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Abstract: Lung cancer represents the primary cause of cancer death in the world. Malignant cells
identification and characterization are crucial for the diagnosis and management of patients with
primary or metastatic cancers. In this context, the identification of new biomarkers is essential to
improve the differential diagnosis between cancer subtypes, to select the most appropriate therapy,
and to establish prognostic correlations. Nuclear abnormalities are hallmarks of carcinoma cells
and are used as cytological diagnostic criteria of malignancy. Lamins (divided into A- and B-types)
are localized in the nuclear matrix comprising nuclear lamina, where they act as scaffolding protein,
involved in many nuclear functions, with regulatory effects on the cell cycle and differentiation,
senescence and apoptosis. Previous studies have suggested that lamins are involved in tumor
development and progression with opposite results concerning their prognostic role. This review
provides an overview of lamins expression in lung cancer and the relevance of these findings
for disease diagnosis and prognosis. Furthermore, we discuss the link between A-type lamins
expression in lung carcinoma cells and nuclear deformability, epithelial to mesenchymal transition,
and metastatic potential, and which mechanisms could regulate A-type lamins expression in lung
cancer, such as the microRNA miR-9.
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1. Introduction

Lung cancer is one of the most frequent cancers and the leading cause of cancer-related mortality
in developed countries [1,2]. Among non-small cell lung cancer (NSCLC), adenocarcinoma represents
the most frequent histological type. The European Society for Medical Oncology (ESMO) recommends
molecular profiling of lung adenocarcinoma cells to select targeted therapy. This characterization
comprises epidermal growth factor receptor (EGFR), V-Ki-ras2 Kirsten rat sarcoma viral oncogene
homologue (KRAS), v-Raf murine sarcoma viral oncogene homologue B1 (BRAF), human epidermal
growth factor receptor 2 (HER2) mutation profiles, together with anaplastic lymphoma kinase (ALK)
and C-ros oncogene 1 (ROS1) rearrangement, and c-MET amplification [3,4]. A genetic alteration
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is found in approximately 50% of the patients with lung adenocarcinoma [5]. Despite advances in
treatment during the last decade (such as chemotherapy, tyrosine kinase inhibitors or immunotherapy),
the prognosis of advanced stages of NSCLC still remains poor. In this context, understanding which
factors are involved in the metastatic process is a major issue, in order to identify new biomarkers and
to develop new therapeutic strategies.

Morphological changes in the size and shape of the nucleus, which are frequently observed
in carcinoma cells [6,7], are commonly used as cytological diagnostic criteria of malignancy [8].
These nuclear abnormalities are probably the cause or the consequence of proteins modifications
entering in the constitution of the nuclear matrix and/or the nuclear envelope (NE). The NE includes
an inner and an outer nuclear membrane (INM, ONM), and is interrupted by nuclear pores implicated
in nucleocytoplasmic exchanges. A family of type V intermediate filaments proteins called ‘lamins’ is
one of the main components of the nuclear matrix, including the nuclear lamina, which is a network
of lamin filaments located underneath the INM. Lamins confer capacity of resistance in cellular
deformability [8–10]. They also regulate chromatin organization, DNA replication, DNA repair,
transcription, differentiation [11–13], and apoptosis [14]. Lamins are known to interact with
cytoskeleton through INM SUN proteins inside the LINC (LInker of Nucleoskeleton and Cytoskeleton)
complex and are crucial for mechanotransduction and mechanical stability [9,15]. Lamins are divided
into A-type and B-type. Two major isoforms of A-type lamins (lamin A and lamin C, referred as
lamin A/C) and two minor isoforms (lamin A delta 10 and lamin C2) are alternative splice variants of
LMNA [16,17], while lamin B1 is encoded by LMNB1, and lamins B2 and B3 result from an alternative
splicing of LMNB2 [18].

Lamins proteins are composed of a central helicoid domain surrounded by tow globular parts
in N- or C-terminal. The C terminal tail bears an NLS region as well as an immunoglobulin-like
domain [19,20]. Whereas lamin C is directly produced as a mature protein, lamins A, B1, and B2
are generated as precursors called ‘prelamins’ that undergo 3 (lamin A) or 4 (B-type lamins)
steps of maturation. These processes occur though the CaaX motif in C-terminal that is specific
for each precursor. Lamins A, B1, and B2 share common first steps of maturation. As a start,
a farnesyl group (15-carbon hydrophobic group) is added to the cysteine residue of the CaaX box.
This phenomenon leads to the anchorage of these prelamins to the endoplasmic reticulum membrane
or to the outer nuclear envelope. The ‘aaX’ amino acids are then cleaved by ZMPSTE24/FACE1 or
Rce1/FACE2 proteases. As a third step, the cysteine residue goes through methylation performed by an
isoprenylcysteine carboxymethyl transferase (ICMT). At that point, B-type lamins are mature, whereas
prelamin A needs to experience a last maturation step. Indeed, ZMPSTE24/FACE1 removes the last 15
amino acids of the precursor leading to the release of a mature non farnesylated protein. Therefore,
while B-type lamins remain attached to the nuclear envelope thanks to their farnesyl anchor where they
participate to the composition of nuclear lamina, lamin A and lamin C are localized simultaneously to
the lamina and the rest of nuclear matrix [8,21–23].

Among the lamins subtypes, B-type lamins have a ubiquitous expression and are considered
essential for cell survival. The expression of A-type lamins, however, appears to be related
to the state of cellular differentiation. They are generally expressed in well-differentiated cells,
while undifferentiated cells or embryonic cells do not show detectable levels of A-type lamins [24–28].
Moreover, the proportion of A-type and B-type lamins in cells may vary depending on tissues,
in relation with their elasticity [29,30].

Interestingly, mutations of lamins or partners’ genes cause a heterogeneous landscape of disease
clustered under the name ‘laminopathies’ (http://www.umd.be/LMNA/) in which some of them
are characterized by premature aging features [31]. As example, the Hutchinson–Gilford’s Progeria
Syndrome (HGPS) is a premature aging syndrome mainly caused by the p.G608G mutation in LMNA
exon 11 firstly described in 2003 [32]. This mutation leads to a deletion of 50 amino acids on prelamin
A, including the cleavage site of FACE1/ZMPSTE24 protease, resulting in the abnormal persistence
of a C-terminal farnesylated cysteine at the end of the maturation processing [32,33]. This abnormal

http://www.umd.be/LMNA/


Cells 2018, 7, 78 3 of 17

protein, called ‘progerin’, remains thus anchored in the INM, generating nuclear abnormalities and
severe nuclear dysfunctions leading to a premature senescence. Patients die prematurely (mean
age 14.6 years) usually from cardiovascular complications. Attractively, whereas other premature
aging diseases present cancer predisposition based on the failure of their DNA repair systems
(bloom syndrome/xeroderma pigmentusom), HGPS patients do not exhibit such susceptibilities [34].
Furthermore, Fernandez and collaborators recently identified a tumor-protective function of BRD4 by
studying HGPS model [35]. Thus, accumulation of abnormal persistent farnylated truncated prelamin
A combine with other factors could prevent oncogenic development in these patients.

Additionally, previous studies have hypothesized that lamins are involved in the development
and progression of tumors. Few studies highlighted B-type lamins variation at a protein level, without
a link to prognosis. In contrast, several studies suggested that A-type lamins are involved in the
development and progression of cancers (Table 1) [36]. Variations of localization or level of expression
of lamin A and/or C were reported in several histological types. As described in Table 1, a decrease of
A-type lamins expression was found in breast cancers, prostate, colon, ovary, gastric, or endometrial,
associated with a poor prognosis, leading to decreased overall survival, increase of metastatic sites
number, tumor aggressiveness, or disease recurrence [37–42]. Conversely, some studies identified
a link between the increase of A-type lamins expression and the progression of the colorectal, prostate,
and ovarian cancer [43–45]. In these cancers, an enhanced expression of A-type lamins was associated
with higher stage tumors or a decreased overall survival (Table 1). These results showed that the role
of lamins A and C is probably dependent of the context and cancer type and requires other studies
to identify their role in the progression of cancer, according to the histological type, the mutational
profile and the stage of the underlying disease.

In this review, we discuss lamins expression variations in lung cancer, the impact of these findings
for disease diagnosis and prognosis and which mechanisms could regulate A-type lamins expression
in lung cancer, such as the microRNA miR-9.

Table 1. Summary of A-type Lamins expression (at a protein level) depending on tumor type and link
with the prognostic value.

Cancer/Tumor Type A-Type Lamins Expression Prognostic Value References

Gastric carcinoma
Decrease Decreased overall survival Wu et al., J. Exp. Clin. Cancer

Res. 2009
Cytoplasmic localization / Moss et al., Gut 1999

Breast carcinoma Decrease Decreased overall survival Capo-Chichi et al., Chin. J.
Cancer 2011

Ovarian carcinoma
Increase Higher stage tumours Wang et al., J. Proteome Res. 2009

Isolated decrease of lamin A Decreased overall survival
Increased number of metastatic sites

Gong et al., Pathol. Res.
Pract. 2015

Endometrial carcinoma Isolated decrease of lamin A Tumor agressiveness Cicchillitti et al., Oncotarget 2017

Prostate
adenocarcinoma

Increase / Kong et al., Carcinogenesis 2012

Decrease Increased risk for lymph
node metastasis Saarinen et al., PLoS ONE 2015

Colon carcinoma
Increase Decreased overall survival Willis et al., PLoS ONE 2008
Decrease Increase of disease recurrence Belt et al., EJC 2011

Small Cell Lung
carcinoma Decrease /

Broers et al., Adv. Exp. Med.
Biol. 2014
Broers et al., Am. J. Pathol. 1993
Kaufmann et al., Cancer
Res. 1991

Lung adenocarcinoma
Cytoplasmic localization / Broers et al., Adv. Exp. Med.

Biol. 2014

Isolated decrease of lamin A Increased number of metastatic sites
Poor Performans status Kaspi et al., PLoS ONE 2017
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2. Lamins’ Expression in Normal and Cancer Lung Tissues

Only few studies were dedicated to lamins expression in the normal respiratory epithelium
(bronchial and/or alveolar cells) and in lung cancer. In normal lung tissue, lamins A/C are
physiologically expressed in a subset of cells, according to their differentiation stage. In lung cancer,
a wide range of A-type lamins’ expression or localization has been described, without a clear relation
with the prognosis.

2.1. Physiological Lamins’ Expression

In 1997 and 2014, Broers et al. [14,27] have studied lamins’ expression from normal human lung
tissues. The expression of A- and B-types lamins was investigated by immunostaining on lung tissue
using a panel of specific antibodies for each lamin subtypes. The A-type lamins’ expression was
most prominent in well-differentiated epithelial cells as these proteins were expressed in bronchial
columnar cells, containing highly bronchial differentiated cells, and in pneumocytes, contrary to
bronchial basal cells. These results are coherent with literature, A-type lamins being poorly expressed
in non-differentiated cells.

Moreover, the authors observed that lamin B2 was expressed by all bronchial cells and alveolar
pneumocytes, whereas lamin B1 expression was restricted to the bronchial basal cells and was not
detected in bronchial columnar cells. Pneumocytes showed heterogeneous staining.

2.2. Lamins’ Expression Depending on Lung Cancer Histological Subtypes

In lung cancer, only few studies were devoted to a description of lamins A, C, and B1 expression
in cell lines and in human tissues. In 1990s, Kaufmann and Broers’ teams showed that A-type lamins
were expressed in non-small cell lung cancer (NSCLC) cell lines, but were absent or very weak in
small cell lung cancer (SCLC) cell lines, with no variation of lamin B1 expression. According to
Kaufmann’s study, lamin A and C expression was reduced of more than 80% in SCLC cell lines
compared to NSCLC cell lines, using Western and Northern Blotting [46]. Moreover, after v-ras
oncogene transfection in NCI-H249 SCLC cell line, which changed the phenotype of cells from SCLC
to NSCLC, a 10-fold increase in lamin A and C levels was observed, associated with higher amounts of
lamins A and C mRNAs. Similar levels of lamin B were observed regardless v-ras transfection [46].
In 1993, Broers et al. [47] confirmed these findings in twenty-two human lung cancer cell lines using
immunocytochemical, immunoblotting, and Northern blotting analyses. Lamins A and C were not
or partly expressed in 14 out of 16 SCLC cell lines, whereas all NSCLC cell lines displayed lamins
A and C expression. They also showed that B-type lamins were expressed in all SCLC and NSCLC
cell lines. Moreover, analysis of 46 frozen human lung cancer biopsies showed consistent results:
none or very weak lamins A and C expression was observed in 87% of SCLC cases (13/15), unlike
adenocarcinoma and squamous cell carcinoma, which all presented lamins A and C expression.
Interestingly, an aberrant cytoplasmic localization of A-type lamins was described rather than expected
nuclear staining in several samples of adenocarcinomas. This abnormal cytoplasmic localization
of A-type lamins has also been described in some colon, gastric, and pancreatic cancers [14,48].
Concerning B-type lamins’ expression, all tissues from SCLC and NSCLC were positive even though
some cases of lung adenocarcinoma showed a loss of their expression [47].

To go further in lamins A and C expression in lung adenocarcinoma, Machiels et al. [49]
have studied their expression in three lung adenocarcinoma cell lines, using a monoclonal antibody
directed against both lamins A and C, and one antibody which specifically recognized lamin A but not
lamin C in immunofluorescence and immunoblotting experiments. In one cell line (GLC-A1), lamin
A aggregates were observed throughout the nucleoplasm, while the nuclear lamina had a weak signal.
Moreover, in this cell line, amounts of lamins A and C proteins, as well as mRNAs, were lower than in
other cell lines and the ratio between lamin A and lamin C (A/C) mRNAs was 1/8, instead of 1/1 in
other cell lines. Again, no evidence of B-type lamins expression variation was notified.
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In 2017, our team analysed lamin A, C, and B1 expression in metastatic cells of lung
adenocarcinoma from pleural effusions. Interestingly, a strong decrease of lamin A, but not of lamin
C expression was observed in a group of patients [50]. The lamin ratio [ratio = Lamin A/(Lamin A
+ Lamin C)] established by Western Blot led to classify the patients according to lamin A expression.
This ratio was about 10-fold reduced for about a third of patients who were thus considered as
presenting a low lamin A expression. Concerning the other group of patients, lamin A expression was
considered as preserved. No variation of lamin B1 or lamin C expression was observed between the
two groups. Using flow cytometry, this decrease of lamin A expression was correlated with the lack
of EMA (Epithelial Membran Antigen)/MUC1, an epithelial malignancy marker which is involved
in the epithelial to mesenchymal transition (EMT) [51,52]. Moreover, contrary to Broers’ study [14],
no aberrant cytoplasmic localization of A-type lamins was found. Interestingly, the expression of lamin
A was inversely correlated with the number of metastatic sites; patients with low lamin A expression
had a higher number of metastases, and association of pleural, bone, and lung metastatic localization
was significantly more frequent. Finally, these patients also had a higher Performans Status score
compared with patients with high lamin A expression. Based on these findings, we had proposed low
lamin A (with conserved lamin C) expression in pleural metastatic cells from lung adenocarcinoma as
a pejorative factor associated with the development of metastasis. To our knowledge, this work is the
first to investigate lamins A, C, and B1 expression as potential biomarkers in lung adenocarcinoma
cells from metastatic pleural effusion. Nevertheless, the molecular mechanisms linking a reduced
lamin A expression to an enhanced metastatic potential in lung adenocarcinoma are still lacking.

All together, these data suggest a preferential role of A-type lamins linked to lung cancer other
the B-type lamins. Moreover, lamin A protein seems mainly affected in contrast with lamin C.

2.3. Potential Link between the Loss of A-Type Lamins and Nuclear Deformability and Metastatic
Potential Enhancement

The factors driving differences in lamins’ expression and the associated consequences with the
metastatic process are still poorly understood. Within lamina, lamins indirectly interact with other
proteins of the cytoskeleton, in particular with actin microfilaments. Through these interactions
and connections, the stiffness properties of lamina would be transmitted via the cytoskeleton up
to the plasma membrane, generating a real network of mechanic-transduction, and conferring
a final link between the cell nucleus and the extracellular matrix [53]. Because the nucleus is
responsible for the main properties of mechanical resistance, a decrease of its rigidity would be
at the origin of a loss of the mechanisms of resistance of the cell in its entirety [54]. Several publications
have emphasized the role of A-type lamins in nucleus deformability and stiffness, showing that
a decrease of A-type lamins expression was associated with nuclear changes, such as an increase of
the nucleus deformability and a decrease of its capacities of resistance [10,15,55,56]. Pajerowski et al.
showed a higher nuclear deformability of embryonic stem cells, rather than more differentiated
cells, depending on A-type lamins’ expression [57]. More recently, Davidson et al. developed a new
microfluidic device showing that A-type lamins-deficient fibroblasts exhibited increased nuclear
deformability and more plastic nuclear deformations compared to wild-type fibroblasts [55]. In more
detail, Lammerding et al. demonstrated that mouse embryonic fibroblasts lacking both lamins A
and C, only lamin A, or only lamin B1 had severely reduced, mildly reduced, and normal nuclear
stiffness, respectively, in comparison to wild type cells [10]. These consequences of lacking lamins
A and C can also be illustrated at a physiological level by polynuclear neutrophils, which are highly
specialized and differentiated cells having distensible multilobed nuclei which do not express A-type
lamins. Their nuclear deformability allows them to migrate through narrow capillaries or small
tissue opening [56].

During cancer cell invasion, tumour cells produce growth factors, angiogenic factors, matrix
metalloproteases, and have to acquire mobility and deformability to migrate through spaces in
extracellular matrix smaller than the size of the nucleus. To spread to other organs, cells must deform
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to migrate through very small spaces and embolize into the circulation. The cellular deformability
highly depends on the nucleus, which is the largest and stiffest cellular organelle. As described above,
the deformability of the nucleus is largely determined by A-type lamins’ expression, and their loss
confers superior deformability to cancer cells, which could facilitate migration through solid tissues
and, at last, would promote the metastatic process [58,59].

Concerning lung cancer, consistent results were obtained. Pajerowski et al. demonstrated that
the loss of A-type lamins in lung adenocarcinoma cell line A549 enhanced their nuclear deformability
compared to A549 cells expressing these lamins [57]. Moreover, A-type lamins knockdown in A549
cells induced similar compliance and deformability than adult hematopoietic stem cells. Another
study confirmed the link between the nuclear deformability and a low expression of lamins A and C in
lung cancer cells: indeed, Lu et al. [60] exposed A549 cells to the anti-tumour green tea extract, which
was previously described to induce cell adhesion and decrease motility in these cells. Green tea extract
exposition has been described to lead to a 2-fold increase of A-type lamins’ expression at protein as
well as mRNA levels, with a dose-related effect and thus, resulting in cell motility decrease.

All these studies demonstrate that A-type lamins are key factors involved in nuclear deformability,
and the loss of lamin A only or both lamins A and C expression probably enhances metastatic
potential in lung cancer. To our knowledge, only one study has made the link between the isolated
reduction of lamin A expression and the enhancement of metastatic potential in patients suffering
from metastatic lung adenocarcinoma [50]. However, lamins A and C are both encoded by the LMNA
gene, and produced by alternative splicing resulting in two main mRNAs, the prelamin A transcript
and the lamin C transcript. The isolated decrease of lamin A expression could be the consequence of
a regulation via splicing factors or by microRNAs (miRNAs) at the post-transcriptional level.

3. Potential Mechanisms of A-Type Lamins Regulation in Lung Cancer Implicating miR-9

3.1. MicroRNAs

MicroRNAs (also called miRNAs or miRs) are small non-coding RNAs, containing 18 to 25
nucleotides, described for the first time in 1993 in C. elegans [61]. Genes encoding miRNAs could
be localized in intergenic regions in the dependence of specific promotors. Alternatively, miRNA
encoding sequence could be localized in introns or exons of other genes, with a transcription being
dependent of the promotor of these genes. First, a primary transcript composed of more than 1kb,
called ‘pri-miRNA’, is produced by transcription using RNA polymerase II. The pri-miRNA is then
cleaved by the RNase III enzyme Drosha into a smaller precursor called ‘pre-miRNA’ [62], containing
70 nucleotides organized in a stem-loop structure. After its exportation into the cytoplasm through the
nuclear-cytoplasmic pores, the pre-miRNA undergoes a last cleavage step by the endonuclease Dicer,
resulting in production of an 18–25 nucleotide-long duplex miRNA [63]. One strand of this duplex is
eliminated in the RISC complex (RNA-induced silencing complex). The second strand, considered
as the mature miRNA, is then able to target messengers RNAs (mRNAs). The seed region, which is
defined by the nucleotides 2 to 7 in the 5′ region of miRNAs, settles most frequently on the 3′UTR
(untranslated transcript region) of the target mRNA by complementarity. This interaction leads to
target mRNA degradation or more frequently to the inhibition of its translation depending on a perfect
or partial hybridization, respectively [64]. Interestingly, one miRNA can bind to hundreds of target
mRNAs and inversely, different miRNAs, sharing the same or almost identical seed sequence can
target the same mRNA [65,66]. Moreover, mature miRNAs can also be re-imported into the nucleus,
where they recognize promoters of target genes, and thus regulate their transcription [67]. miRNAs
are since recognized as leading actors of the regulation of genic expression.

3.2. MicroRNAs and Lung Cancer

Several miRNAs contribute to the development and the progression of several cancers by
controlling, for example, cell growth, tissue differentiation, and apoptosis. These miRNAs can function
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as tumour suppressors or oncogenes, and belong to the so called ‘oncomiRs’ [68]. They are also
known to repress major cancer-related genes and might be considered as useful tools for diagnosis
and prognosis. Finally, some of them are even considered as new therapeutic targets leading to the
development of a preclinical study (NCT01829971) [69,70].

In lung cancer, many studies are descriptive, by analysing miRNA expression profile in lung
tumour, in comparison to normal adjacent tissue. For some of them, a link between deregulated
miRNAs and pathways was established using in silico approaches [71–73]. Moreover, the main
miRNAs involved in lung cancer have newly been summarized by Uddin et al. [74]. Two recent
publications [71,72] identified a miRNA expression profile, in which the five members of the miR-200
family (miR-141, miR-200a, miR-200b, miR-200c, miR-429) were up- or down-regulated in lung
cancer and particularly in lung adenocarcinoma. The miR-200 family plays a major role by silencing
epithelial to mesenchymal transition (EMT). EMT is characterized by the upregulation of mesenchymal
markers and is associated with the down-regulation of epithelial differentiation markers, such as
E-cadherin [75,76]. EMT is correlated with invasive tumor metastases and poor prognosis because
of an increase of cell motility and invasiveness [51,52,76,77]. Thus, miR-200a/b/c are considered as
tumor suppressors by repressing the mRNA translation of ZEB1 and ZEB2 transcriptional factors,
leading to E-cadherin expression silencing [78]. Conversely, Tian et al. [72], described an up-regulation
of these miRNAs in lung adenocarcinoma tissues. Nevertheless, this study focused on stage I lung
adenocarcinoma without analyzing the metastatic potential. Concerning miR-429, its up-regulation in
lung adenocarcinoma cell lines was associated with cell proliferation and cell metastasis [79]. Moreover,
circulating microRNAs from liquid biopsy have been proposed as diagnostic and/or prognostic tools
in lung cancer [80]. Among them, elevated serum levels of miR-141, miR-200b, and miR-429 have been
proposed as potential biomarkers for early diagnosis in this context [81,82], even though elevation
of these microRNAs in blood samples might not be lung specific as it has also been reported in
other cancers.

3.3. miR-9 in Lung Cancer

Mature miR-9-5p (miR-9 as previous id) results from three miR-9 genes, named miR-9-1, -2, and -3,
depending on their localization (chromosomes 1, 5, and 15, respectively). miR-9 has been shown to
be involved in the carcinogenesis and the metastatic process of cancers, either as an oncogene or as
a tumour suppressor depending on cancer type [83,84].

Sromec et al. [85] proposed the high plasmatic miR-9 expression as a biomarker of NSCLC. In this
study, plasma samples were collected from healthy donors and from NSCLC patients before surgery,
and 1 month and 1 year after. Interestingly, following tumour resection, miR-9 levels significantly
decreased below the normal level. Thus, the following of miR-9 plasma level could reflect the presence
of NSCLC and the systemic response after tumour resection.

In NSCLC cell lines, several studies showed an up-regulation of miR-9 using miRNA microarray,
RT-qPCR and bioinformatic analyses [86–92]. In primitive tumours of NSCLC, miR-9 expression
was higher than that in adjacent normal tissue [93–95]. This up-regulation in primitive tumour
was correlated to advanced tumour-node-metastasis (TNM 2009), tumour size, and lymph node
metastasis [94]. Furthermore, a high level of miR-9 expression was significantly associated with poorer
progression free survival and overall survival.

Expression level of miR-9 has also been described to influence oncologic drug efficiency.
Low miR-9 expression in SCLC cell lines led to an increased sensitivity to etoposide and topotecan [96].
In adenocarcinoma cell lines, ectopic overexpression of miR-9 decreased the growth inhibitory effect
of erlotinib [93]. Moreover, in adenocarcinoma cell lines, erlotinib downregulated miR-9 expression
in a dose-dependent manner. The suggested mechanism was an activation of DNA methylation
due to Erlotinib, leading to miR-9-1 transcription inhibition. DNA methylation is an epigenetic
mechanism, occurring on CpG islands, responsible for transcriptional silencing. In resected NSCLC
samples, methylation of miR-9 genes is frequently observed [97]. However, contradictory results were
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described concerning the prognostic role of miR-9 genes methylation associated to miR-9 inhibition in
NSCLC [89,93,97,98]. Methylation of miR-9-3 was associated with a shorter overall survival, in lung
squamous cell carcinoma [89], whereas methylated miR-9 genes were proposed as favourable prognosis
biomarkers in NSCLC [97].

Moreover, several studies showed that miR-9 directly mediated E-Cadherin down-regulation in
breast [99,100], prostate [101], oesophageal [102], ovarian [103], hepatocellular [104], and lung [95]
carcinoma. miR-9 targets CDH1, the E-Cadherin mRNA and downregulates E-Cadherin expression,
leading to β-catenin signalling activation and cell motility and invasiveness increase [100]. E-Cadherin
is a transmembrane calcium-dependent glycoprotein, which plays an important role in maintaining
the polarity and the contact of epithelial cells. In cancer research, downregulation of E-cadherin has
been shown to promote the metastatic process by allowing the dissociation of carcinomatous cells.
A negative correlation between the loss of E-cadherin expression in cancer cells and the severity
of the underlying disease has also been described [105–107]. These consequences of E-cadherin
inactivation have been shown in different models, both in vivo and in vitro [108–112]. Loss of
E-Cadherin expression in tumour tissues predicted poor overall survival in NSCLC patients [113,114]
and was associated with lymph node metastasis [113]. Moreover, in E-cadherin-deficient mouse model
with lung adenocarcinoma, accelerated cancer progression and decreased survival were observed,
associated with more metastatic sites number and in vitro, elevated migration of adenocarcinoma cells
derived from this model [115].

Interestingly, miR-9 is also known to down-regulate the expression of Metastasis-Associated
Lung Adenocarcinoma Transcript 1 (MALAT-1) [116]. miR-9 inhibits MALAT-1 expression through
its direct binding on two miRNA binding sites in the MALAT-1 sequence, leading to MALAT-1
degradation in the nucleus [116]. MALAT-1 is a 7 kb long non-coding nuclear RNA, which is
over-expressed in lung adenocarcinoma and other NSCLC cells [117–120]. MALAT-1 has been
associated with metastasis in NSCLC and is known as a poor prognostic marker for survival in
lung adenocarcinoma [116]. Indeed, MALAT-1 targets genes associated with lung cancer metastasis,
involved in cell migration, tumor growth [117,118] and it was suggested that MALAT-1 promotes lung
cancer brain metastasis by epithelial to mesenchymal transition (EMT) induction [120]. In addition,
all these studies concerning miR-9 and MALAT-1 expressions were performed on various cancer cell
lines or primary tumors obtained from patients with stage I–III NSCLC, including adenocarcinoma,
squamous cell carcinoma, or other large cell carcinoma. No study was performed on metastatic
cells from patients with stage IV lung adenocarcinoma. Moreover, MALAT-1 can be a blood based
biomarker for NSCLC as it is detectable and increased in peripheral human blood sample from patients
compared to cancer-free controls [121].

3.4. miR-9 and A-Type Lamins

Two publications showed that miR-9 is physiologically and highly expressed in neural cells,
in which it inhibits the expression of lamin A but not of lamin C, by directly targeting prelamin A
mRNA [122,123]. In HGPS, this mechanism prevents progerin (abnormal farnesylated prelamin A)
expression in neural tissue, which explains the normal cognitive development of patients affected by
HGPS. Inversely, most organs and systems, in which miR-9 is slightly or not expressed, are affected by
progerin accumulation.

Moreover, as described above, miR-9 is known to regulate the expression MALAT-1 [116], which is
also implicated in the regulation of several splicing factors, such as serine-arginine (SR)-rich splicing
factors (SRSF) 1, 2 and 3 [124]. SRSF1, like SRSF6, controls LMNA pre-mRNA alternative splicing,
leading to the production of lamin A and progerin in HGPS cells and during physiological aging in
a less extend [21,125]. MALAT-1 interacts with SRSF1 and modulates its expression in in vitro models
by controlling the ratio of phosphorylated to dephosphorylated pools of SRSF1 [124,126]. SRSF1 and
SRSF6 have been proposed as proto-oncogenes as they are overexpressed in many cancers [127,128].
Particularly in lung adenocarcinoma, high expression of SRSF1 is associated with the presence
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of metastases, a more aggressive phenotype, and chemotherapy resistance [77]. In human lung
adenocarcinoma cell lines, SRSF1 overexpression lead to EMT, with the loss of epithelial markers
(e.g., E-Cadherin) along with the acquisition of mesenchymal markers (e.g., vimentin, fibronectin,
and N-cadherin) [77].

In view of all these data, the oncomiR miR-9 seems to be a central actor in the carcinogenesis
and the metastatic process of NSCLC. Indeed, through its direct regulation on E-cadherin, MALAT-1
and Lamin A, it could act at different levels to increase the metastatic potential (Figure 1). miR-9 is
thus proposed as a biomarker associated to a poor prognosis in NSCLC patients, correlated to adverse
clinical features and unfavourable survival.Cells 2018, 7, x FOR PEER REVIEW  9 of 16 

 

 
Figure 1. miR-9 as a potential central actor in the metastatic process of NSCLC. miR-9 was described 
to inhibit lamin A, E-cadherin, and MALAT-1 expression. Thus, miR-9 could indirectly regulate 
nuclear deformability, cell mobility, migration and invasion, tumor growth, and EMT, leading to the 
metastatic process in NSCLC. 

4. Conclusions and Future Perspectives 

Previous works showed that A-type lamins’ levels were dramatically decreased in SCLC 
compared to NSCLC. In adenocarcinoma cells, A-type lamins’ aberrant cytoplasmic localization or 
reduced expression, with a more important decrease of lamin A expression compared to lamin C, 
were described. Furthermore, most published data result from old studies, only descriptive, which 
did not establish a link with the prognosis of the disease. A recent work of our team showed a 
reduction of lamin A expression, but not of lamin C, in lung adenocarcinoma metastatic cells 
obtained from pleural effusions. This isolated reduction of lamin A was associated with a higher 
number of metastatic sites and a poor performance status [50]. Interestingly, this expression profile 
of A-type lamins was also correlated with metastatic potential and a poor prognosis in other cancer 
types, such as ovarian cancer [38] and prostate carcinoma [40]. Thus, the loss of A-type lamins’ 
expression combined with the enhanced deformability of these cancer cells could confer them a high 
metastatic potential. 

MiR-9 could be a good candidate to explain the reduction of lamin A expression in lung 
adenocarcinoma cells. We hypothesize that an up-regulation of miR-9 in cancer cells would inhibit 
lamin A expression without affecting lamin C expression, resulting to an increase of the nuclear 
deformability. Concomitantly, miR-9 would decrease the expression of the E-Cadherin, leading to 
EMT and allowing the dissociation of carcinomatous cells, increasing the metastatic potential. This 
hypothesis places miR-9 in the centre of the potential metastatic regulation by increasing nuclear 
deformability, cell invasion, and mobility and migration linked to EMT, through the direct targeting 
lamin A and E-Cadherin mRNAs, as well as the MALAT-1 lncRNA. Moreover, as EMT has also been 
associated with chemotherapy resistance [129–131], the reduction of lamin A expression, through 
miR-9 regulation, could represent a predictive factor of therapy efficacy. 

Thus, future works on metastatic cells as well as on primitive tumour tissues from lung 
adenocarcinoma would facilitate investigation of the link between miR-9, lamin A, E-cadherin, and 
MALAT-1 expression. This would further our understanding of the mechanisms explaining 
metastatic potential and help with the proposal of new prognostic tools for patients with metastatic 
lung adenocarcinoma, and perhaps pave the way for the identification of new therapeutic targets in 
this devastating disease.  

Author Contributions: J.G., D.F., P.R. and E.K. analysed data and wrote the paper; S.P., V.D., N.L., F.B. and 
P.A. wrote the paper. 

Funding: This work was supported by an ARARD (Association Régionale d’Aide Respiratoire à Domicile) 
grant, Parc d’activités de Napollon, 100 avenue des Templiers, 13676 Aubagne Cedex, France. Tel.: 
+33-442-848-701, Fax: +33-442-846-999, http://www.arard.asso.fr/vous-etes-patient.html.  

Lamin A  E-Cadherin MALAT-1 

Inhibition 

miR-9 

Nuclear 
deformability 
Cell invasion 

Induction 

Cell mobility 
Cell invasion 

Cell migration 
Tumor growth 

EMT 

Metastatic potential 

EMT= epithelial to  
mesenchymal transition 

Figure 1. miR-9 as a potential central actor in the metastatic process of NSCLC. miR-9 was described to
inhibit lamin A, E-cadherin, and MALAT-1 expression. Thus, miR-9 could indirectly regulate nuclear
deformability, cell mobility, migration and invasion, tumor growth, and EMT, leading to the metastatic
process in NSCLC.

4. Conclusions and Future Perspectives

Previous works showed that A-type lamins’ levels were dramatically decreased in SCLC compared
to NSCLC. In adenocarcinoma cells, A-type lamins’ aberrant cytoplasmic localization or reduced
expression, with a more important decrease of lamin A expression compared to lamin C, were described.
Furthermore, most published data result from old studies, only descriptive, which did not establish
a link with the prognosis of the disease. A recent work of our team showed a reduction of lamin A
expression, but not of lamin C, in lung adenocarcinoma metastatic cells obtained from pleural effusions.
This isolated reduction of lamin A was associated with a higher number of metastatic sites and a poor
performance status [50]. Interestingly, this expression profile of A-type lamins was also correlated
with metastatic potential and a poor prognosis in other cancer types, such as ovarian cancer [38]
and prostate carcinoma [40]. Thus, the loss of A-type lamins’ expression combined with the enhanced
deformability of these cancer cells could confer them a high metastatic potential.

MiR-9 could be a good candidate to explain the reduction of lamin A expression in lung
adenocarcinoma cells. We hypothesize that an up-regulation of miR-9 in cancer cells would inhibit
lamin A expression without affecting lamin C expression, resulting to an increase of the nuclear
deformability. Concomitantly, miR-9 would decrease the expression of the E-Cadherin, leading
to EMT and allowing the dissociation of carcinomatous cells, increasing the metastatic potential.
This hypothesis places miR-9 in the centre of the potential metastatic regulation by increasing nuclear
deformability, cell invasion, and mobility and migration linked to EMT, through the direct targeting
lamin A and E-Cadherin mRNAs, as well as the MALAT-1 lncRNA. Moreover, as EMT has also been
associated with chemotherapy resistance [129–131], the reduction of lamin A expression, through
miR-9 regulation, could represent a predictive factor of therapy efficacy.

Thus, future works on metastatic cells as well as on primitive tumour tissues from lung
adenocarcinoma would facilitate investigation of the link between miR-9, lamin A, E-cadherin,
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and MALAT-1 expression. This would further our understanding of the mechanisms explaining
metastatic potential and help with the proposal of new prognostic tools for patients with metastatic
lung adenocarcinoma, and perhaps pave the way for the identification of new therapeutic targets in
this devastating disease.
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