
NEUROINFORMATICS
TECHNOLOGY REPORT

published: 24 May 2012
doi: 10.3389/fninf.2012.00012

PyXNAT: XNAT in Python
Yannick Schwartz 1*, Alexis Barbot 1, BenjaminThyreau1,Vincent Frouin1, Gaël Varoquaux 1,2, Aditya Siram3,

Daniel S. Marcus3 and Jean-Baptiste Poline1,4*

1 CEA, DSV, I2BM, Neurospin Bât 145, Gif-sur-Yvette, France
2 Parietal Team, INRIA Saclay Ile-de-France, Saclay, France
3 Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
4 Henry H. Wheeler Jr. Brain Imaging Center, University of California at Berkeley, Berkeley, CA, USA

Edited by:

Markus Diesmann, Research Center
Juelich, Germany

Reviewed by:

Michael Denker, Forschungszentrum
Juelich, Germany

*Correspondence:

Yannick Schwartz and Jean-Baptiste
Poline, CEA, DSV, I2BM, Neurospin
Bât 145, Gif-sur-Yvette, France.
e-mail: yannick.schwartz@cea.fr;
jbpoline@gmail.com

As neuroimaging databases grow in size and complexity, the time researchers spend inves-
tigating and managing the data increases to the expense of data analysis. As a result,
investigators rely more and more heavily on scripting using high-level languages to auto-
mate data management and processing tasks. For this, a structured and programmatic
access to the data store is necessary. Web services are a first step toward this goal. They
however lack in functionality and ease of use because they provide only low-level inter-
faces to databases. We introduce here PyXNAT, a Python module that interacts with The
Extensible Neuroimaging ArchiveToolkit (XNAT) through native Python calls across multiple
operating systems. The choice of Python enables PyXNAT to expose the XNAT Web Ser-
vices and unify their features with a higher level and more expressive language. PyXNAT
provides XNAT users direct access to all the scientific packages in Python. Finally PyXNAT
aims to be efficient and easy to use, both as a back-end library to build XNAT clients and
as an alternative front-end from the command line.

Keywords: XNAT, Python, database, neuroimaging, neuroinformatics

1. INTRODUCTION
The neuroimaging community is producing imaging and related
data at an increasing rate. Publicly available data and consortia
shared data follow the same trend as funding agencies more rou-
tinely require some sharing from the grantees. The need to share
and to maintain data resources at different scales, from large,
multi-site studies to individual laboratories or researchers, has
also led to the development of neuroimaging data management
systems (Van Horn and Toga, 2009). For instance, the USA-based
Biomedical Informatics Research Network (BIRN) has during the
past 10 years developed a number of tools to facilitate collaborative
research and data sharing in neuroimaging. These efforts included
the development or use of ontologies (Larson et al., 2009), data
format exchange (Gadde et al., 2011), as well as databases, and
data management systems including the Human Imaging Data-
base (HID; Keator et al., 2008), the LONI IDA (Van Horn and
Toga, 2009), and The Extensible Neuroimaging Archive Toolkit
(XNAT; Marcus et al., 2007). Other consortia and initiatives have
also emerged to facilitate the handling and sharing of neuroimag-
ing data such as Neurolog (Montagnat and Gaignard, 2008) and
CABIG (Kakazu et al., 2004). Projects such as the ADNI (Petersen
et al., 2010) make available high quality large datasets to the
community, and the number of large multi-modal databases is
growing very fast (Van Essen, 2002; Van Horn and Toga, 2009).
Numerous tools for managing the neuroimaging and associated
data have been developed as a consequence of all these projects.
Most of them are built for a specific consortium or laboratory
(Montagnat and Gaignard, 2008; Ozyurt et al., 2010). Fewer are
made to be distributed as a re-usable stand-alone system. Amongst
those, XNAT is one of the most commonly used. It is installed in

many major institutions1 and enjoys an increasing adoption in the
community.

Databases aim to organize data in a way that it can be effi-
ciently queried and stored. There are various database models2

(Maier, 1983; Cattell et al., 1997; Angles and Gutierrez, 2008) that
can be chosen to structure the data depending on the problem
to solve. As the complexity and size of the data increases, neu-
roimaging databases become harder to use because they combine
metadata, stored in the database itself, with images, stored in an
underlying file system. Currently most users manually select and
download data through graphical user interfaces (GUI), which
is intuitive on a small scale, but becomes impractical and error
prone on a large one. That is because downloading the data on a
local disk before processing it breaks the way the data is structured
in the database. The data has to be organized again, but locally,
in a consistent layout of files and directories, which effectively
duplicates the work done setting up the database. Furthermore
metadata used to select the data of interest such as quality check
variables are likely to change during the life span of the database,
which makes it even harder to keep a local dataset synchronized
and organized. For example, any manual operations to down-
load the data would have to be entirely repeated to reprocess
an up-to-date dataset. All these reasons explain why it is more
and more necessary to directly interact programmatically with the
database. Indeed, relying on a scripted interaction helps main-
tain consistency of accessed data and appropriate versions of the

1http://xnat.org/about/xnat-implementations.html
2http://en.wikipedia.org/wiki/Database_model

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 1

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00012/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=YannickSchwartz&UID=42216
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AlexisBARBOT&UID=49195
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BenjaminThyreau&UID=45478
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=VincentFrouin&UID=47090
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GaelVaroquaux&UID=31301
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DanielMarcus_1&UID=29867
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Jean-BaptistePoline&UID=35171
mailto:yannick.schwartz@cea.fr
mailto:jbpoline@gmail.com
http://xnat.org/about/xnat-implementations.html
http://en.wikipedia.org/wiki/Database_model
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

data. This new data flow is represented in Figure 1. In short,
large databases call for new ways of interacting with and analyzing
the data.

1.1. XNAT
Neuroimaging data management systems in general, and XNAT
in particular, must concurrently solve several issues, depending on
specifications of the system. The most common challenges are: to
make the data available in a sustained and secure manner, offer
ways of searching and querying specific data, and finally to enable
updating the data repository, either for curation or storing results
obtained from processing tools.

The XNAT system solved many of these problems. Its core
design feature is that it models the data through XML schemas,
and automatically builds a relational database and a web inter-
face for accessing the data using that formal description. Many
XML schemas are already available to describe common neu-
roimaging or neuropsychological data. These schemas greatly
ease the work of the data manager constructing the database.
XNAT includes many useful features such as a permission and
access rights system, tabular views, and search capacities. Based on
this XML description, XNAT users can send queries and receive
appropriate results. XNAT has moreover developed a representa-
tional state transfer Application Program Interface (REST API)
to push and pull data from an XNAT database. This REST API
enables software developers and power users to programmatically
query the server in order to access the data and its associated
meta. However, REST APIs are low-level interfaces that require
a significant amount of technical knowledge to perform basic
operations.

1.2. PyXNAT
We developed a Python library (PyXNAT) to unify the different
REST resources for accessing and providing the data to the data-
base as well as ease scripting interactions with an XNAT database.
Python has recently gained a strong momentum in the neuroimag-
ing data analysis community, and more generally in neuroscience.
Combined with powerful scientific libraries, it is now close to
providing a credible alternative to other high-level platform inde-
pendent interpreted language such as MATLAB™, but without
additional license costs. It offers in addition a very large set of
software engineering utilities such as XML parsing, database, and
web interface modules. We discuss more in depth to the choice of
Python in the next section.

The code of PyXNAT was originally developed at Neurospin
(I2BM, CEA, France) in the context of the IMAGEN European
project3 (Schumann et al., 2010) to help this consortium interact
with the IMAGEN database, we designed PyXNAT to be of gen-
eral use for the neuroimaging community and licensed it under
BSD-34. The code is available5 online and its documentation and
unit tests coverage quality is kept high so that the programmers
external to the project can easily contribute. Indeed, PyXNAT has
started to shift toward a community-based development.

3http://www.imagen.eu
4http://www.opensource.org/licenses/BSD-3-Clause
5http://packages.python.org/pyxnat

The rest of this article is organized as follows. In the first
section, we give some background information on the software
components on which PyXNAT is based. The second section
describes the construction of the library and gives some use case
examples. Last, we discuss possible limitations and conclude with
future improvements.

2. MATERIALS AND METHODS
We first review the different technologies and components lever-
aged by PyXNAT as a preliminary to discussing the implementa-
tion design.

2.1. PYTHON
We chose to use the Python language since it enjoys a grow-
ing success in the neuroimaging and neuroscience communities.
Indeed, it has recently been subject of a special-topic issue in Fron-
tiers in Neuroinformatics entitled “Python in neuroscience.” It is
a multi-paradigm programming language (for example, it sup-
ports object-oriented, functional, and procedural programming)
with a simple and consistent syntax. It benefits from very efficient
open-source scientific packages for numerical computation such
as NumPy (Oliphant, 2006) and SciPy (Jones et al., 2001), mak-
ing it a viable alternative or useful complement to other analysis
tools such as MATLAB™. Its flexibility and concise syntax speeds
the process of prototyping new algorithms and trying out exist-
ing softwares. Another strength of the language lies in the variety
of its application fields, which cover both scientific (Langtangen,
2011) and non-scientific – but relevant – domains such as database
management and web development.

Python defines a standard for database interfaces, which is the
Python DB-API (PEP 249 6). PyXNAT acts as an interface to an
XNAT database, but it is a Pythonic wrapping on a REST API
rather than a database driver. As such, it does not really follow a
specification based on standard database mechanisms and does
not replicate operations such as transactions, which are trans-
parently handled by the XNAT underlying database. However it
follows some principles from the specification, if not always with
the same semantics. As an example, the PEP 249 defines cursor
objects as“[objects] used to manage the context of a fetch oper-
ation.” In other words, these objects are responsible for controlling
the data fetching but do not do anything when instantiated. They
instead rely on lazy loading7 mechanisms that access the data only
when it is needed. PyXNAT design re-uses this principle.

2.2. XNAT
2.2.1. Overview and key features
XNAT (Marcus et al., 2007) is an open-source software platform
designed to manage neuroimaging and related data. An XML
Schema8 defines the XNAT data model and is used to generate a
database back-end and a web interface front-end. Using the XML
Schema as an abstraction layer has several advantages. First, the
schema provides a formal representation of the data in a standard
format and enables the definition of high-level relations between

6http://www.python.org/dev/peps/pep-0249/
7http://en.wikipedia.org/wiki/Lazy_loading
8http://www.w3.org/XML/Schema

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 2

http://www.imagen.eu
http://www.opensource.org/licenses/BSD-3-Clause
http://packages.python.org/pyxnat
http://www.python.org/dev/peps/pep-0249/
http://en.wikipedia.org/wiki/Lazy_loading
http://www.w3.org/XML/Schema
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

concepts such as inheritance. Second, it makes XNAT extensible
since the base schema can accommodate extra types for specific
studies using custom external schemas.

2.2.2. XNAT search engine
XNAT features a powerful search engine with its own query lan-
guage that enable users to search data across all the data types
defined in the data model in a transparent manner. The query
language is specified with an XML Schema document. It enables
standard relational database operations such as projection and
selection. The data is returned as a CSV or JSON table and can
be customized by defining elements in the XML query docu-
ment. The XML schema in Figure 2 specifies how to format

the results as tabular data. The root_element_name corre-
sponds to the type of data rendered for each row of the table
(e.g., xnat:subjectData), whereas the search_field elements
defines the columns (e.g., xnat:subjectData/SUBJECT_ID). The
results of the query are therefore ready to be used in any pro-
gram or spreadsheet software. The XML Schema in Figure 3
defines how to express search predicates for XNAT. The main ele-
ment of the query is the criteria_set element, which can
nested with child_set elements in order to perform more
complex queries (e.g., return subjects that are over 20 years old
and left-handed, or subjects that are under 20 and right-handed).
The criteria_set element takes a method value which
indicated which Boolean operator to use (AND or OR). Each

FIGURE 1 | PyXNAT avoids organization on file system.

FIGURE 2 | XML Schema for the result table.

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

FIGURE 3 | XML Schema for the search criteria.

criteria_set is composed of a list of constraints, defined
by a schema_field (e.g., xnat:subjectData/HANDEDNESS), a
comparison operator, and a value. The query language therefore
enables usual operations such as criteria comparison and nesting.

To promote interaction between different users of the same
database and help system administrators, the XNAT search
engine provides a way to share queries for all or a subset of
users.

2.2.3. The REST model
REST (Representational State Transfer; Fielding, 2000) is a gen-
eralization of the architectural principles of the World Wide
Web and is used to develop web services alongside or as an
alternative to other specifications such as the Simple Object
Access Protocol or the Common Object Request Broker Archi-
tecture. A RESTful architecture identifies a set of resources,
which can be entities or collections, with standardized Uni-
form Resource Identifiers (URIs). The methods to interact
with the resources rely on HTTP verbs – such as GET,
PUT, POST, and DELETE – that are mapped to resource-
specific semantics. This means that resources map to a set of
views to represent the data state on the server independently
from the way it is stored. REST also allows representing the
resources content in different formats (e.g., XML, HTML, and
plain text).

XNAT uses URIs’ generic syntax, which consists in a
sequence of component parts describing the communication
protocol, the resource location, and additional information.

An example inspired from the RFC 39869 summarizes the
syntax:

http://central.xnat.org/REST/projects?format=csv

__/ ______________/ ___________/ _______/

| | | |

scheme authority path query

RESTful architectures organize resources in a hierarchy. Basi-
cally, URIs’ paths are constructed using a fixed set of keywords that
have parent-child relations. In XNAT, the main concepts follow the
tree structure represented in Figure 4. Keywords are paired with
an ID to point to a specific resource. Collection resources return
a list of identifiers and do not end with an ID. Table 1 illustrates
how XNAT uses the REST resources to list the project names on a
server and access a specific one.

URIs support a range of operations through the HTTP verbs.
Collection resources typically only support the GET method
whereas element resources use GET, PUT, and DELETE to support
access, creation, and deletion operations. To perform additional
operations, XNAT leverages the query component of URIs. As
shown in Table 2, it enables selecting and filtering the outputs as
well as choosing the output format.

The XNAT REST API is separated in two parts: the hierarchical
structure described on Figure 4 and the search engine. Navigation
through the database and downloading files attached to subjects

9http://www.ietf.org/rfc/rfc3986.txt

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 4

http://www.ietf.org/rfc/rfc3986.txt
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

or experiments is accessible from the URIs whereas getting tables
containing metadata is enabled by the search engine.

3. RESULTS
We implemented the PyXNAT package on top of the XNAT REST
API to enable easy communications with XNAT through the
Python language. In this section, we describe the general design of
the library as well as specific mechanisms that are original or of
particular importance. We finish by giving some examples of real
life uses cases for PyXNAT.

3.1. ARCHITECTURE AND DESIGN
PyXNAT combines several components to interact with an XNAT
server, which are described in Figure 5. Its core relies on the
httplib2 Python module, which is in charge of issuing calls to
XNAT. The REST structure itself, which is described Figure 4 is
static and cannot be discovered with the XNAT REST API. This is
why PyXNAT uses a configuration file to model the REST structure
and to generate a programming interface that maps the REST API
to Python objects and methods. The modeling of the REST API is
used to generate HTTP calls against XNAT as well as parsing the
responses to generate Python objects.

The XNAT REST API is composed of a set of hierarchical
resources, which is the REST structure itself, and an endpoint
for its search engine. The REST structure gives access to files (e.g.,
images), as well as metadata. The URIs look a lot like files and
directories paths on a file system and can effectively be viewed as
such. The search engine gives access to the metadata and enables
searching them, but does not provide any mechanism to point to
files. So with the REST API, it is possible to look for all the subjects

FIGURE 4 | XNAT REST model.

Table 1 | XNAT URI design.

Resource type Path

Element resource /REST/projects/PROJID

Collection resource /REST/projects

Table 2 | URI query strings usage in XNAT.

Option URI query string

Select output ?columns = ID,project

Filter output ?xsiType = xnat:mrSessionData

Output format ?format = csv

that are 14 years of age or have a specific answer to an assessment.
But the search will not be able to yield URIs to files. PyXNAT builds
on XNAT by using the results of the search engine to subsequently
generate URIs and retrieve files. By tightly integrating those two
mechanisms, PyXNAT delivers a more powerful and succinct way
to interact with XNAT. For example, PyXNAT is able to retrieve all
the assessments from a subject in a single statement whereas the
REST API from XNAT would require several calls.

3.1.1. Object mapper
PyXNAT borrows language elements from SQL (Structured
Query Language) and the Python DB-API to define a famil-
iar and easy to use query language. The select statement
defines the data to return from a query, either a list of iden-
tifiers if it is a collection object, or a Python object
pointing to a single URI if it is an element object. An
object mapper returns Python objects reflecting URIs, and
offering actions through their methods. These actions include,
resource operations,database browsing,and files downloading and
uploading.

interface.select(’/projects’)
interface.select(’/project/PROJID’)

The element objects share common operations for insertion and
deletion for example, but also feature specific methods. For exam-
ple all types of entities can be created and deleted, but only the
project objects may handle the access permissions:

p = interface.select(’/project/PROJID’)

p.insert()
p.delete()
p.exists()
p.set_accessibility(’public’)

FIGURE 5 | PyXNAT architecture.

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

Collection objects use a lazy loading mechanism and
work essentially the same way as cursor objects as defined
in Python DB-API. The object itself doesn’t issue any request on
the database and delegates the actual query to dedicated methods.
The Table 3 summarizes and compares the collection or cursor
objects methods.

PyXNAT container objects are implemented as Python gen-
erators. Generators provide a convenient mechanism for lazily
looping over items (e.g., using a for loop) without accessing or
loading those items until they are needed. For example, to perform
an operation on every subject from all projects, PyXNAT operates
on the subjects from each project one at a time. Without the lazy
access mechanism, the library would have to retrieve all the sub-
jects from all the projects before operating on them. This might
take a considerable amount of time that can be used instead to start
operations that needed the subjects in the first place. While there
are other ways to iterate over subjects, this example demonstrates
the flexibility introduced by the PyXNAT library:

s = interface.select(’/projects/*/subjects’)

for subject in s:
<perform operation>

The keywords used in the select statement are the same as the
ones defining the REST structure represented in Figure 4. The
ability to chain those keywords through the Python objects enable
users to express more complex queries very easily. For example, the
following calls, which are equivalent, return all the files for all the
experiments related to a subject in any project in the database. Of
course, it would be as easy to use identifiers or more constrained
filters instead of the wildcard “∗” in order to return a specific set
of files. The different syntaxes all rely on the same underlying
Python objects. They exist because there are two different ways
to use PyXNAT. First, as a library, which calls for efficiency and
enables to reference directly the data. Second, as an interactive
command line front-end for XNAT, in which case performance is
not the main concern. The need to quickly explore the database
is, however, far more important and explains the introduction of
shortcuts in the syntax.

interface.select.projects().subjects().
experiments().resources().files()

interface.select(’/projects/*/subjects/*/
experiments/*/resources/*/files’)

interface.select(’//experiments//files’)

Table 3 | Cursor objects methods comparison.

Python DB-API pyxnat-API

fetchone() first() or fetchone()

fetchmany() not-supported

fetchall() get() or fetchall()

3.1.2. Search integration
XNAT’s search engine sets up queries using the datatypes defined
in the XML schemas. It is accessible from a single URI, on which it
is possible to POST – basically send – an XML file describing the
query. The request gets results in form of a CSV (comma-separated
values) table, which contains the requested data and identifiers.
However, the URIs referencing files cannot be returned because
they are not stored in the database. Moreover, the REST API does
not provide any mechanism to use the identifiers to build URIs
referencing files. PyXNAT deals with the complexity of writing the
XML documents and offers a simple language to use the search
engine. It also parses the outputs from the search engine to gener-
ate valid URIs that get resources on XNAT. Those mechanisms are
illustrated in Figure 6.

To keep the semantics consistent throughout the API, PyXNAT
uses again its select statement to define the data to capture,
but with different parameters. The first argument is specifies the
type of an entry, and the second argument is a list of fields and
defines the columns of the table to return. The SQL where
clause is replicated in PyXNAT to formulate the search criteria.
The criteria set is expressed as a list of tuples, where each tuple
corresponds to a single search constraint. A constraint tuple is a
3-value entity composed of a search field, a comparison opera-
tor and a value. Every query may include sub-queries, expressed
by lists of tuples. The whole request with PyXNAT is therefore
expressed with an SQL-like syntax which is close to other query
languages and enables to fully leverage the XNAT search engine.
This syntax is close to SQLAlchemy’s10, a popular Python ORM
library (Object-relational Mapping)11.

PyXNAT search example
row = ’xnat:mrSessionData’
columns = [

’xnat:subjectData/LABEL’,
’xnat:mrSessionData/AGE’,
’xnat:subjectData/GENDER’

]

criteria = [
(’xnat:mrSessionData/PROJECT’,

10http://www.sqlalchemy.org
11http://en.wikipedia.org/wiki/Object-relational_mapping

FIGURE 6 | PyXNAT integration of the search engine and the files

access.

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 6

http://www.sqlalchemy.org
http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

’=’, ’MY_PROJECT’),
(’xnat:mrSessionData/PROJECT,

’=’, ’CENTRAL_OASIS_CS’),
’OR’

]

interface.select(row, columns).
where(criteria)

SQLAlchemy example from the online
documentation

session.query(User).filter(User.name.
like(’%ed’))

The same syntax can be used to combine the search engine with
the hierarchical REST resources. The select statement from the
object mapper can be chained with the where clause, which uses
the search engine. PyXNAT returns objects, for which subjects
match the criteria defined in the where clause.

interface.select(’//experiments’).
where(criteria)

3.2. DATABASE INTROSPECTION
XNAT databases contain several kinds of data such as imaging
data, demographic information, behavioral data, and experimen-
tal design. These categories are further differentiated; for instance,
imaging data may be acquired from several different modalities
including structural and functional MRI as well as PET. Fur-
ther complicating the situation, these image modalities are often
referred to by several different names. For example, a database
may reference a T1-weighted image as just “T1,” whereas another
one reference it as “MPRAGE.” This terminology problem can be
addressed with ontologies and data integration technologies which
are currently being developed by the community (Bug et al., 2008;
Larson et al., 2009). However as a first step addressing this problem,
PyXNAT provides functions to retrieve list of all values used in a
given database. This functionality gives users the ability to interact
with the data and the data model, in order to quickly provide a
summary of a large number of data types and entries.

XNAT provides basic introspection methods that are replicated
and augmented in PyXNAT. In particular, XNAT provides REST
functions to query the data types that are defined by the XML
Schema. These functions enable users to learn from a database, for
example, that it defines the concept of subject and that a subject
has a gender or that the age of the subject is actually defined for
an experiment performed on this subject. However, XNAT lacks
a helper function to extract all the values that a data field takes
in a specific database. To provide this functionality with a consis-
tent API, PyXNAT uses the search engine from XNAT. This is very
useful when building queries, since it provides a list of all values
that can be used. In the interactive session below, we show the dif-
ferent methods that enables users to explore the data model and
find data:

retrieve list of datatypes
>>> interface.inspect.datatypes()

[..., ’xnat:mrSessionData’,...]
retrieve list of datatypes fields
>>> interface.inspect.datatypes(’xnat:

mrSessionData’)
[..., ’xnat:mrSessionData/AGE’,...]
retrieve list of field values
>>> interface.inspect.field_values(’xnat:

mrSessionData/AGE’)
[..., ’14’, ’25’, ’42’,...]

3.2.1. Cache
PyXNAT maintains a local copy of all the server responses into a
cache (i.e., the data files that may be images as well as the metadata
arrays or resources listing). The cache mechanism is illustrated in
Figure 7. The main goal of the cache is to improve performance;
but, it can also be rendered persistent and provide a full “offline”
mode to PyXNAT.

The PyXNAT cache is primarily an implementation of the
HTTP caching mechanism that stores the data on a filesystem.
HTTP is known as a request-response protocol, which means that
a client sends a request to a server that is responsible for processing
and returning a message in response. The message is composed of
two main parts: the header and the body. The header contains
information on the message and on the server. The body contains
the actual data that was requested (e.g., an image). HTTP pro-
vides cache validators in the header of the messages to transmit
the status of the resource to the client, which can take a deci-
sion on the validity of the cached version of the resource. This
strategy prevents the client from downloading unnecessary data
and improves performance by reducing the network traffic. XNAT
only provides the“Last-Modified” field in the header, which can be
checked against the date of the local version of the data. Only the
resources that link to a file support the cache validation in XNAT.
The other resources – elements listing, metadata values – need to
be downloaded again to make sure the local data is up-to-date.
This is why PyXNAT introduces an additional expiration mech-
anism to avoid repeatedly requesting resources to the server for
certain operations. In other words, if a cached resource is accessed
within a specified amount of time (default to 1 s), the data will not
be downloaded again.

3.3. DATABASE MANAGEMENT
PyXNAT supports additional XNAT functionalities including user,
project, and pipeline management as well as search utilities. Those
features reflect exactly what is provided by the XNAT REST API.
We now present two critical interfaces.

The first interface provides project management functionality.
It enables project owners to configure their project, add users, and
set up access permissions. This is achieved mainly by configuring
two attributes: the user role and the project accessibility.

interface.manage.project(’ID’).
set_accessibility(level)

interface.manage.project(’ID’).
add_user(’user’, role)

The second interface is the search utility. It enables users to create
and share searches with other users. It uses the same syntax as

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

FIGURE 7 | HTTP cache mechanism.

the one described for the where clause. An additional PyXNAT-
specific feature is the ability to create search templates. These
templates maintain the ability to be shared between users, but
instead of carrying values, they define keys to be replaced by the
actual value when used. This makes it possible to easily re-use any
kind of search.

criteria = [(’xnat:subjectData/GENDER’,
’=’, ’male’), ’AND’]

interface.manage.search.save(’search_name’,
row, columns, criteria, users)

interface.manage.search.get(’search_name’)

criteria = [(’xnat:subjectData/GENDER’,
’=’, ’gender’), ’AND’]

interface.manage.search.save_template
(’template_name’, row, columns,

criteria, users)
interface.manage.search.use_template

(’template_name’, {’gender’:’male’})

3.4. USAGE EXAMPLES
PyXNAT is a powerful and easy to use library to build client appli-
cations for XNAT. As an example, NiPyPE (Ghosh et al., 2010) is
a Python module that interfaces to existing neuroimaging soft-
ware such as SPM, FSL, or FreeSurfer. It is also able to distribute
jobs over clusters, which makes it very efficient to process large
amounts of data. Its data connection method was originally file
system based but it can now in addition access an XNAT server

FIGURE 8 | PyXNAT and NiPyPE interactions.

through PyXNAT. PyXNAT and NiPype are being used jointly to
run analysis on IMAGEN, which is a European project that aims
to study addiction risk factor in a database containing over 2000
adolescents. Figure 8 depicts how the two packages interact.

Other projects have started or already support XNAT through
PyXNAT. Among them are the XNAT tools from the XNAT group,
which were originally written in Java and are currently being

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

re-written in Python using PyXNAT. Another example is the Con-
nectome Viewer (Gerhard and Daducci, 2011), which can now
read and write data on XNAT.

4. DISCUSSION AND CONCLUSION
Historically, neuroimaging researchers have used ad hoc proce-
dures for maintaining their analysis and data. Over the last few
years, there have been several attempts to build databases to man-
age neuroimaging data. The ability to programmatically access
neuroimaging databases is becoming increasingly important to
perform batch analysis and administration tasks, as their growth
makes them all but impossible to operate manually. However it
has been difficult to use standard analysis tools and these database
systems together.

One of the most widely used neuroimaging database systems is
XNAT. XNAT is an open-source database that incorporates many
useful and powerful features including an efficient search engine
and a REST API. However, being written in Java and having a REST
API, it offers no natural bridge to the most common analysis tools,
that are accessible from a scripting language (like MATLAB or
Python) or from the command line.

PyXNAT provides a bridge between XNAT and analysis tools.
Combined with an interactive Python terminal such as IPython
(Perez and Granger, 2007), it can also be used as an alternative
front-end for XNAT. Since it is written in Python, it becomes
readily accessible to the vast and relevant set of Python tools in
the neuroscience domain. Moreover, command line tools can eas-
ily be developed using PyXNAT, as such, popular programming
languages can easily benefit from PyXNAT merely by issuing sys-
tem calls. The XNAT team is currently rewriting its command
line tools using PyXNAT. Most programming languages provide
bridges toward other languages. As an example, PyMat 12 enables
Python scripts to execute MATLAB commands, and pass back and
forth Numpy arrays. While these solutions are not as robust as
keeping a single programming environment, they provide a viable
option to use existing code. Another solution to use PyXNAT from
other languages is to use the softwares wrapped by NiPyPE.

PyXNAT focuses on ease of use, combining RESTful services
with clear semantics and adding helper features. It also makes
PyXNAT highly efficient: being a thin layer over HTTP with a
cache mechanism, it is at least as efficient as native REST calls.
The package is open-source under the BSD license. It is available
for download13 and has an online documentation14, which covers
installation and usage.

12http://claymore.engineer.gvsu.edu/ steriana/Python/pymat.html
13http://pypi.python.org/pypi/pyxnat/
14http://packages.python.org/pyxnat/

There are several areas where PyXNAT, in its current version
(0.9.3), needs to be improved. One of the most important areas
that could be improved is the PyXNAT cache, which is currently
only disk-based. If several processes share the same cache folder,
one has to be careful to avoid concurrent read and write oper-
ations on the same files. The cache could be replaced by a full
featured local database. It would support concurrent access and
also enable an offline mode for PyXNAT with search capabili-
ties. One could also add synchronization features to update the
local database and push back generated results to the remote
server. Users would then be able to work seamlessly on and
offline. Other possible improvements include a logging frame-
work to trace all the REST calls, advanced data filtering capa-
bilities from the REST API, or the prearchive mechanism from
XNAT.

PyXNAT could be used to develop a federation layer between
XNAT servers. It would mostly help to access the data, but using its
introspection functions, it could issue simple queries on multiple
XNAT instances. PyXNAT could also help to federate hetero-
geneous databases systems, but as a component along similar
librairies. The complex challenges of data integration, such as
data alignment would however have to be addressed separately.
The INCF (International Neuroinformatics Coordinating Facil-
ity), and in particular its datasharing task force, is currently work-
ing on these issues. For example, the datasharing task force is
working on an API for accessing different neuroimaging databases
(XNAT, HID, IDA,...), that could eventually be re-used in PyXNAT.
Its goal is not to promote a specific database, but rather standards
and methods to share and re-use neuroimaging data. However due
to its popularity and relevance, XNAT and therefore PyXNAT are
part of the components being used to build prototypes for the
initiative.

In conclusion, PyXNAT enables XNAT access in the Python
environment. It can be used both as an interactive command line
interface and as a back-end communication library. We see PyX-
NAT as a major step to help process and administrate datasets in
XNAT servers.

ACKNOWLEDGMENTS
We thank Jarrod Millman for helpful reading of the original man-
uscript. We also thank the NIPY community for their tools and
advice in general, and all the PyXNAT users for their feedback and
patience. Support was provided by the IMAGEN project, which
receives research funding from the European Community’s Sixth
Framework Programme (LSHM-CT-2007-037286). This manu-
script reflects only the author’s views and the Community is not
liable for any use that may be made of the information contained
therein.

REFERENCES
Angles, R., and Gutierrez, C. (2008).

Survey of graph database models.
ACM Comput. Surv. 40, 1.

Bug, W., Ascoli, G., Grethe, J., Gupta,
A., Fennema-Notestine, C., Laird,
A., Larson, S., Rubin, D., Shepherd,
G., Turner, J., and Martone, M. E.
(2008). The NIFSTD and BIRNLex

vocabularies: building comprehen-
sive ontologies for neuroscience.
Neuroinformatics 6, 175–194.

Cattell, R., Barry, D., Bartels, D., Berler,
M., Eastman, J., Gamerman, S., Jor-
dan, D., Springer, A., Strickland, H.,
and Wade, D. (1997). The Object
Database Standard: ODMG 2.0, Vol.
5. Los Altos, CA: Morgan Kaufmann.

Fielding, R. (2000). Representational
state transfer (REST). Chapter 5 in
Architectural Styles and the Design
of Networkbased Software Archi-
tectures. Ph.D. thesis, University of
California, Irvine.

Gadde, S., Aucoin, N., Grethe, J., Keator,
D., Marcus, D., and Pieper, S. (2011).
XCEDE: an extensible schema for

biomedical data. Neuroinformatics
10, 1–14.

Gerhard, S., and Daducci, A. (2011).
Frontiers: The connectome viewer
toolkit: an open source frame-
work to manage, analyze, and
visualize connectomes. Front.
Neuroinform. 5:3. doi: 10.3389/
fninf.2011.00003

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 9

http://claymore.engineer.gvsu.edu/\protect \kern +.1667em\relax steriana/Python/pymat.html
http://pypi.python.org/pypi/pyxnat/
http://packages.python.org/pyxnat/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

Ghosh, S., Burns, C., Clark, D., Gor-
golewski, K., Halchenko, Y., Madi-
son, C., Tungaraza, R., and Mill-
man, K. J. (2010). “Nipype: open-
source platform for unified and
replicable interaction with exist-
ing neuroimaging tools,” in 16th
Annual Meeting of the Organiza-
tion for Human Brain Mapping,
Barcelona.

Jones, E., Oliphant, T., and Peterson, P.
(2001). SciPy: Open Source Scientific
Tools for Python. Available at: URL
http://www.scipy.org

Kakazu, K., Cheung, L., and Lynne,
W. (2004). The Cancer Biomedical
Informatics Grid (caBIG): pioneer-
ing an expansive network of infor-
mation and tools for collaborative
cancer research. Hawaii Med. J. 63,
273.

Keator, D. B., Grethe, J. S., Marcus, D.,
Ozyurt, B., Gadde, S., Murphy, S.,
Pieper, S., Greve, D., Notestine, R.,
Bockholt, H. J., Papadopoulos, P.,
BIRN Function, BIRN Morphome-
try, and BIRN Coordinating. (2008).
A national human neuroimaging
collaboratory enabled by the Bio-
medical Informatics Research. IEEE
Trans. Inform. Technol. Biomed. 12,
162–172.

Langtangen, H. (2011). A Primer on
Scientific Programming with Python,
Vol. 6. New York: Springer-Verlag.

Larson, S., Maynard, S., Imam, F., and
Martone, M. (2009). NeuroLex.org –
A semantic wiki for neuroinfor-
matics based on the NIF Standard
Ontology. Front. Neur. Conference
Abstract: Neuroinformatics 2009.
doi: 10.3389/conf.neuro.11.2009.
08.078

Maier, D. (1983). The Theory of Rela-
tional Databases. Rockville: Com-
puter Science Press.

Marcus, D., Olsen, T., Ramaratnam, M.,
and Buckner, R. (2007). The exten-
sible neuroimaging archive toolkit.
Neuroinformatics 5, 11–33.

Montagnat, J., and Gaignard, A. (2008).
NeuroLOG: a community-driven
middleware design. Stud. Health
Technol. Inform. 138, 49–58.

Oliphant, T. (2006). A Guide to NumPy,
Vol. 1. Spanish Fork: Trelgol Publish-
ing.

Ozyurt, I. B., Keator, D. B., Wei, D.,
Fennema-Notestine, C., Pease, K.
R., Bockholt, J., and Grethe, J.
S. (2010). Federated web-accessible
clinical data management within an
extensible neuroimaging database.
Neuroinformatics 8, 231–249.

Perez, F., and Granger, B. (2007).
IPython: a system for interactive sci-
entific computing. Comput. Sci. Eng.
9, 21–29.

Petersen, R., Aisen, P., Beckett, L.,
Donohue, M., Gamst, A., Harvey,
D., Jack, C., Jagust, W., Shaw, L.,
Toga, A., Trojanowski, J. Q. Weiner,
M. W., and Jagust, W. J. (2010).
Alzheimer’s disease neuroimaging
initiative (ADNI). Neurology 74,
201.

Schumann, G., Loth, E., Banaschewski,
T., Barbot, A., Barker, G., Büchel,
C., Conrod, P. J., Dalley, J. W.,
Flor, H., Gallinat, J., Garavan, H.,
Heinz, A., Itterman, B., Lathrop,
M., Mallik, C., Mann, K., Martinot,
J.-L., Paus, T., Poline, J.-B., Rob-
bins, T. W., Rietschel, M., Reed, L.,
Smolka, M., Spanagel, R., Speiser,
C., Stephens, D. N., Ströhle, A.,
and Struve, M. (2010). The IMA-
GEN study: reinforcement-related
behaviour in normal brain function
and psychopathology. Mol. Psychia-
try 15, 1128–1139.

Van Essen, D. (2002). Windows on
the brain: the emerging role of
atlases and databases in neuro-
science. Curr. Opin. Neurobiol. 12,
574–579.

Van Horn, J. D., and Toga, A.
W. (2009). Is it time to re-
prioritize neuroimaging databases
and digital repositories? Neuroimage
47, 1720–1734.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 19 December 2011; accepted: 28
March 2012; published online: 24 May
2012.
Citation: Schwartz Y, Barbot A,
Thyreau B, Frouin V, Varoquaux
G, Siram A, Marcus DS and Poline
J-B (2012) PyXNAT: XNAT in
Python. Front. Neuroinform. 6:12.
doi: 10.3389/fninf.2012.00012
Copyright © 2012 Schwartz, Barbot ,
Thyreau, Frouin, Varoquaux, Siram,
Marcus and Poline. This is an open-access
article distributed under the terms of
the Creative Commons Attribution Non
Commercial License, which permits non-
commercial use, distribution, and repro-
duction in other forums, provided the
original authors and source are credited.

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 10

http://www. scipy. org
http://dx.doi.org/10.3389/fninf.2012.00012
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Schwartz et al. PyXNAT: XNAT in Python

APPENDIX
This small example illustrates how to download T1 images from subjects over 80 years old on XNAT Central1 with PyXNAT, and process
them in parallel on a computer. For the sake of simplicity, we chose the BET command line tool, which extracts the brain from the
image of the whole head, as an analysis example. The functions, that distribute the processing on several processors, are part of the
standard library of Python. The example is also available on github2, and requires FSL3 and pyxnat version 0.9.3 or above to run. The
script will prompt the user for a login and password, so one may need to first register on XNAT CENTRAL.

import os
from subprocess import Popen
import multiprocessing as mp

import pyxnat

URL = ’https://central.xnat.org’ # central URL
BET = ’fsl4.1-bet2’ # BET executable path

central = pyxnat.Interface(URL) # connection object

def bet(in_img, in_hdr): # Python wrapper on FSL BET, essentially a system call
in_image = in_img.get() # download .img
in_hdr.get() # download .hdr
path, name = os.path.split(in_image)
in_image = os.path.join(path, name.rsplit(’.’)[0])
out_image = os.path.join(path, name.rsplit(’.’)[0] + ’_brain’)
print ’==> %s’ % in_image[-120:]
Popen(’%s %s %s’ % (BET, in_image, out_image),

shell=True).communicate()
return out_image

notify = lambda m: sys.stdout.write(’<== %s\n’ % m[-120:]) # print finish message
pool = mp.Pool(processes=mp.cpu_count() * 2) # pool of concurrent workers
images = {}
query = (’/projects/CENTRAL_OASIS_CS/subjects/*’

’/experiments/*_MR1/scans/mpr-1*/resources/*/files/*’)
filter_ = [(’xnat:mrSessionData/AGE’, ’>’, ’80’), ’AND’]

for f in central.select(query).where(filter_):
label = f.label()
images are stored in pairs of files (.img, .hdr) in this project
if label.endswith(’.img’):

images.setdefault(label.split(’.’)[0], []).append(f)
if f.label().endswith(’.hdr’):

images.setdefault(label.split(’.’)[0], []).append(f)
download and process both occur in parallel within the workers
for name in images.keys():

if len(images[name]) == 2: # if .img and .hdr XNAT references are ready
img, hdr = images.pop(name) # get references
pool.apply_async(bet, (img, hdr), callback=notify) # start worker

pool.close()
pool.join()

1https://central.xnat.org
2https://gist.github.com/1816347
3fsl-bet path may have to be changed in the script to match your installation

Frontiers in Neuroinformatics www.frontiersin.org May 2012 | Volume 6 | Article 12 | 11

https://central.xnat.org
https://gist.github.com/1816347
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	PyXNAT: XNAT in Python
	Introduction
	XNAT
	PyXNAT

	Materials and methods
	Python
	XNAT
	Overview and key features
	XNAT search engine
	The REST model

	Results
	Architecture and design
	Object mapper
	Search integration

	Database introspection
	Cache

	Database management
	Usage examples

	Discussion and Conclusion
	Acknowledgments
	References
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

