

GRAPHIC

OPEN 3 ACCESS

ISSN 2056-9890

Crystal structure of 2-methoxy-2-[(4methylphenyl)sulfanyl]-1-phenylethan-1one

Julio Zukerman-Schpector,^a* Paulo R. Olivato,^b Henrique J. Traesel,^b Jéssica Valença,^b Daniel N. S. Rodrigues^b and Edward R. T. Tiekink^c

^aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^bInstituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia. *Correspondence e-mail: julio@power.ufscar.br

Received 20 November 2014; accepted 21 November 2014

Edited by P. C. Healy, Griffith University, Australia

In the title β -thiocarbonyl compound, $C_{16}H_{16}O_2S$, the carbonyl and methoxy O atoms are approximately coplanar [O-C-C-O torsion angle = $-18.2 (5)^{\circ}]$ and *syn* to each other, and the tolyl ring is orientated to lie over them. The dihedral angle between the planes of the two rings is 44.03 (16)°. In the crystal, supramolecular chains are formed along the *c* axis mediated by $C-H\cdots$ O interactions involving methine and methyl H atoms as donors, with the carbonyl O atom accepting both bonds; these pack with no specific intermolecular interactions between them.

Keywords: crystal structure; β -thiocarbonyl; C—H···O interactions.

CCDC reference: 1035425

1. Related literature

For general background to β -thiocarbonyl and β -bis(thiocarbonyl) compounds, see: Vinhato *et al.* (2013); Zukerman-Schpector *et al.* (2008). For related structures, see: Olivato *et al.* (2013); Distefano *et al.* (1996). For further synthetic details, see: Ali & McDermott (2002); Zoretic & Soja (1976).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{16}H_{16}O_2S\\ M_r = 272.35\\ Orthorhombic, \ Pca2_1\\ a = 17.8579\ (9)\ \text{\AA}\\ b = 8.1257\ (4)\ \text{\AA}\\ c = 9.8317\ (5)\ \text{\AA} \end{array}$

2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.690, T_{max} = 0.745$

2.3. Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 & \Delta\rho_{\min} \\ wR(F^2) &= 0.090 & Absol \\ S &= 1.02 & det \\ 2337 \text{ reflections} & [(I^t \\ 174 \text{ parameters} & et a \\ 1 \text{ restraint} & Absol \\ \text{H-atom parameters constrained} & 0.02 \\ \Delta\rho_{\max} &= 0.14 \text{ e} \text{ Å}^{-3} \end{split}$$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1B \cdots O2^{i}$	0.96	2.49	3.366 (6)	152
C8−H8···O2 ⁱⁱ	0.98	2.46	3.323 (6)	146

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SIR* (Burla *et al.*, 2014; program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *MarvinSketch* (ChemAxon, 2010) and *publCIF* (Westrip, 2010).

 $V = 1426.66 (12) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.22 mm^{-1} T = 293 K 0.41 \times 0.14 \times 0.08 mm

5399 measured reflections 2337 independent reflections 1648 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

 $\begin{array}{l} \Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ x} \\ {\rm determined \ using \ 552 \ quotients} \\ [(I^+)-(I^-)]/[(I^+)+(I^-)] \ ({\rm Parsons} \\ et \ al., \ 2013) \\ {\rm Absolute \ structure \ parameter:} \\ 0.02 \ (6) \end{array}$

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013-2 to JZS; 301180/2013-0 to PRO) and FAPESP are acknowledged for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5421).

References

Ali, M. H. & McDermott, M. (2002). *Tetrahedron Lett.* **43**, 6271–6273. Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2014). In preparation.
- ChemAxon (2010). Marvinsketch. http://www.chemaxon.com. Distefano, G., Dal Colle, M., De Palo, M., Jones, D., Bombieri, G., Del Pra, A., Olivato, P. R. & Mondino, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1661–1669.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Olivato, P. R., Cerqueira, C. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpetor, J. (2013). J. Sulfur Chem. **34**, 617–626.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738–746.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.
- Zukerman-Schpector, J., Olivato, P. R., Cerqueira, C. R. Jr, Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, 0835–0836.

supporting information

Acta Cryst. (2015). E71, o3-o4 [doi:10.1107/S205698901402550X]

Crystal structure of 2-methoxy-2-[(4-methylphenyl)sulfanyl]-1-phenylethan-1one

Julio Zukerman-Schpector, Paulo R. Olivato, Henrique J. Traesel, Jéssica Valença, Daniel N. S. Rodrigues and Edward R. T. Tiekink

S1. Introduction

As part of our on-going research on the conformational and electronic interactions of some β -thio-carbonyl and β -bisthio-carbonyl compounds, e.g. N,N-diethyl-2-[(4-substituted) phenylthio]acetamides, 1-methyl-3-phenylsulfonyl-2piperidone, 3,3-bis[(4-substituted)phenylsulfanyl]-1-methyl-2-piperidones, 2-alkylthio-2-alkylsulfinyl-acetophenones, 2alkylthio-2-phenylsulfonyl-acetophenones and 2-alkylsulfinyl-2-alkylsulfonyl-acetophenones, utilizing spectroscopic , theoretical and X-ray diffraction methods (Vinhato *et al.*, 2013; Zukerman-Schpector *et al.*, 2008; Olivato *et al.*, 2013; Distefano *et al.*, 1996) the title compound was synthesized and its crystal structure determined.

S2. Experimental

S2.1. Synthesis and crystallization

4-Methylthiopenol (5.0 g, 40 mmol) was reacted with bromine (1.1 ml, 20 mmol) in dichloromethane (250 mL) on hydrated silica gel support (25 g of SiO₂ and 12 mL of water) to give 4-methylphenyl disulfide (4.1 g, yield = 83%). A white solid was obtained after filtration and evaporation without further purification (Ali & McDermott, 2002). A solution of 2-methoxy acetophenone (0.4 mL, 2.76 mmol, Sigma-Aldrich) in THF (10 ml) was added drop wise to a cooled (195 K) solution of diisopropylamine (0.42 ml, 3.04 mmol) and butyllithium (2.0 ml, 2.76 mmol) in THF (10 ml). After 30 minutes, a solution of 4-methylphenyl disulfide (0.748 g, 3.04 mmol) with hexamethylphosphoramide (HMPA) (0.5 ml, 2.76 mmol) dissolved in THF (10 ml) was added drop wise to the enolate solution (Zoretic & Soja, 1976). After stirring for 3 h, water (50 ml) was added at room temperature and extraction with diethyl ether was performed. The organic layer was then treated with a saturated solution of ammonium chloride until neutral pH and dried over anhydrous magnesium sulfate. A brown oil was obtained after evaporation of the solvent. Purification through flash chromatography with n-hexane was used to remove the non-polar reactant (disulfide) then acetone to give a mixture of both acetophenones (product and reactant). Crystallization was performed by vapour diffusion of n-hexane into a chloroform solution held at 283 K to give pure product (0.3 g, yield = 40%). Suitable crystals for X-ray diffraction were obtained by same pathway; m.p. 359.3-359.8 K.

¹H NMR (CDCl₃, 500 MHz, ppm): δ 2.33 (s, 3*H*), 3.67 (s, 3*H*), 5.81 (s, 1*H*), 7.08–7.10 (m, 2*H*), 7.23-7.25 (m, 2*H*), 7.43–7.46(m, 2*H*), 7.56–7.59 (m, 1*H*), 7.95–7.96 (m, 2*H*). HRMS: calcd. for C₁₆H₁₆O₂S [M + H]⁺ 272.0871; found: 272.0864.

S2.2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

S3. Results and discussion

Figure 1

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Figure 2

A view of the supramolecular chain along the c axis mediated by C—H···O interactions (bluee dashed lines).

Figure 3

A view in projection down the c axis of the unit-cell contents. The C—H…O interactions are shown as blue dashed lines.

(I)

Crystal data $C_{16}H_{16}O_2S$ $D_{\rm x} = 1.268 \text{ Mg m}^{-3}$ $M_r = 272.35$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1023 reflections Orthorhombic, Pca21 $\theta = 3.1 - 18.7^{\circ}$ *a* = 17.8579 (9) Å *b* = 8.1257 (4) Å $\mu = 0.22 \text{ mm}^{-1}$ c = 9.8317(5) Å T = 293 K $V = 1426.66 (12) \text{ Å}^3$ Irregular, colourless Z = 4 $0.41 \times 0.14 \times 0.08 \text{ mm}$ F(000) = 576

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.690, T_{\max} = 0.745$ 5399 measured reflections	2337 independent reflections 1648 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -21 \rightarrow 21$ $k = -9 \rightarrow 9$ $l = -10 \rightarrow 11$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.090$	$w = 1/[\sigma^2(F_o^2) + (0.0294P)^2 + 0.2164P]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
2337 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
174 parameters	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	 Absolute structure: Flack <i>x</i> determined using 552 quotients [(<i>I</i>⁺)-(<i>F</i>)]/[(<i>I</i>⁺)+(<i>F</i>)] (Parsons <i>et al.</i>, 2013) Absolute structure parameter: 0.02 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3662 (3)	0.6856 (7)	1.3764 (5)	0.0916 (18)	
H1A	0.3249	0.7532	1.4046	0.137*	
H1B	0.4106	0.7185	1.4243	0.137*	
H1C	0.3553	0.5725	1.3964	0.137*	
C2	0.3784 (3)	0.7055 (6)	1.2258 (5)	0.0642 (13)	
C3	0.3285 (3)	0.7876 (6)	1.1440 (6)	0.0737 (14)	
H3	0.2850	0.8300	1.1823	0.088*	
C4	0.3411 (3)	0.8094 (6)	1.0061 (5)	0.0683 (13)	
H4	0.3066	0.8670	0.9537	0.082*	
C5	0.4049 (2)	0.7455 (5)	0.9462 (5)	0.0564 (11)	
C6	0.4553 (2)	0.6622 (5)	1.0273 (5)	0.0615 (12)	
H6	0.4987	0.6186	0.9893	0.074*	
C7	0.4416 (3)	0.6434 (5)	1.1643 (5)	0.0635 (13)	
H7	0.4763	0.5868	1.2171	0.076*	
C8	0.4839 (2)	0.9437 (5)	0.7603 (5)	0.0576 (10)	
H8	0.4930	0.9708	0.6646	0.069*	
C9	0.6015 (3)	0.8116 (6)	0.7474 (6)	0.0834 (15)	
H9A	0.6139	0.8637	0.6627	0.125*	
H9B	0.5771	0.7085	0.7299	0.125*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9C	0.6465	0.7927	0.7987	0.125*	
C10	0.4468 (2)	1.0888 (5)	0.8275 (5)	0.0559 (11)	
C11	0.3852 (2)	1.1782 (5)	0.7587 (5)	0.0539 (10)	
C12	0.3573 (2)	1.3181 (5)	0.8205 (5)	0.0674 (13)	
H12	0.3767	1.3519	0.9037	0.081*	
C13	0.3007 (3)	1.4083 (5)	0.7595 (7)	0.0793 (14)	
H13	0.2828	1.5027	0.8021	0.095*	
C14	0.2709 (3)	1.3608 (6)	0.6381 (7)	0.0781 (14)	
H14	0.2325	1.4212	0.5983	0.094*	
C15	0.2984 (3)	1.2225 (7)	0.5754 (5)	0.0840 (16)	
H15	0.2780	1.1887	0.4930	0.101*	
C16	0.3556 (3)	1.1333 (6)	0.6325 (5)	0.0736 (13)	
H16	0.3748	1.0423	0.5868	0.088*	
01	0.55239 (15)	0.9162 (4)	0.8235 (3)	0.0666 (9)	
O2	0.46803 (18)	1.1328 (4)	0.9400 (3)	0.0727 (9)	
S	0.41986 (7)	0.76542 (13)	0.76791 (16)	0.0711 (4)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.090 (4)	0.115 (5)	0.070 (4)	-0.030 (3)	0.006 (3)	0.005 (3)
C2	0.065 (3)	0.064 (3)	0.064 (4)	-0.020 (2)	0.006 (3)	0.000 (3)
C3	0.061 (3)	0.077 (3)	0.084 (4)	-0.004 (3)	0.011 (3)	0.002 (3)
C4	0.064 (3)	0.064 (3)	0.077 (4)	-0.001 (2)	-0.007 (3)	0.006 (3)
C5	0.061 (3)	0.048 (2)	0.060 (3)	-0.011 (2)	-0.001 (2)	-0.003 (2)
C6	0.061 (3)	0.056 (3)	0.067 (3)	0.000 (2)	-0.001 (2)	-0.001 (3)
C7	0.066 (3)	0.058 (3)	0.066 (4)	-0.006 (2)	-0.008 (3)	0.009 (3)
C8	0.070 (3)	0.058 (2)	0.045 (2)	-0.0025 (19)	-0.003 (3)	0.003 (3)
C9	0.084 (3)	0.095 (3)	0.072 (4)	0.024 (3)	-0.003 (3)	0.000 (4)
C10	0.070 (3)	0.052 (3)	0.046 (3)	-0.009 (2)	0.007 (2)	0.002 (2)
C11	0.061 (2)	0.051 (2)	0.049 (3)	-0.0077 (18)	0.012 (3)	0.003 (3)
C12	0.066 (3)	0.065 (3)	0.071 (3)	-0.009 (2)	0.012 (3)	-0.013 (3)
C13	0.069 (3)	0.065 (3)	0.104 (4)	0.006 (2)	0.013 (4)	-0.008 (4)
C14	0.064 (3)	0.077 (3)	0.094 (4)	0.009 (3)	0.013 (3)	0.013 (3)
C15	0.085 (3)	0.102 (4)	0.065 (4)	0.014 (3)	-0.011 (3)	0.010 (3)
C16	0.090 (3)	0.078 (3)	0.053 (3)	0.017 (3)	-0.004 (3)	-0.007 (3)
01	0.0665 (18)	0.077 (2)	0.057 (2)	0.0086 (16)	-0.0038 (16)	-0.0012 (16)
O2	0.094 (2)	0.076 (2)	0.048 (2)	-0.0017 (17)	-0.0047 (18)	-0.0078 (19)
S	0.0948 (8)	0.0600 (6)	0.0583 (7)	-0.0129 (6)	-0.0079 (8)	-0.0055 (8)

Geometric parameters (Å, °)

C1—C2	1.505 (7)	С8—Н8	0.9800	
C1—H1A	0.9600	C9—O1	1.432 (5)	
C1—H1B	0.9600	C9—H9A	0.9600	
C1—H1C	0.9600	C9—H9B	0.9600	
C2—C3	1.373 (7)	С9—Н9С	0.9600	
C2—C7	1.376 (6)	C10—O2	1.224 (5)	

C3—C4	1.385 (7)	C10—C11	1.480 (6)
С3—Н3	0.9300	C11—C12	1.382 (6)
C4—C5	1.383 (6)	C11—C16	1.398 (7)
C4—H4	0.9300	C12—C13	1.384 (6)
C5—C6	1.379 (6)	C12—H12	0.9300
C5—S	1.781 (5)	C13—C14	1.363 (8)
C6—C7	1.378 (6)	C13—H13	0.9300
С6—Н6	0.9300	C14—C15	1.373 (6)
С7—Н7	0.9300	C14—H14	0.9300
C8-01	1 390 (4)	C15-C16	1 372 (6)
C8-C10	1.505 (5)	C15—H15	0.9300
C8_S	1.303(3) 1 847(4)	C16—H16	0.9300
66-5	1.047 (4)	010-1110	0.9500
C2—C1—H1A	109 5	Q1—C9—H9A	109.5
$C_2 = C_1 = H_1B$	109.5	01 - C9 - H9B	109.5
$H_1 A - C_1 - H_1 B$	109.5		109.5
$C_2 C_1 H_1 C_2$	109.5	01 C9 H9C	109.5
	109.5		109.5
HIA-CI-HIC	109.5	H9A - C9 - H9C	109.5
	109.5	H9B - C9 - H9C	109.3
$C_{3} = C_{2} = C_{1}$	116.9 (5)	02 - C10 - C11	120.0 (4)
	122.3 (5)	02-010-08	119.2 (4)
C/C2C1	120.8 (5)	C11—C10—C8	120.7 (4)
C2—C3—C4	122.0 (5)	C12—C11—C16	117.9 (4)
С2—С3—Н3	119.0	C12—C11—C10	118.1 (4)
C4—C3—H3	119.0	C16—C11—C10	123.9 (4)
C5—C4—C3	120.2 (5)	C11—C12—C13	120.6 (5)
C5—C4—H4	119.9	C11—C12—H12	119.7
C3—C4—H4	119.9	C13—C12—H12	119.7
C6—C5—C4	118.4 (5)	C14—C13—C12	120.9 (5)
C6—C5—S	121.0 (4)	C14—C13—H13	119.5
C4—C5—S	120.6 (4)	C12—C13—H13	119.5
C7—C6—C5	120.2 (5)	C13—C14—C15	119.0 (5)
С7—С6—Н6	119.9	C13—C14—H14	120.5
С5—С6—Н6	119.9	C15—C14—H14	120.5
C2—C7—C6	122.3 (5)	C16—C15—C14	121.0 (5)
С2—С7—Н7	118.8	C16—C15—H15	119.5
C6-C7-H7	118.8	C14-C15-H15	119.5
01 - C8 - C10	108.5(4)	C15-C16-C11	120.4(5)
O1 C8 S	100.5(4)	C_{15} C_{16} H_{16}	110.9
$C_{10} C_{8} S$	113.0(3) 108.0(3)	$C_{13} = C_{16} = H_{16}$	119.8
$C_{10} = C_{0} = S_{10}$	108.9 (5)	$C_{1}^{8} = C_{1}^{8} = C_{1}^{8}$	119.0 112.7(2)
C_{1}	108.0	$C_{0} = C_{1} = C_{2}$	113.7(3)
	108.0	C3—S—C8	101.8 (2)
5—С8—н8	108.0		
C7—C2—C3—C4	-0.8(7)	Q2-C10-C11-C16	-1777(4)
C1 - C2 - C3 - C4	1782(4)	C8 - C10 - C11 - C16	2 3 (6)
$C_2 = C_3 = C_4 = C_5$	1, 0.2(7)	C16-C11-C12-C13	1 2 (6)
C_{3} C_{4} C_{5} C_{6}	-0.7 (6)	C10-C11-C12-C13	1.2(0) 178 7 (4)
	··· (·)		1,0,, (1)

C3—C4—C5—S	177.5 (4)	C11—C12—C13—C14	0.5 (7)
C4—C5—C6—C7	0.3 (6)	C12—C13—C14—C15	-0.8 (7)
S-C5-C6-C7	-177.9 (4)	C13—C14—C15—C16	-0.6 (8)
C3—C2—C7—C6	0.3 (7)	C14—C15—C16—C11	2.4 (8)
C1—C2—C7—C6	-178.7 (4)	C12—C11—C16—C15	-2.7 (7)
C5—C6—C7—C2	0.0 (7)	C10-C11-C16-C15	180.0 (4)
O1—C8—C10—O2	-18.2 (5)	C10—C8—O1—C9	-164.3 (3)
S-C8-C10-O2	105.9 (4)	S-C8-O1-C9	74.4 (4)
O1-C8-C10-C11	161.7 (3)	C6—C5—S—C8	-83.1 (4)
S-C8-C10-C11	-74.1 (4)	C4—C5—S—C8	98.8 (4)
O2-C10-C11-C12	4.9 (6)	O1—C8—S—C5	63.2 (4)
C8—C10—C11—C12	-175.0 (4)	C10—C8—S—C5	-57.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1 <i>B</i> ···O2 ⁱ	0.96	2.49	3.366 (6)	152
C8—H8···O2 ⁱⁱ	0.98	2.46	3.323 (6)	146

Symmetry codes: (i) -*x*+1, -*y*+2, *z*+1/2; (ii) -*x*+1, -*y*+2, *z*-1/2.