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Abstract
Background: Genes show different sensitivities in expression corresponding to various
biological conditions. Systematical study of this concept is required because of its important
implications in microarray analysis etc. J.H. Ohn et al. first studied this gene property with
yeast transcriptional profiling data.

Results: Here we propose a calculation framework for gene expression sensitivity analysis.
We also compared the functions, centralities and transcriptional regulations of the sensitive
and robust genes. We found that the robust genes tended to be involved in essential cellular
processes. Oppositely, the sensitive genes perform their functions diversely. Moreover
while genes from both groups show similar geometric centrality by coupling them onto
integrated protein networks, the robust genes have higher vertex degree and betweenness
than that of the sensitive genes. An interesting fact was also found that, not alike the
sensitive genes, the robust genes shared less transcription factors as their regulators.

Conclusion: Our study reveals different propensities of gene expression to external
perturbations, demonstrates different roles of sensitive genes and robust genes in the cell
and proposes the necessity of combining the gene expression sensitivity in the microarray
analysis.
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Background
Genes show divergent expression patterns under various
biological conditions, therefore a common task for biolo-
gists and biostatisticians is to find the differentially
expressed genes between different conditions, such as
treatment versus control, or normal versus abnormal, so
as to identify the condition specific gene markers [1-3].
With the high throughput microarray technology, expres-
sion levels of several thousands of genes can be detected
simultaneously and compared in parallel between numer-
ous biological samples [4,5], thus facilitating the study of
gene expression-environment interactions.

Although external environment has important influences
on the gene expression profiles, genes show different sus-
ceptivity. An intuitive example is the housekeeping genes
which are required for the maintenance of the basal cellu-
lar functions [6] and believed to constitutively express in
most of the tissues, though different expression levels can
be observed (data not shown). This hypothesis was once
used to identify HK genes, and promoted the understand-
ing of HK genes [7-9].

Recently J.H. Ohn et al [10] constructed a non-directed
bipartite perturbation network to study the yeast gene
expression sensitivity to external perturbations. Through
an 'excess retention' approach [11], they show significant
differences between perturbation sensitive genes and per-
turbation resistant genes in protein interaction network,
regulatory network and functional categories. As an
exploratory work their study was based on the transcrip-
tional profiling of gene deletion experiments of yeast and
got very significant results. It is worthy of generalizing
such kind of idea to human genes based on general bio-
logical condition variations to obtain a global view of the
intrinsic properties of human gene expression as a
response to perturbations. For this purpose we selected
human gene expression data resulted from divergent
experiments stored at the GEO database [12] and devel-
oped a meta-analysis method to study gene expression
sensitivity globally. Regarding to our calculations it was
found that the human genes show different expression
sensitivities and can be categorized into sensitive or
robust groups, according to the properties of how they
response to the perturbations. Furthermore, in order to
know the detail properties about related functions and
interaction properties of both gene groups we assigned
them onto protein-protein interaction networks and gene
transcriptional regulatory networks. It was discovered that
the robust genes tend to be involved in essential cellular
processes. In contrast, the sensitive genes perform their
functions diversely. We also found even if genes from
both groups show similar geometric centrality by cou-
pling them onto integrated protein networks, the robust
genes have higher vertex degree and betweenness than

that of the sensitive genes. Finally, an interesting fact has
been found, not alike the sensitive genes, the robust genes
share less transcription factors as their regulators. These
facts discovered here maybe are useful for deciphering
functions and related regulatory mechanisms of genes.

Methods
Data collection and preprocessing
All the GDS data sets of Affymetrix HGU133a platform in
the GEO database [12] were downloaded to incorporate
as many as biological samples. The reason why we chose
the Affymetrix HGU133a platform is that, it is one of the
most widely used platforms, i.e. there are far more data
sets of HGU133a (236 data sets) than that of
HGU133plus2.0 (69 data sets) in GEO. Data sets with less
than 10 arrays were discarded. For each sample, the
expression values that were below 10 were truncated to
10, and then were logarithmic transformed (base 2). The
expression values of all probes for a given gene were
reduced to a single value by taking the maximum expres-
sion value in each sample.

Calculate the matrix of standard deviations
For every data set, calculate the standard deviation (sd) for
each gene g. Because the data sets are heterogeneous,
expression standard deviations from different data sets for
gene g can not be compared directly, therefore the sd of
every data set were rank ordered, generating a rank sd
matrix.

Statistical analysis
If gene g is sensitive to the environment or biological con-
ditions, relative big standard deviation is expected for its
expression levels and oppositely for the robust genes.
Moreover, if this trend can be observed in multiple data
sets, it's more confident. Based on this hypothesis, we test
for every gene g in the sd rank matrix if the sd rank con-
centrates at the bottom or top of the whole gene list, cor-
responding to expression sensitiveness and robustness
respectively. Specifically, suppose there are N genes on the
array and M data sets, the sd rank of gene g is a vector of
length M S = (sdr1, sdr2,...., sdrM), and the sd rank order of
all the genes is a list L = (1, 2..., N), we test the relative
positions of S in L. For every S, set the initial Sensitive
Score (SS) to 0, and then walk down the list L, if a sd rank
in S is encountered at position i, SS is incremented by Phit,
otherwise SS is decremented by Pmiss. The Phit and Pmiss is
given as,

The final SS is the maximum deviation from zero. SS
ranges from -1 to 1, and more closer to 1, more expression
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robust and vice versa. To evaluate the significance of an
observed SS, a null distribution of SS is generated by ran-
domly permutating the L. By 1000 random permutations
of L, SSnull was computed for each SS and the nominal P
value was assigned as the negative or positive portion of
the SSnull corresponding to the observed sign of SS.

Denote the SS from random permutations as SSπ, the
observed SS distribution as SSα. For a specific SS > 0, cal-
culate the percentage of SSπ > SS which SSπ > 0; calculate
the percentage of SSα > SS which SSα > 0, the FDR (False
Discovery Rate) for SS is computed as ratio of the two per-
centages when SS > 0, similarly if SS < 0.

This algorithm resembles the GSEA algorithm [13,14] and
the Sensitivity Score corresponds to a Kolmogorov-Smir-
nov like statistic.

Results
Though the Affymetrix HGU133a microarray does not
represent all the human genes, by calculating the Sensitiv-
ity Score (SS) we can identify gene classes which are
assumed to be rich in expression sensitive and robust
genes. We investigated the genomic characteristics of the

respective groups, including functional enrichment, cen-
tralities in the protein interaction network and regulations
in the transcriptional regulatory network.

Assignment of expression robust and sensitive genes
We first validated if the SS could reflect the relative gene
expression variations. We calculated the average rank
order of gene expression standard deviations in the stud-
ied data sets and found a strong negative correlation with
SS (γ = -0.97, p < 2.2e-16) (Figure 1A).

Housekeeping genes (HK genes) have constitutive expres-
sions [6], therefore comparative small expression varia-
tions of HK genes are expected under the numerous
biological conditions. Eisenberg et al. identified 575
human HK genes [8] with a transcriptional profiling data
set [15]. We compared the SS of aforementioned HK genes
with the overall SS and found that the HK genes have sig-
nificant higher SS (Wilcox rank sum test, p < 2.2e-16)
(Figure 1B).

Based on the above observations that the SS is a reasona-
ble measurement for gene expression sensitivity, we
selected two groups of genes as representative expression

Validation of SS as a sensitivity measureFigure 1
Validation of SS as a sensitivity measure. The figure A demonstrates strong correlations between the SS and the average 
rank order of gene expression standard deviations in the studied data sets. The figure B shows the housekeeping genes (HK 
genes) have significant higher SS, indicating their higher expression robustness.
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robust (661 genes) and sensitive genes (441 genes) based
on the SS score cutoff 0.55, -0.5 respectively (see supple-
mentary text for the discussion of statistical significance of
SS). The functional analysis results are not sensitive to the
exact SS cutoff. To evaluate the robustness of this catego-
rization to different microarray platforms, we conducted a
similar analysis on the HGU133plus2.0 microarray data
sets following the same pipeline and test if the robust/sen-
sitive genes remain robust/sensitive. Although the
HGU133plus2.0 microarray represents much more genes,
the result shows that the robust/sensitive genes identified
from HGU133a microarrays are still robust/sensitive on
the HGU133plus2.0 microarray (Additional File 1).

Functional annotations of expression robust and sensitive 
genes
Gene ontology [16] annotations of robust and sensitive
genes are useful to reveal respective roles of these genes in
the cell. We conducted enrichment analysis in "biological
process" and "cellular compartment" for the two gene
classes. From the resultant induced GO graph, robust
genes and sensitive genes have obvious distinct function
distributions, as shown in the Figure 2.

Specifically most of the enriched biological processes of
the sensitive genes refer to cell responses to environmen-
tal perturbations, e.g. immune responses, cell-cell signal-
ling, while those of the robust genes refer to some cell
essential activities, e.g. protein, RNA metabolic process,
translation (Table 1). Correspondingly, the enriched cel-
lular compartments of the sensitive genes are extracellular
region, while the robust genes are preferentially located in
ribosome, nucleus etc.

Comparisons of robust and sensitive genes in protein 
interaction network and transcriptional regulatory 
network
Topological characteristics of protein interaction network
are associated with many gene properties, e.g. gene essen-
tiality[17], gene duplicability [18]. Here we focus on the
centrality of robust and sensitive genes in the network. To
make reliable inferences from the comparison result, we
used a high-quality protein interaction data [19,20]. We
also confirmed the result with the HPRD [21] interaction
data (Additional file 1).

Three widely used centrality measures were calculated,
degree, betweenness and closeness. Besides, we randomly
sampled a group of genes from the protein interaction
network as the control group. As the result shows (Figure
3), among the three groups, the robust genes have the
highest degree and betweenness, while the sensitive genes
have the lowest. Interestingly, similar closeness was
observed for all the groups.

Jeong et al. have shown that protein lethality is correlated
with its degree in the protein interaction network [22].
This correlation implicates the bigger importance of
robust genes to the cell system, consistent with the higher
betweenness which is originally designed to measure the
influence of a node over the spread of information
through the network [23]. Closeness measures gene's geo-
metric centrality in the network. The comparison of close-
ness indicates that no group is organizationally more
central than others. It is noteworthy that similar results
were obtained when comparing the geometric centrality
of essential genes and non-essential genes in yeast with a
measure called 'excentricity' [24]. This phenomenon is
believed to be due to the function compensations [24].

Transcriptional regulatory network differs with the pro-
tein interaction network that they reflect different layers of
cellular activities. Transcription factors, which bind to the
gene upstream promoter regions, have significant influ-
ences on the gene expressions. Therefore, a natural ques-
tion is, do the robust genes and the sensitive genes have
different extent of regulation by transcription factors? To
answer this question, we compared the upstream binding
transcription factors of these two gene classes. We used
the TRANSFAC database to build the regulatory network.
Though it is far from complete, it is the most reliable and
confident data source till now. For the 641 robust genes,
there are totally 26 transcription factors recorded in the
TRANSFAC database that can bind to promoter regions of
them, while for the 441 sensitive genes, the number of
regulatory transcription factors rises to 155. This result is
consistent with the previous report [10] that the expres-
sion of sensitive genes is under more regulations.

Discussion
Gene expression sensitivity measures gene's responses to
the external environment on the transcriptome level. In
this study, we proposed a large scale meta-analysis strat-
egy to categorize expression robust and sensitive genes.
Further we found these two gene classes show significant
differences in various aspects, including functions based
on Gene Ontology classification [16], centralities in pro-
tein networks and regulations by transcription factors.

The Gene Ontology analysis shows distinct functional dif-
ferences between the robust and sensitive genes. The
enriched biological processes of robust genes concentrate
on the cellular essential processes, for instances, protein,
mRNA metabolic process, translation, ubiquitin cycle etc,
while for sensitive genes, the enriched biological proc-
esses concentrate on some cell "response" processes to the
surrounding environment, like the immune responses,
cell-cell signalling. Such functional preferences confirm
the implications of these gene classes and reflect their dif-
ferent roles in the cell. Centrality analysis reveals that
Page 4 of 7
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although they have similar geometric positions in the
interactome, they show different local characterization
(degree) and different weight for the spread of informa-
tion (betweenness) in the protein network. Jeong et al.
have reported the correlation between protein lethality

and its degree in the protein interaction network [22], and
another study shows the high-betweenness proteins are
more likely to be essential [25]. Together with the func-
tion analysis, we come to the conclusion that there are
connections between gene expression sensitivity and the

Enriched Gene Ontology distribution of the two gene groups (biological process)Figure 2
Enriched Gene Ontology distribution of the two gene groups (biological process). The enriched GO terms are 
colored red for sensitive genes and green for robust genes. These two groups have distinct enriched GO distributions, indicat-
ing their different functions in the cell.
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genes' impact on the system. More transcription factors
were found to bind to sensitive genes. This result is analo-
gous to the finding that yeast non-essential genes are reg-
ulated by more transcription factors compared with
essential genes [17]. It seems the essential process related
genes tend to have simpler regulatory mode, which makes
the cell more stable.

Though our study incorporated large volume of microar-
ray data, there are several potential limitations. For exam-
ple, more data was generated for the hot spots of the
biological research, thus decreased the diversity of the
experimental samples in our study. In addition, the
affymetrix HGU133a microarray represents 13441 genes
on the chip, however, the number of human genes is esti-

mated to be between 20,000 and 25,000 [26]. Another
restriction to our observations is, the current map of pro-
tein interactions and gene regulations is far from com-
plete.

Conclusion
A major challenge of microarray analysis is interpreting
the biological relevance of changes in expression [27].
However, the current approaches tend to select genes with
the largest changes in expression. Our analysis suggests
that genes have different propensities corresponding to
perturbations and such propensities should be considered
in the gene expression data analysis.

Table 1: Enriched biological processes. The table shows some of the enriched biological processes of the sensitive and robust genes 
respectively.

Robust Genes Sensitive Genes

Enriched Biological Process P value Enriched Biological Process P value

protein metabolic process 1.75e-07 immune response 1.64e-26

translation 1.27e-06 inflammatory response 3.32e-14

RNA metabolic process 1.39e-06 cell-cell signaling 1.02e-07

Centrality comparisons of robust and sensitive genesFigure 3
Centrality comparisons of robust and sensitive genes. Three centrality measures were calculated and compared. A 
group of genes were randomly sampled and compared to the sensitive and robust genes. As the figure shows, though the 
robust genes present no significant higher closeness centrality, they have higher degree centrality (p < 0.05) and betweenness 
centrality (p < 0.05) than the sensitive genes.
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Understanding gene expression sensitivity has important
implications for choosing biomarkers, drug targets etc
from transcriptional profiling data. Though we explored
the general characteristics of expression robust and sensi-
tive genes, the underlying mechanisms of gene transcrip-
tion sensitivity still represent further challenges.
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