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Abstract

Orthotic and assistive devices such as knee ankle foot orthoses (KAFO), come in a variety 

of forms and fits, with several levels of available features that could help users perform daily 

activities more naturally. However, objective data on the actual use of these devices outside of 

the research lab is usually not obtained. Such data could enhance traditional lab-based outcome 

measures and inform clinical decision-making when prescribing new orthotic and assistive 

technology. Here, we link data from a GPS unit and an accelerometer mounted on the orthotic 
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device to quantify its usage in the community and examine the correlations with clinical metrics. 

We collected data from 14 individuals over a period of 2 months as they used their personal KAFO 

first, and then a novel research KAFO; for each device we quantified number of steps, cadence, 

time spent at community locations and time wearing the KAFO at those locations. Sensor-derived 

metrics showed that mobility patterns differed widely between participants (mean steps: 591.3, 

SD =704.2). The novel KAFO generally enabled participants to walk faster during clinical 

tests (Δ6Minute-Walk-Test=71.5m, p=0.006). However, some participants wore the novel device 

less often despite improved performance on these clinical measures, leading to poor correlation 

between changes in clinical outcome measures and changes in community mobility (Δ6Minute­

Walk-Test – ΔCommunity Steps: r=0.09, p=0.76). Our results suggest that some traditional clinical 

outcome measures may not be associated with the actual wear time of an assistive device in the 

community, and obtaining personalized data from real-world use through wearable technology is 

valuable.
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I. Introduction

IN RECENT years, the fields of prosthetics and orthotics have seen the development 

of technologically advanced devices that promise to improve function in people with 

lower limb impairments. Advancements in computing power, lightweight materials, and 

miniaturized sensors and actuators have fueled the development of novel devices for 

personal mobility. These include both microprocessor controlled-passive and powered 

approaches to prostheses and orthoses, with features that are meant to restore a more natural 

gait pattern, and help users perform functional activities more efficiently [1]-[3].

While technologically advanced assistive devices can bring significant improvements to 

patients’ quality of life, there is still a lack of knowledge of their actual usage in everyday 

life. Traditional self-report surveys [4]-[7] are used to gain an understanding of whether a 

patient prefers using a new device over their traditional device. In addition, clinicians and 

engineers use standardized clinical outcome tests, such as the 10-meter walk test (10mWT) 

or the 6-minute walk test (6MWT), to measure performance of a particular device for an 

individual within a clinical/research setting. However, objective and quantitative data on how 

frequently somebody will actually use a new assistive/orthotic device in the community, 

and which functional activities will be enabled by it, is critical to facilitate reimbursement 

by health insurance companies, given the high market cost that such assistive technology 

typically have.

On the other hand, it is now possible to obtain large amounts of personal mobility data from 

cheap personal wearable devices, such as activity and Global Positioning System (GPS) 

trackers, as well as smartphones. Personal devices can easily and unobtrusively collect 

information on locations visited, number of steps or types of physical activities performed 

[8], [9], and are increasingly used in healthcare and rehabilitation [10]-[12]. Given that 
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such data can be collected continuously, these approaches open up new possibilities to 

study how people with disabilities move in the community [13] or use their device [14], 

and therefore can provide insights into which factors drive the actual adoption of different 

assistive devices.

Recent studies explored the use of wearable and mobile technology, including iPods [15], 

to track usage of assistive devices such as wheelchairs [16] and prostheses [17], [18], 

as well as functional capabilities in lower limb amputees [19]. GPS sensors have been 

used to follow mobility patterns of individuals with disabilities [20], [21], as well as in 

combination with wearable accelerometers to examine number of community steps taken 

by amputees with different levels of mobility [22]. Most of these studies highlighted the 

utility of objectively monitoring assistive device usage [23]; for example, measuring wear 

time of KAFOs in children with Cerebral Palsy [24] showed that parent-reported wear 

times differed significantly from sensor-based measurements, confirming the importance of 

obtaining objective data to quantify device usage.

While these methods have been applied to a variety of clinical populations, they have yet 

to be fully explored to advance knowledge of orthotic devices usage. Specifically, wearable 

technology could be used to compare the efficacy of different orthotic devices, by directly 

measuring their use in the community.

In the current study, we harnessed the availability of wearable sensor technology to study 

the community usage of KAFOs when participants used their personal KAFO and then a 

novel research KAFO. Using an activity tracker (accelerometer) mounted on the KAFO 

and a GPS unit worn by the participants, we tracked when each assistive device was used 

and where. We compared mobility patterns in a cohort of 13 individuals, as they used their 

personal KAFO and a novel research KAFO device over a total period of 2 months. We 

derived 4 metrics from the combined GPS and accelerometer data to measure the amount of 

usage and walking performed with each KAFO. We then measured the correlations between 

the community mobility metrics and standardized clinical outcome measures, to understand 

whether the sensor metrics complement the information collected during clinical visits, as a 

mean to understand community usage of different KAFOs.

II. Methods

A. Experimental Design

A total of 18 participants provided informed consent and were enrolled in this Northwestern 

University IRB approved study, which aimed at understanding the impact of a computer 

controlled KAFO on personal mobility. The study inclusion criteria included active use of 

a unilateral KAFO for impairment: all participants in the study regularly used a unilateral 

orthosis (KAFO) for ambulation, as a result of neurological injury, traumatic injury, or 

neuromuscular disease (see Table I).

KAFOs are devices that provide increased stability to the knee and below and can have 

multiple types of knee joints. Traditional, locked KAFOs block knee movement during 

both the swing and stance phase; they provide the most stability but are biomechanically 
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and metabolically inefficient [25], [26]. Stance control orthoses (SCO) are an alternative to 

traditional locked KAFOs. SCOs are a version of KAFOs that allow the knee to flex during 

swing phase to allow a more natural and efficient gait pattern, but may also be less versatile, 

leading to safety concerns on uneven terrain. The novel research device was an advanced 

KAFO that used on-board sensors to provide variable dampening throughout the gait cycle. 

Sensor-based dampening during stance and swing phase potentially allows for better joint 

protection, stability, balance especially during walking on uneven terrains, stairs, and ramps. 

The device was tested in the lab and then provided to participants to assess its use in the 

community.

The data collection consisted of activity monitoring during community use of the KAFO, 

followed by a clinical evaluation. These phases were undertaken first for the personal 

KAFO, and then for the novel one (Fig. 1). Specifically, the first data collection involved 

monitoring the usage of the personal KAFO used by the study participants regularly in 

their lives over the course of 1 month (Remote monitoring trial – Fig. 1). Participants were 

instructed to use their KAFO device as they typically do in their everyday routine. This 

phase provided a baseline against which to compare the usage of the novel KAFO in the 

second part of the experiment. Following the remote monitoring trial with their personal 

KAFO, participants returned to the lab where they underwent a series of clinical outcome 

tests (Clinical Eval – Fig. 1) which included a 6-minute walk test (6MWT) and a 10-meter 

walk test at self-selected speed (10mWT_ss or 10mWT as abbreviated below), which are 

clinical measures of walking speed and endurance [27]-[29]. Participants also reported their 

satisfaction, as well as improvements in quality of life with the KAFO by completing the 

Orthotic and Prosthetic Users’ Survey (OPUS) [30], which is a self-report questionnaire 

consisting of multiple modules.

Following the first data collection, participants were fitted for the novel KAFO. After that, 

they received 6 training/acclimatization sessions of 1-hour each, spaced by about 1 week 

(Training Visits - Fig. 1) by a trained clinician on how to use the novel KAFO, prior 

to starting the second remote monitoring trial with the novel KAFO. During this period, 

participants were instructed to use the novel KAFO for their typical everyday functional 

activities. Finally, participants returned to the lab where they underwent the same clinical 

outcome evaluations, this time using the novel KAFO.

The activity monitoring employed 2 sensors: all participants had their personal KAFO 

instrumented with an Actigraph wGT3X-BT activity monitor (Actigraph corp., Pensacola, 

FL). The Actigraph is a tri-axial wearable accelerometer, which was used to record 

accelerations at a frequency of 30 Hz and was used to determine when a KAFO was worn, 

and the number of steps taken with the KAFO. The Actigraph was placed as proximal as 

possible on the thigh shell of the KAFO, along midline (Fig. 1); the position was chosen 

to maintain security during the remote trial. In addition, each participant was given a 

lightweight GPS data logger (QStarz International, BT-1000XT), which was worn around 

the waist and recorded the subject’s geographic location every 10 seconds (0.1 Hz sampling 

rate) to the local memory of the device (Fig. 1). Less than 1% of the data contained dropped 

samples or early samples. Portable GPS units like this are useful for their accuracy (within 

3 meters) and constant sampling rate, have shown reliability and validity in their spatial 
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accuracy for outdoor movement and are used often in physical activity and transportation 

research [31].

Participants were asked to wear the GPS unit throughout the course of their day and charge 

it overnight.

Of the 18 participants enrolled, only 13 (5F; mean age = 54) were included in this analysis 

(Table I). Specifically, four participants had a relatively lower number of average GPS hours 

per day (<5) than the rest (>9 hours/day); these participants were thus excluded due to their 

sparse GPS data recordings. A fifth participant had to be excluded because the Actigraph 

failed to record any data for one of their trials.

B. GPS and Actigraph Data

Once the GPS data loggers were returned, the GPS data was analyzed using the mapping 

software ArcGIS (Esri, Redlands, CA): data recordings were divided into days, and then 

the times at which the participant left and arrived at destinations during each day were 

identified. Destinations were identified using kernel density tools in ArcGIS. Based on 

this analysis, each GPS data point was classified into one of three categories: Inside/Around­
Home, Trip or Community. Inside/Around Home destinations were identified as all GPS 

points clustered around the location where participants spent the night. A community 
destination was designated by a cluster of 30 points (i.e., 5 minutes sampled at 0.1 Hz) 

within 50 ft of each other. Trips were identified by all other points not belonging to a 

community or home cluster. To identify any visit potentially missed by this method, we 

manually inspected each person’s day and examined any clusters of points that were labelled 

as trips but could have been short stops. Clusters that were not by a street light/stop sign 

were examined in more detail to determine if they were destinations of less than five 

minutes, such as a gas station or drive-thru food restaurants.

The final output was an analytic data set of time periods labeled as one of the 3 categories, 

aiding us to quantify time spent in each. We limited our analysis to community locations, 

since we were interested in analyzing usage of the device outside the home. GPS data 

classified as Trip were excluded from this analysis, as movement in a vehicle could be 

misconstrued as wear time. Vehicle trips accounted for the majority (98.5%) of al trips in our 

dataset, with only 1.5% of these being walking trips.

Actigraph data was downloaded and analyzed using the proprietary software Actilife 6.13. 

We used the ‘Wear Time Validation’ feature to detect time periods when the activity monitor 

was not worn using the Choi algorithm with default settings. This algorithm identifies 

non-wear periods based on acceleration counts over 1-minute periods, with non-wear labels 

applied to each 1-minute period with a count of zero that comprises part of a 90-minute 

window of continuous zero counts, with an allowance for period of up to two minutes 

with non-zero counts in the 90-minute window if the 30-minute windows before and after 

each such period have only zero counts [32]. This approach was used to determine when 

each participant wore the assigned brace during the recording session. The output of this 

algorithm was a table listing the start and end of each period of identified wear or non-wear, 

to a resolution of one minute. All times within the recording range of the file were assigned 
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to one of these two categories. The Actilife software (Actigraph LLC, Pensacola, FL) 

was also used to obtain the step count for every 10-second epoch when the KAFO was 

worn. To identify steps, the algorithm implemented in Actilife computes the instantaneous 

acceleration norm. The algorithm counts steps in epochs of 10 seconds by identifying peaks 

in the signal with a threshold range. The thresholds are dynamically modified based on the 

signal frequency within that epoch. Previous studies using the Actigraph device on the lower 

limb have found reasonable comparison of the outputs of the Actilife algorithm with manual 

step counts, including for participants with altered gait patterns [33]. Although the Actilife 

algorithm is proprietary, its behavior under various conditions has been characterized in 

prior literature [34].

The wear time and step count were finally synchronized with the GPS data, by linking the 

timestamps from the GPS device and the Actigraph; this allowed determining the proportion 

of time spent wearing the KAFO device and number of steps taken with it at each visited 

community location (see “Wear Fraction” below).

C. Mobility Metrics

Based on the linked GPS and Actigraph data we calculated 4 metrics to assess usage 

and mobility in the community. We reported average values for each participant across all 

monitoring days:

• Daily Community Time: A person may spend time outside their home without 

necessarily wearing the KAFO for the entire time (e.g., if they are visiting a 

friend in their home, they might remove the KAFO). As a relative measure of 

the amount of time spent at community locations, we computed the total time in 

community locations for every day and averaged the value across all monitoring 

days. This metric provided an estimate of the time a participant spent outside 

their home, regardless of whether they are wearing or not the device.

• Wear Fraction: In order to get an unbiased estimate of the relative time each 

participant used a KAFO in the community, we calculated the proportion of time, 

termed wear fraction (WF), that the device was worn during each community 

visit; then averaged the values across all visits for each day. and reported the 

average daily wear fraction. We chose to summarize the wear fraction for each 

day of recording in this way to assess what proportion of time an individual 

might be expected to spend using their device at any given visit to a community 

location.

• Community Steps: The Actilife software provided the step count for every 10­

second epoch. For each day, we then summed the steps for epochs during visits 

to community locations to obtain the total steps per day. The reported value is the 

average daily step count across all monitoring days.

• Cadence: We computed cadence (steps/s) for each 10-second epoch containing 

steps as step count divided by 10 seconds, and then averaged the values across 

all visits to community locations for each day; we reported the average daily 

cadence as a proxy for walking speed in the community.
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D. Statistical Analysis

To determine how the GPS- and accelerometer-based outcome measures (Mobility Metrics) 

compare to existing clinical outcome measures, we evaluated the correlations between them 

using Pearson correlation coefficients. Specifically, we tested whether higher clinical scores 

with the personal KAFO device are also associated with higher usage of that device in the 

community. Age and years of experience using the personal KAFO were also included in 

the correlation analysis. We also tested whether mean clinical and mobility metrics changed 

significantly when participants used the novel KAFO, relative to the metrics measured with 

the personal KAFO (baseline). Wilcoxon signed-rank tests were used in place of t-tests 

when the distribution of the data were not normal. The Shapiro-Wilk test was used to 

evaluate normality of the data distribution. Significance level was set to 0.05. Python 3.7 was 

used to perform the data analysis.

III. Results

A. Community Mobility With Personal KAFO

First, we sought to understand how participants used their personal device in the community 

(Fig. 2). Mean daily steps in the community across all participants varied substantially 

(Steps: 591.3, SD=704.2), with one participant being very active community walker and 

taking an average of more than 2500 steps per day, while others staying close to 0. Mean 

cadence instead was similar across the group (Cadence: 0.30 steps/s, SD=0.08). Participants 

wore their device for an average of 79% of the time while being in the community (Wear 
Fraction: 0.79, SD=0.30), and spent outside an average of 4h per day (Time Community: 

3.83h, SD=3.01); again individual variation was wide, with some individuals spending as 

many as 12h, or as low as 1h daily.

B. Correlations of Clinical Outcome Measures With Community Mobility Metrics

Given the variation in community metrics between individual participants when using their 

personal KAFO, we wished to explore to what extent these metrics also correlated with 

other factors already in use in clinical practice. We computed the Pearson correlation 

coefficients between clinical tests (speed, endurance, OPUS questionnaire), demographics 

(age, years using their personal device), and the 4 mobility metrics derived from GPS and 

accelerometer data. In particular, these correlations can be used to evaluate the extent to 

which these clinical tests correlate with direct measurement of community mobility with a 

KAFO (Fig. 3).

Clinical tests of walking endurance and speed showed a significant correlation with both 

steps and cadence in the community (Steps-6MWT: r=0.65, p=0.015; Cadence-10mWT: 

r=0.63, p=0.022), thus confirming that participants who walked faster in the lab also walked 

more and faster in the community. However, the same clinical tests were not correlated with 

the proportion of time wearing the device (Wear Fraction-6MWT r=0.09, p=0.77), nor 

daily time spent at community locations with either device.

The OPUS self-report score also did not show any significant correlation with usage 

of the device in the community (OPUS-Wear Fraction: r=−0.06, p=0.83; OPUS-Time 
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community: r=−0.25, p=0.40;), indicating that self-reported comfort with the device is not 

strongly associated with its use in the community. However, the OPUS score showed a 

significant negative correlation with the clinical walking tests (OPUS-6MWT: r=−0.63, 

p=0.020; OPUS-10mWT: r=−0.61, p=0.028), as well as cadence (OPUS-Cadence: 

r=−0.64, p=0.020), suggesting that participants that walked slower also rated their personal 

device as more comfortable. As expected, clinical walking tests were strongly correlated 

with each other (6MWT-10mWT: Personal: r=0.91, p≤0.001), since participants walking 

longer distances in the lab were also faster walkers. The complete list of correlation values is 

provided in Table II (Supplementary Material).

C. Changes in Mobility Metrics Between KAFO Devices

We then asked whether clinical walking tests and mobility metrics changed significantly 

when participants used the novel KAFO. We measured differences (Δ) relative to their 

personal device (baseline), such that a positive value indicates that the metric increased with 

the novel KAFO (Fig. 4). Mean daily steps and cadence across participants did not change 

significantly ( ΔSteps=−189.2, W= 33.0, p=0.38; ΔCadence=−0.01 steps/s, t=0.89, p=0.39); 

similarly, mean changes in community time and wear fraction were also not significantly 

altered overall ( ΔCommunity Time=−0.97h, W=29.0, p=0.25; ΔWear Fraction=−0.13, 

t=1.09, p=0.30). Conversely, the mean distance walked and walking speed measured in the 

lab by the 6MWT and 10mWT were both significantly higher for the novel device across 

participants (Δ6MWT=71.5 m, t=−3.31, p=0.006; Δ10mWT=0.17 m/s, t=−3.04, p=0.01). 

Thus, the novel KAFO enabled participants to walk faster in the clinical setting.

Although there were no statistically significant group changes in community mobility, the 

sensor metrics highlighted individual differences in wear and usage of the novel device: 

some individuals showed a clear preference for wearing one KAFO over the other: 2 

participants preferred wearing the novel device (4 and 14, ΔWear Fraction=0.48 and 0.57), 

while 3 participants favored their personal device (3, 9 and 13, ΔWear Fraction≤−0.52); the 

ΔWear Fraction for the remaining individuals was within −0.28 and 0.09.

As before, we sought to understand whether these changes in clinical outcome measures or 

demographics were associated with changes in community mobility metrics; therefore, we 

computed the Pearson correlation coefficients between these differences, for each participant 

(Fig. 5).

Differences in 6MWT or 10mWT between the two devices were not correlated with 

changes in steps or cadence in the community (Δ6MWT-ΔSteps: r=0.12, p=0.70, Δ10mWT-
ΔCadence: r=−0.05, p=0.87), nor with changes in KAFO usage (Δ6MWT-ΔTime 
Community: r=−0.08, p=0.81; Δ6MWT-ΔWear Fraction: r=−0.20, p=0.51). Therefore, 

higher walking speed or endurance measured in the clinical setting did not correlate with 

higher usage of the novel device in the community when compared to the personal device. 

Similarly, higher rating of the novel device versus the personal device, as measured by 

the OPUS score, was not associated with increased wear time (ΔOPUS-ΔWear Fraction: 

r=−0.18, p=0.55), while it showed a significant negative correlation with changes in steps 

and cadence (ΔOPUS-ΔSteps: r=−0.60, p=0.03; ΔOPUS-ΔCadence:r=−0.73, p=0.005). 
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Increased wear fraction showed a significant negative correlation with age (Age-ΔWear 
Fraction:r=−0.62, p=0.023), suggesting that younger users were more prone to use the 

novel device. The complete list of correlation values is provided in Table III (Supplementary 

Material). Overall, changes in clinical measures were not associated with individual changes 

of device usage and time in the community.

IV. Discussion

Tracking usage of assistive devices outside of the lab may provide insights into 

personal preferences, adaptation to novel devices, understanding appropriateness of device 

prescription, and justification for higher insurance reimbursement, all of which can 

aid clinical decision-making when an individual has to be prescribed a novel assistive 

device. We combined accelerometer and GPS data to quantify community mobility when 

participants used first their personal KAFO, and then a novel research KAFO. By combining 

information from the 2 sensors, we were not only able to record time spent at community 

locations, but also track how each assistive device was used in terms of steps taken and time 

worn. We then examined the association of these mobility metrics with standard clinical 

outcome measures to determine how well they reflected: 1) usage of their personal device 

and 2) changes in community mobility between the personal and novel KAFO.

We found that increased walking speed and distance measured in the clinic were correlated 

with higher steps and cadence in the community with the personal KAFO; however, mobility 

metrics varied widely between participants, and neither clinical tests nor self-reported 

measures (OPUS) were associated with usage of the KAFO or time spent at community 

locations. This suggests that real-world monitoring can provide additional information on 

how each individual use and wear a device. Interestingly, participants who walked slower 

in the clinic rated their personal device as more comfortable on the OPUS questionnaire; 

this could indicate that slower participants were also the ones who felt safer with their own 

device, and therefore perceived it as more comfortable. Alternatively, it is possible that faster 

walkers perceived their personal device as less adequate and therefore rated it lower.

Most participants used the novel KAFO as much as their personal device, as no overall 

changes in community mobility were found. This is remarkable, given that on average 

participants used a personal device for almost 30 years, and that they have only received 

six sessions of training/acclimatization on the novel KAFO. Usage of the novel KAFO in 

the community indicates that they were able to quickly adapt to the new technology and 

incorporated it as part of their daily routine. Some participants did however use the new 

device significantly more or less than their personal one: the 2 participants who preferred 

wearing the novel device are relatively young compared to the mean age of the group, while 

their years of experience using their personal device are widely different from each other (39 

vs. 5 years). The 3 participants favoring their personal device also had different diagnoses 

and levels of experience from each other, but their age was greater than the group mean (>= 

65 years old). Long-term follow-up studies are required to better understand the variation we 

found.
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Interestingly, improvements in clinical outcome measures (6MWT or 10mWT) and self­

report measures (OPUS) with the novel KAFO did not correlate with increased usage or 

number of steps during community monitoring, relative to the personal device. For many 

physical rehabilitation populations, previous research suggests that clinical tests of speed 

and endurance can successfully differentiate individuals with different walking abilities 

[35]-[37]. However, such tests do not necessarily predict actual mobility in the community 

[22], [38], [39]. Similarly, self-report measures of mobility poorly correlate with activity 

quantified through step monitors [40]. While clinical measures appear to reasonably assess 

community mobility across individuals, our results suggest that subtler changes in mobility 

within an individual – such as when trialing a new device – may not be captured by changes 

in these same clinical measures.

Here, we did not evaluate the specific types of community destinations where the KAFO 

was used. The type of community destination may be associated with increased or decreased 

walking with KAFO. For instance, an individual may walk more at a grocery store than at 

medical facility. Such analyses may in the future indicate whether a novel device provides 

greater advantages for specific destinations or activities, helping to prescribe devices suited 

to individual needs.

This monitoring strategy could be used to quantitatively compare the effect of different 

assistive devices on community mobility. While our sample was too small to draw definitive 

conclusion on device preference and quality of life, and participants only used the novel 

device for 1 month, we were able to use wear times to detect differences in personal 

preferences in 5 out of 13 individuals (2 preferring the novel device and 3 preferring their 

personal device). Therefore, combining features from accelerometer and GPS data can be 

used to more directly answer important clinical questions and complement survey-based 

measures about the appropriate assistive device for an individual.

Here we used a GPS unit that participants wore on their waist to track their community 

mobility. Missing data partially occurred because participants occasionally forgot to wear 

and/or charge the device. Additional reminders and approaches to improve battery life 

may aid with better compliance [41]. Alternatively, smartphones and smartwatches are 

also capable of recording GPS location data with sufficient fidelity [42], [43] and could 

result in better compliance, as they are already part of the typical daily routine and don’t 

require carrying a separate device. However, GPS enabled smartphone applications can 

drain batteries and the accuracy varies by participant’s phone model types. As technology 

progresses in this area, new devices or smartphone applications may help to improve overall 

compliance.

A. Study Limitations

The primary limitation of this study is the small sample size. With only 13 participants 

completing both the GPS and accelerometer tracking components of the study, it is difficult 

to fully analyze the differences in behavior while using the personal and novel KAFO 

devices. The small sample size also limits the potential generalizability of our results. While 

few participants showed strong device preferences there is insufficient data to fully evaluate 

the underlying factors that may relate to that: in our study, age was the only demographic 
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or clinical measure to show correlations with device preference, but there are many potential 

confounding factors, such as the underlying cause of impairment and previous exposure to 

the devices.

Because participants were only trained and monitored on the novel device for a relatively 

short time, participants may not have fully adapted to the new device and become experts, 

and our data may not reflect long-term differences in device preference. This may explain 

why we observed no significant difference in community mobility when participants used 

the novel device vs. the personal device. It is also possible that improvements in clinical 

measures are more correlated with device usage after participants have fully accommodated 

to the new device, which may take more time than the six sessions of training used in 

this study. Furthermore, participants monitored during the wintertime might have been 

affected by the weather conditions, and therefore used either device less for outdoor usage. 

All these factors would be accounted for by monitoring participants for longer periods of 

time. Finally, while studies have shown good agreement between the outputs of waist- and 

thigh-worn Actigraphs [44], more work is needed to explore its accuracy in individuals 

wearing a KAFO, which may require the need of custom step count and activity recognition 

algorithms [45], [46].

V. Conclusion

Long-term monitoring of patient behaviors relating to assistive device use and community 

mobility is possible by combining GPS and accelerometer sensor data. While this study 

focused on the application of these technologies to monitoring orthotic devices, the same 

technique can be applied to a much broader range of assistive devices, such as prostheses 

and wheelchairs. In particular, this approach could complement standard clinical outcome 

measures, and offer greater ability to quantify improvements in quality of life provided by 

new assistive devices, as well as personal preferences for using one device over another. 

With this additional insight, we may be able to better anticipate which patients will have 

better community mobility with different types of devices. With an increasing number of 

available technologies and a wide variety of individual patients, it is all the more important 

to understand how to match the best device to the individual. We hope that future studies 

will incorporate this method, in order to better understand the impact of mobility-assistive 

devices on the behaviors of those who use them and impact the design and prescription of 

future devices.
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Fig. 1. 
(Left) experimental setup used to gather data on the usage of a knee ankle foot orthosis 

(KAFO). An activity monitor was attached to the participant’s KAFO, to record when the 

assistive device was worn and the number of steps taken with it. A GPS was worn by the 

participant on the waist to track the geographical locations visited. (Right) Experimental 

protocol: sensors were used to gather KAFO usage data in the community over the course of 

1 month (remote monitoring trial) with each KAFO device (personal and novel). At the end 

of each monitoring period, participants underwent a clinical evaluation. Six training sessions 

were also provided to participants to instruct them on how to use the novel KAFO.
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Fig. 2. 
Mobility metrics derived from GPS and accelerometer data for each participant. The derived 

metrics quantify usage of the personal KAFO in terms of steps, cadence, wear fraction as 

well as daily time spent in the community. Bars show mean daily values. Error bars are 95% 

confidence intervals of the mean.
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Fig. 3. 
Correlations of the 4 mobility metrics with clinical and demographics data for the personal 

KAFO. Clinical walking tests (6MWT and 10mWT) are correlated with steps and cadence 

in the community, but not with time wearing the KAFO (wear fraction) or time spent 

at community locations. Clinical tests of endurance (6MWT) and speed (10mWT) were 

highly correlated with each other. Darker colors indicate stronger correlations. (*: p<.05, **: 

p<.01).
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Fig. 4. 
Differences (Δ) in mobility metrics and in clinical scores for each participant between the 

personal and novel KAFO. Positive values indicate higher usage/performance with the novel 

device. Green (red) indicates a metric increase (decrease) relative to the personal KAFO.
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Fig. 5. 
Correlations of changes (Δ) in mobility metrics and clinical scores. Improvement in clinical 

scores (Δ6MWT and Δ10mWT) were not associated with increased steps or usage of the 

device in the community. (*: p<.05, **: p<.01).
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TABLE I

Participants Demographic Data

ID Gender Age
at

start
of

study

Years
Using

an
Orthosis

Current
Personal
Orthosis
(Baseline
device)

Diagnosis

01 M 44 15 SCO SCI

02 F 44 1 SCO Neuropathy

03 F 65 60 Locked KAFO Poliomyelitis

04 M 35 5 Locked KAFO SCI

05 M 55 37 Locked KAFO SCI

07 F 72 70 Locked KAFO Poliomyelitis

08 M 52 0.5 Locked KAFO TBI

09 M 68 30 Locked KAFO SCI

10 F 68 66 Locked KAFO Poliomyelitis

11 M 51 50 Locked KAFO Poliomyelitis

12 M 65 40 SCO Poliomyelitis

13 M 68 0.5 Locked KAFO Encephalitis

14 F 41 39 Locked KAFO Poliomyelitis

(SCI: spinal cord Injury; TBI: traumatic brain injury; KAFO: knee ankle foot orthosis; SCO: Stance control orthosis)
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