were enriched in pathways for antigen processing and presentation (HLA-

DRA, LGMN; FDR=1.14x10-1) and other immune-related processes (Fig. 2c). Another risk-

increasing protein APBB1IP is involved in T cell activation through contact with antigen 

presenting cells.  

 

We next performed sensitivity analyses of the 23 proteins with evidence for a causal role in 

T1D. To determine whether significant effects could potentially be explained by horizontal 

pleiotropy, we calculated the MR Egger intercept for each set of instruments. Overall, no 

instrument showed significant, or even nominally significant, evidence for pleiotropy 

(Supplementary Table 4). Next, as the inclusion of outliers in MR instruments can indicate 

pleiotropic bias, we used MR-PRESSO to detect outlying variants in pQTL instruments as well 

as re-evaluate MR after outlier removal25. We identified outlying variants in the instruments of 9 

proteins and after re-analysis with outlier correction, 5 of the 9 (CPA1, DXO, KLK1, OSMR, and 

PRSS2) still had significant effects on T1D (Supplementary Table 5, Supplementary Fig. 1a). 

Finally, we performed leave-one-out analyses to determine the impact of individual variants in 

each instrument on MR. All but one protein (ALPI) had consistent effect sizes when iteratively 

excluding individual variants, indicating robust instruments (Supplementary Fig. 1b, 

Supplementary Table 6). For ALPI, leave-one-out analysis indicated that the causal effect was 

driven by a single variant at the FUT2 locus. In total, these results reveal proteins with 

consistent effects for causal effects on T1D after multiple sensitivity analyses. 

 

The inclusion of trans signals in pQTL instruments may result in variants with indirect effects on 

a protein. Therefore, we evaluated whether proteins had consistent effects on T1D using 

instruments consisting of only cis pQTLs. Of the 23 proteins with significant effects in MR using 

combined cis and trans pQTLs, all but one (ALPI) had had at least one independent cis QTL. 
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When using instruments containing only cis pQTLs in MR, almost all proteins (87%, 20/22) 

showed directionally consistent effects on T1D, of which 17 still remained significant at 

FDR<0.10 (Fig. 2d, Supplementary Table 7). The small number of proteins where cis pQTL 

instruments did not have consistent effects on T1D included PRSS2, which had the opposite 

effect on T1D compared to the combined cis and trans pQTLs, and LRPAP1, which had little to 

no effect on T1D (Fig. 2d, Supplemental Fig. 1c).  

 

In total, across multiple sensitivity analyses and genetic instruments, 14 proteins showed 

consistent causal effects on T1D. These included pancreatic proteases (CPA1, KLK1), other 

enzymes (CASP8, IDUA), the apolipoprotein APOA1, cytokine receptors IL6R, OSMR, 

complement factor C7, as well as proteins involved in T cell-APC interactions (APBB1IP, HLA-

DRA) and cell adhesion (CCN3, PCDH12). Overall, circulating proteins causally associated with 

T1D implicate diverse processes including pancreatic secretions, digestion, antigen 

presentation, and immune activity in T1D. 

 

Enrichment of plasma protein QTLs for cell type-specific regulatory elements. 

 

Levels of a protein in plasma are likely are result of multiple intra- and extra-cellular processes 

including production, secretion, and degradation, and understanding the processes underlying 

plasma levels may provide insight into how they contribute causally to T1D. As most genetic 

variants associated with protein levels are in non-coding regions and likely affect gene 

regulation, intersection of associated variants with cell type-specific epigenomic maps can help 

reveal cell types driving plasma levels of a protein.  

 

We tested for genome-wide enrichment of plasma pQTLs for T1D-causal proteins in cis-

regulatory elements (cREs) for 110 adult cell types using stratified LD score regression26–28. In 

total, there were 188 significant (FDR<0.10) links between pQTLs and cell types 

(Supplementary Table 8). Enriched cell types provided insight into processes underlying 

plasma levels of many proteins. For example, pancreatic enzymes CPA1, PNLIPRP1, and 

PRSS2 were significantly enriched in cREs in pancreatic acinar and ductal cells, where they are 

produced and secreted into the gut, as well as gut enterocyte and colon epithelial cells (Fig. 3a-

c, Supplementary Fig. 2a). Interestingly, the enzyme KLK1, although highly expressed in the 

pancreas, had distinct enrichment patterns including lung (e.g. exocrine club cells), epidermal, 

and esophageal endothelium cREs. In other examples, HLA-DRA was significantly enriched for 
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cREs in macrophages, where it is expressed, as well as, interestingly, acinar cells. Complement 

protein C7 was enriched in cREs in hepatocytes and macrophages, where complement proteins 

are produced29,30, as well as endothelial cells where it mediates inflammation31. Finally, TGFA, a 

growth factor that induces angiogenesis, was enriched in pericytes, the supporting cells around 

capillaries32,33, endothelial cells, and mast cells.  

 

Next, we annotated candidate causal variants at T1D risk loci colocalized with these proteins by 

leveraging cell type-specific cREs enriched for plasma pQTLs. The CTRB1/2 locus is 

colocalized with pQTLs for multiple pancreatic enzymes (PRSS2, CPA1/2, CPB1, PNLIPRP1/2, 

CELA2A/3A), and genes at this locus encode for the digestive enzyme chymotrypsinogen. A 

candidate causal variant at CTRB1/2 rs72802342 (T1D posterior probability=0.26) as well as 

several other lower probability variants (rs72802352, rs2039014912) overlapped cREs in acinar 

cells, and no other enriched cell types, supporting that altered acinar regulation underlies 

shared associations between T1D and pancreatic enzyme levels at this locus (Fig. 3d, 

Supplementary Table 9). At SH2B3, which colocalized with serum levels of the MHC class II 

gene HLA-DRA, multiple candidate variants overlapped cREs active in macrophages and other 

immune cell types. Finally, at the CENPW locus, which colocalized with pancreatic enzymes 

(CPA1, PNLIPRP1, PRSS2), candidate variants overlapped cREs active in colon epithelial cells, 

gut enterocytes, and hepatocytes, suggesting cell types that could mediate risk at this locus. 

 

We next determined whether the causal effects of pQTLs on T1D identified using MR were 

driven through specific cell types. For each of the 23 causal proteins, we generated ‘cell type-

specific’ MR instruments by restricting the full instrument to just pQTL variants overlapping 

cREs in each cell type that was broadly enriched for pQTLs. For the pancreatic enzymes CPA1, 

PNLIPRP1, and PRSS2, pQTL variants overlapping pancreatic acinar cell cREs showed a 

significant protective effect on T1D (FDR=8.68x10-6, FDR=1.62x10-2, FDR=7.34x10-3), and in 

each case this protective effect was stronger compared to the full instrument (Fig. 3e, 

Supplementary Table 10). Interestingly, CPA1 variants in gut enterocyte cREs also showed a 

significant causal relationship with T1D but in the opposite direction, suggesting that variants 

affecting CPA1 levels in different cell types may play distinct roles in disease.  

 

We further used gene expression QTLs (eQTLs) to validate the tissue-specific effects of 

variants on plasma protein levels. We performed colocalization of cis pQTLs with single-tissue 

cis eQTLs from the GTEx project19 for the 23 causal proteins to identify individual tissues 
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contributing to plasma cis pQTL signals. Overall, 14 out of 23 proteins strongly colocalized 

(PPH4>80%) with an eQTL for the gene encoding the respective protein in at least one GTEx 

tissue (Supplementary Fig. 3a, Supplementary Table 11). Among pancreatic enzymes and 

enzyme-related proteins, PRSS2 was strongly colocalized to a pancreas cis eQTL, and 

pancreas was the tissue with the strongest evidence for colocalization for CPA1 and second 

strongest colocalization for PNLIPRP1 after sigmoid colon. Effect sizes in MR using pancreas 

cis eQTLs in GTEx for the pancreatic enzymes CPA1, PNLIPRP1, and PRSS2 were highly 

concordant (r2=0.99) with plasma cis pQTLs, where CPA1 had the largest causal effect in both 

cis pQTL and eQTL data (Supplementary Fig. 3b-c, Supplementary Table 12). 

 

Overall, these results highlight cell types that mediate plasma levels of many proteins with a 

causal link to T1D and, specifically, reveal acinar cells as a key driver of the protective effects of 

pancreatic enzyme levels on T1D.  

 

Changes in pancreatic enzyme activity in the pancreas in T1D 

 

Multiple enzymes or enzyme-related proteins with causal links to T1D are primarily expressed 

and produced in pancreatic acinar cells, and therefore we finally determined whether genes 

encoding for these enzymes had altered expression in the pancreas in T1D progression. We 

therefore leveraged cell type-specific gene expression profiles from two previously generated 

single cell maps of scRNA-seq in pancreatic islets using data from the HPAP consortium34 and 

snRNA-seq in whole pancreas from the nPOD biorepository35. In total, across both maps, we 

utilized data from 82 donors which spanned multiple different stages of T1D progression 

including non-diabetic (n=40), single AAB+ (n=10), multiple AAB+ (n=10), recent-onset T1D 

(n=13) and long-duration T1D (n=9). 

 

We determined changes in acinar expression in each gene across stages of T1D progression 

using a linear model (see Methods). CPA1, PNLIPRP1, and PRSS2 all showed decreased 

expression across stages of T1D progression, which is consistent with higher serum levels of 

enzymes being protective against disease, although only CPA1 had a significant effect (logFC 

per disease state=-0.220, FDR=3.23x10-3) (Fig. 4a, Supplementary Table 13). We next 

determined changes in gene expression in each specific disease stage compared to non-

diabetics. There was significantly (FDR=8.95x10-2) altered expression of CPA1 in single AAB+, 

as well as recent-onset and long-duration T1D, donors while PRSS2 had decreased expression 
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in long-duration T1D only (Fig. 4a-c, Supplementary Table 14). Notably, these two genes with 

significant decreases in expression both have protease activity.  

 

These results reveal that digestive proteases with a causal link to T1D have decreased 

expression in pancreatic acinar cells in T1D progression.  

 

Discussion 

 

This study revealed that increased levels of several pancreatic enzymes due to altered 

regulation in the pancreas play a protective role in T1D development. In particular, CPA1 had 

robust support for a protective role in T1D across multiple different analyses and had altered 

expression in T1D progression, including in the early stages of disease, supporting that CPA1 is 

a novel biomarker of T1D. CPA1 encodes carboxypeptidase A1, a metalloprotease that cleaves 

dietary proteins and requires zinc for its enzymatic activity36. Although it is unknown how CPA1 

activity protects against T1D, it is notable that pancreatic beta cells have high zinc levels which 

are required for the storage and secretion of insulin37–39. In addition, CPA1 is involved in 

zymogen inhibition, and therefore may protect against improper activation of enzymes in the 

pancreas which can lead to increased inflammation36. Supporting this, variants affecting CPA1 

function are also linked to early-onset chronic pancreatitis and pancreatic cancer40,41. Increased 

CPA1 may alternately protect against T1D through direct acinar-to-beta cell communication or 

enzymatic cleavage of proteins in the gut or other tissues. As variants associated with CPA1 

levels are also enriched in cell types in the intestine and liver, these tissues may also mediate 

the role of CPA1 in T1D risk. 

 

Changes in the exocrine pancreas have long been reported in T1D and AAB+ donors, including 

reduced total pancreas size and volume42,43 and decreased trypsinogen, amylase, and lipase44–

47. Our findings; however, support a causal role for the exocrine pancreas in T1D, which is 

supported by multiple lines of recent evidence. Genetic association studies have identified risk 

variants for T1D that affect exocrine-specific gene regulation at numerous loci1, which supports 

a critical role for altered exocrine activity in T1D risk. In addition, a previous study identified a 

protective role for circulating levels of chymotrypsinogen B1 (CTRB1) in T1D using MR of pQTL 

data14. The gene encoding this protein CTRB1 maps to a known T1D locus that, based on our 

results, likely affects acinar cell regulation. As with CPA1, several genes implicated in T1D risk 

in exocrine cells including CTRB1/2, CFTR, CEL, and GP2 are involved in risk of pancreatitis 
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and/or pancreatic cancer48–51, which further supports a potential causal link between 

inflammation in the exocrine pancreas and risk of T1D. 

 

While the pancreas is the location of autoimmune attack in T1D, our results also support a 

causal role for other tissues, notably the intestine, in T1D. The digestive tract is heavily exposed 

to external factors, including likely environmental triggers of T1D52. Additionally, the intestine 

plays a critical role in glucose metabolism by regulating incretin activity through enzymatic 

cleavage of pro-hormones, which can signal back to the pancreas and modulate beta cell 

function53,54. The gut microbiome has also been implicated in T1D, including potential immune 

modulation by commensal bacteria55. Individual T1D risk loci further highlight a likely role for the 

intestine in T1D. Most notably, the FUT2 locus encodes fucosyltransferase 2, an enzyme 

expressed in intestinal epithelial cells that determines blood group antigen secretor status and is 

linked to altered risk of viral and bacterial infection56,57. This enzyme mediates the transfer of 

sugar molecules on proteins or lipids58. The FUT2 locus colocalized with amylase and other 

pancreatic enzyme levels, therefore, it may also affect T1D risk through altered sugar 

metabolism and glycosylation and/or modulation of enzyme activity in the gut. Digestive 

enzymes produced in the pancreas may contribute to T1D risk via activity in the gut 

independently of directly in the pancreas, although the mechanisms are currently unclear. 

Single cell assays of pancreatic islets have provided insight into processes involved in T1D in 

the pancreas34; however, to date there are no single cell studies looking at intestinal profiles in 

T1D, which may help clarify the role of the gut in T1D59. 

 

One key difference in our study compared to previous efforts is the use of trans pQTLs, which 

can provide additional information beyond cis pQTLs to colocalization and MR analyses with the 

caveat that trans signals more often represent indirect effects. To address this, we performed 

numerous sensitivity analyses to confirm the robustness of instruments including assessing 

consistency in cis pQTLs and both removing outliers and excluding individual variants from 

instruments. While population-scale proteomics is an invaluable tool for understanding protein 

regulation in health and disease, studies are often limited to circulating blood due to tissue 

availability and the large sample sizes required to perform QTL mapping17,60. Circulating blood 

profiles are valuables biomarkers, as they can be collected from any donor, but proteomics 

analyses in key disease tissues such as pancreas and gut in larger cohorts will be critical for 

clarifying the mechanistic role of proteins in T1D risk. In addition, two key limitations of current 

large-scale proteomics platforms, such as the one used in UKB-PPP, are that antibody-based 
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proteomics is unable to detect protein isoforms or posttranslational modifications and only a 

proportion of the human proteome is assayed61. More comprehensive profiling could reveal 

additional circulating proteins involved in T1D risk. 

 

Preventative treatments for T1D are currently limited, with anti-CD3 monoclonal antibody 

treatments (e.g. Teplizumab) being one of the only available therapies to delay the onset of 

T1D62. The identification of proteins, cell types, and pathways with evidence for a causal role in 

T1D, in particularly digestive proteins and systems, provides novel opportunities for therapeutic 

development outside of immune modulation. Furthermore, the identification of biomarkers of 

T1D greatly facilitates the identification of likely progressors to T1D for both clinical trials and 

earlier interventions. This is particularly relevant in the very early stages of disease such as 

single AAB+ donors, as a minority of these individuals will eventually develop T1D63. Overall, 

our results will enhance efforts to both identify novel therapeutic targets and biomarkers of T1D, 

as well as studies to understand the molecular mechanisms underlying disease. 

 

Methods 

 

T1D GWAS Meta-analysis 

 

We performed a T1D GWAS meta-analysis to use as the outcome in Mendelian randomization 

analyses, excluding the UKB cohort from the meta-analysis to help ensure independence in 

sampling between the exposures and the outcome. Briefly, we leveraged summary statistics 

from our previous T1D GWAS meta-analysis, which included control samples matched for 

country of origin and genotyping array1. Summary statistics from the remaining non-UKB 

cohorts (Supplementary Table 1) were re-meta-analyzed by calculating cohort weights for 

each variant using the inverse of the variance in each cohort. In total, our T1D GWAS meta-

analysis included data from 157,085 individuals (17,497 cases and 139,588 controls).  Genetic 

analyses were approved by the Institutional Review Board (IRB) of the University of California 

San Diego. 

 

Colocalization 
 
For each significant pQTL signal, we defined a 2 Mb region flanking the variant with the lowest 

p-value. Variants in the 2 Mb region for one signal were excluded from being included in regions 
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from other signals for the same protein. Next, we selected all variants in this region included in 

both the pQTL and T1D GWAS summary statistics. Variant allele frequencies and effect sizes 

were aligned to the minor allele prior to merging datasets to ensure we are capturing true 

shared effects between the datasets. Colocalization was performed using the coloc v5.2.3 

package with the following default prior probabilities: p1=1x10-4, p2=1x10-4, and p12=1x10-5 18. 

Since coloc implements Approximate Bayes Factors, no Markov chain Monte Carlo settings 

were required. For signals with a posterior probability of a shared causal variant (PPH4) greater 

than 0.8, we additionally calculated the correlation (r2) of the lead T1D variant and lead pQTL 

variant at the shared signal using the 1000 Genomes Project European superpopulation 

reference panel and PLINK 1.9. If a variant was absent from the reference panel, we used the 

proxy variant with the strongest LD to the original variant. We considered signals shared if the 

PPH4 was 0.8 or greater and the r2 was 0.5 or greater. 

 

Additionally, colocalization of plasma pQTLs and tissue-specific GTEx eQTLs was performed to 

assess which tissues regulate protein levels measured in circulating blood. We performed 

statistical colocalization under the single causal variant assumption, only considering the cis-

locus for each protein/gene. We considered signals shared if PPH4 was 0.8 or greater. 

 

Mendelian Randomization 
 
Instrumental variables were used to assess whether circulating protein levels were causal for 

T1D. To generate the instrument for each protein, we included the genetic variant with the 

highest posterior inclusion probability (PIP) from each credible set in fine-mapping data. We 

created two instruments per protein, one with both cis and trans QTL signals and one with cis 

pQTL signals only. In each instrument we included only variants with a p-value<1.7x10-11 (5x10-

8/2,922 tested proteins) to ensure strong association with circulating protein levels, which is a 

key assumption in Mendelian randomization. 

 

Variants from the pQTL instrument and the T1D GWAS meta-analysis described above were 

harmonized using the TwoSampleMR v0.5.7 package using the provided allele frequencies to 

determine which alleles are on the forward strand. Only variants found in common between the 

protein exposure instruments and the outcome GWAS were used in Mendelian randomization 

analysis. Mendelian randomization was performed using the IVW method within the 
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TwoSampleMR v0.5.7 package to calculate both the direction and the strength of a causal effect 

between circulating proteins as exposures and T1D as the outcome17. 

 

In order to elucidate the contributions of individual cell types on proteins identified as causal 

from MR, we performed cell type-specific MR using two independent methods. In the first 

method, we generated instruments from fine-mapped pQTL data as described above but 

restricted each instrument to variants that overlapped cREs identified in each adult CATlas cell 

type and subsequently performed inverse variance weighted MR using the TwoSampleMR 

v0.5.7 package. Individual variants could be found in multiple instruments if cREs were shared 

across multiple cell types and cell type-specific MR results were considered significantly causal 

at an FDR < 0.1. In the second method, we used variants from plasma cis pQTLs, as described 

above, and extracted these variants in tissue-specific GTEx expression QTL (eQTL) data to 

generate ‘cell type-specific’ instruments. For tissues with more than 1 variant, we performed 

inverse variance weighted Mendelian Randomization and for tissues with less than 1 variant, we 

performed a Wald ratio using the TwoSampleMR v.0.5.7 package. Genes were considered 

causal at an FDR < 0.1 after multiple test correcting for the number of unique tissues tested per 

gene. 

 
Mendelian Randomization Sensitivity Analyses 
 
We assessed whether MR instruments had a pleiotropic bias by calculating the Egger’s 

regression intercept using the TwoSampleMR v0.5.7 package, which both provides the 

regression intercept as well as calculates whether the intercept is significantly different than 0. 

We considered instruments pleiotropic at an FDR <0.1 and mildly pleiotropic at an uncorrected 

p-value < 0.05. Next, we used MR-Pleiotropy and REsidual Sum and Outlier (MR-PRESSO) to 

both assess whether MR instruments contained outliers as well as to re-perform outlier-

corrected MR25. MR-PRESSO p-values were fit to a Gaussian distribution to be comparable to 

those computed by the TwoSampleMR package rather than the t-test performed within MR-

PRESSO. Finally, we performed leave-one-out analyses using the TwoSampleMR v0.5.7 

package, re-assessing MR causal estimates after the removal of individual variants from protein 

instruments. 

 

Pathway Enrichment Analyses 
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Causal proteins were divided into two groups based on their MR effect sizes: protective proteins 

(MRbeta < 0) or risk-inducing proteins (MRbeta > 0). Pathway enrichment was performed using 

Enrichr, which implements a Fisher’s exact test to calculate the probability of a protein’s 

inclusion in a particular gene set64,65. Kyoto Encyclopedia of Genes and Genomes (KEGG) 2021 

human gene sets were utilized for pathway enrichment. Multiple test correction was performed 

on pathways using a Benjamini-Hochberg FDR and pathways were considered significantly 

enriched at FDR < 0.1. 

 
Cell Type Enrichment in cREs 
 
We identified annotations enriched for pQTL associations using linkage disequilibrium score 

regression (LDSC) v1.0.126. First, individual pQTLs were formatted using MungeSumstats with a 

minor allele frequency threshold of 0.01, chunk size of 500,000, and subset to only include 

HapMap variants. Next, functional annotations were generated from 110 adult human tissues 

using single nucleus assay for transposase accessible chromatin sequencing (snATAC-seq) 

data included in the cis-element atlas (CATlas), using LD data from the 1000 Genomes Project 

European superpopulation (1KGP EUR)66. LDSC was performed on cell type cis regulatory 

elements (cREs) using a 1 cM window to estimate LD scores from 1KGP EUR for HapMap 

variants. Finally, partitioned heritability was performed to calculate enrichment of each pQTL in 

cREs for each cell type27. Baseline LD and variant frequencies were calculated from 1KGP EUR 

reference data. Genomic enrichments and standard errors are reported using the baseline_L0 

model. For T1D risk loci that colocalized with causal proteins identified from MR, we used 

bedtools v2.26.0 to overlap T1D credible set variants with cell type cREs67. 

 
Changes in gene expression in T1D donors 
 
To assess expression levels of pancreatic enzyme genes across diabetes status, we utilized 

two independent single cell datasets, one generated from single cell RNA sequencing (scRNA-

seq) data of pancreatic islets from 65 non-diabetic (ND), autoantibody positive but non-diabetic 

(Aab+), T1D, or type 2 diabetic (T2D) donors from the Human Pancreas Analysis Program and 

another generated from single nuclei RNA sequencing (snRNA-seq) of whole pancreas from 32 

ND, Aab+ and T1D donors from the Network for Pancreatic Organ Donors with Diabetes 

(nPOD)34,68. For each cell type, we generated normalized gene expression levels for each donor 

as transcripts per million (TPM), using aggregated raw counts of cells from the donor and 

GENCODE v38 exonic gene sizes. To assess overall trends in gene expression across all 
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disease groups, we assigned each group a numerical value based on disease progression 

(ND=1, single Aab+=2, multiple Aab+= 3, recent-onset T1D=4 and long duration T1D=5) and 

performed DESeq2 using disease progression as a continuous variable including donor sex, 

scaled age, scaled BMI, tissue source, 10x kit chemistry, and assay (single cell vs. single 

nuclei) as model covariates. We considered genes significantly up- or down-regulated at an 

FDR < 0.1. To compare gene expression levels between non-diabetic donors and specific 

stages of diabetes, we used DESeq2 v1.34.0 to perform differential gene expression analyses 

in acinar cells in single Aab+, multiple Aab+, recent-onset T1D (T1D < 5 years), or long duration 

T1D (T1D > 5 years) donors compared to ND controls. We included the covariates specified 

above and calculated the Wald test statistic with 8 degrees of freedom. Only genes with a 

minimum of 5 counts in at least 50% of the samples in a condition were tested and included in 

analyses. We considered genes significantly up- or down-regulated at an FDR < 0.1.  

 

Data Availability 

Summary statistics for the T1D GWAS meta-analysis without UKB samples has been deposited 

into the NHGRI-EBI GWAS catalogue with accession number GCP000982. Protein QTL 

summary statistics from the UKB-PPP are available at 

https://www.synapse.org/Synapse:syn51364943/wiki/622119 and fine-mapping of pQTLs can 

be found in the following manuscript https://doi.org/10.1038/s41586-023-06592-6. Cell type 

cREs are available as part of the Cis-Element Atlas (CATlas) http://catlas.org/catlas_hub/.  

 

Code Availability 
 
All custom code and data analysis pipelines are available at https://github.com/Gaulton-
Lab/T1D_protein_biomarkers. 
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Fig. 1: Colocalization of UKB-PPP proteins with T1D reveals mechanisms at T1D risk loci. 
a) Number of strongly colocalized UKB-PPP proteins (PPH4 > 80%) at each T1D risk locus that 
had at least one colocalized protein. Loci are colored by their hierarchical clustering. Bolded loci 
strongly colocalized to at least one cis pQTL. b) Circular dendrogram of hierarchical clustering 
of T1D risk loci based on their colocalization across UKB-PPP proteins. c) KEGG pathway 
enrichment of strongly colocalized proteins at T1D risk loci including pathway membership of 
top 10 proteins per locus. d-g) Colocalization locus plots of d) HLA-DRA plasma pQTL at the 
SH2B3 T1D risk locus, e) SRC plasma pQTL at the IRF1 T1D risk locus f) AMY2A plasma 
pQTL at the FUT2 T1D risk locus and, g) CPA1 plasma pQTL at the CTRB2 T1D risk locus.  
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Fig. 2: Mendelian randomization of UKB-PPP proteins with T1D identifies causal proteins.  
a) Study design for Mendelian randomization of UKB-PPP proteins with T1D outcome to 
determine causal proteins in T1D. b) Volcano plot of Mendelian randomization effect sizes and -
log10(p-values) across 2,922 UKB-PPP proteins. Proteins in green have a protective causal 
effect (beta < 0) while proteins in red have a risk-inducing causal effect (beta > 0). Effect sizes 
for non-significant proteins were capped at -2.5 and 2.5. c) Odds ratios and -log10(p-values) of 
KEGG pathway enrichment of protective causal proteins. d) Odds ratios and p-values of KEGG 
pathway enrichment of risk-inducing causal proteins. e) Forest plot of Mendelian randomization 
effect sizes for cis and trans QTL instruments compared to cis QTL only instruments. Error bars 
represent standard error of the mean for Mendelian randomization effect sizes. 
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Fig. 3: Pancreatic enzyme plasma protein QTLs are enriched in acinar-specific regulatory 
elements. 
Volcano plots of LD score regression cell type enrichments and corresponding -log10(p-values) 
for a) CPA1, b) PNLIPRP1, and c) PRSS2 pQTLs. Cell types with significant enrichments are 
annotated with green data points (FDR < 0.1). Dashed horizontal line represents a nominal p-
value threshold of 0.05. d) Top– Colocalization of CPA1, PRSS2, and PNLIPRP1 pQTLs with 
the T1D risk locus at CTRB2. Bottom– Signal tracks representing chromatin accessibility at the 
CTRB2 locus in acinar, ductal, and colon epithelial cells from snATAC-seq in CATlas overlaid 
with fine-mapped T1D credible set variants. Risk variant rs72802342 lies within an acinar-
specific peak. e) Mendelian randomization effect sizes of cell type-specific instruments 
generated from overlapping independent variants from CPA1, PNLIPRP1, and PRSS2 pQTLs 
with cell type cREs. Error bars represent standard error of the mean for Mendelian 
randomization effect sizes. Significant causal relationships are annotated with an asterisk (* 
FDR < 0.1). 
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Fig. 4: Acinar CPA1 expression is decreased with T1D progression. 
a-c) Normalized TPMs as a function of T1D disease progression represented as a continuous 
variable from ND to long duration T1D for a) CPA1, b) PNLIPRP1, and c) PRSS2. Linear model 
and confidence interval are depicted for the relationship between pancreatic enzyme levels and 
disease progression. Error bars in violin plots represent standard deviation between donors. 
Pairwise comparisons between ND and diabetes stages were performed using DESeq2 and 
asterisks represent significant differences (FDR < 0.1; * < 0.1, ** < 0.01). 
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Supplementary Fig. 1: Mendelian randomization sensitivity analyses. 
a) Mendelian randomization effect plots with plasma CPA1 levels as the exposure and T1D as 
the outcome. Red data points represent outliers detected from MR-PRESSO. Inverse variance 
weighted Mendelian randomization effect size is represented as a red dashed line for the 
outlier-removed instrument and as a grey dashed line for the full instrument. Error bars 
represent standard error of the mean for individual variants. b) Leave-one-out Mendelian 
randomization effect sizes for plasma ALPI levels on T1D. Black data points represent the 
Mendelian randomization effect size removing each individual variant from the instrument. Error 
bars represent standard error of the mean of Mendelian randomization effect sizes. c) 
Mendelian randomization effect plots with plasma PRSS2 levels as the exposure and T1D as 
the outcome. Red data points represent cis variants and grey data points represent trans 
variants in the instrument. Inverse variance weighted Mendelian randomization effect size is 
represented as a red dashed line for the cis-only instrument and as a grey dashed line for the 
cis and trans instrument. Error bars represent standard error of the mean for individual variants. 
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Supplementary Fig. 2: Cell type enrichments of protein QTLs using cell type-specific 
chromatin accessibility. 
a) Heatmap of LD score regression enrichment -log10(p-values) for the top cell types from 
CATlas. Values are z-scored and scaled per cell type. Asterisks represent significant 
enrichments (* FDR < 0.1). 
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Supplementary Fig. 3:Concordance of GTEx tissue-specific genes and UKB-PPP plasma 
proteins. 
a) Heatmap showing posterior probabilities of shared causal variants between cis-pQTLs and 
cis-eQTLs in select GTEx tissues for 23 causal proteins in T1D. Values are z-scored and scaled 
per protein. b) Mendelian randomization effect sizes of CPA1, PNLIPRP1, and PRSS2 on T1D 
using cis-only plasma pQTLs (grey) or cis-only GTEx pancreas eQTLs (orange). Error bars 
represent standard error of the mean for Mendelian randomization effect sizes. c) Mendelian 
randomization -log10(p-values) for CPA1, PNLIPRP1, and PRSS2 on T1D using cis-only plasma 
pQTLs (y-axis) or cis-only GTEx pancreas eQTLs (x-axis). 
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