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Abstract: In late December 2019, the first cases of COVID-19 emerged as an outbreak in Wuhan,
China that later spread vastly around the world, evolving into a pandemic and one of the worst
global health crises in modern history. The causative agent was identified as severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Although several vaccines were authorized for emergency
use, constantly emerging new viral mutants and limited treatment options for COVID-19 drastically
highlighted the need for developing an efficient treatment for this disease. One of the most important
viral components to target for this purpose is the main protease of the coronavirus (Mpro). This
enzyme is an excellent target for a potential drug, as it is essential for viral replication and has
no closely related homologues in humans, making its inhibitors unlikely to be toxic. Our review
describes a variety of approaches that could be applied in search of potential inhibitors among
plant-derived compounds, including virtual in silico screening (a data-driven approach), which could
be structure-based or fragment-guided, the classical approach of high-throughput screening, and
antiviral activity cell-based assays. We will focus on several classes of compounds reported to be
potential inhibitors of Mpro, including phenols and polyphenols, alkaloids, and terpenoids.
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1. Introduction

In late December 2019, a viral pneumonia outbreak emerged in Wuhan, China caused
by a new strain of coronavirus that was identified as SARS-CoV-2 (severe acute respiratory
syndrome coronavirus 2) [1–4]. Soon after, the outbreak was declared a public health
emergency of international concern by the WHO, and later in March it was declared a
global pandemic, named COVID-19 (coronavirus disease 2019) [5,6]. The virus spread
vastly all around the world, causing, to date, more than 500 million confirmed cases and
millions of deaths in one of the worst global health crises in modern history [7]. Although
many vaccines have been approved worldwide, so far there is still no treatment for COVID-
19, and only supportive and preventive measures are being applied to reduce the disease’s
complications [8–10]. Moreover, in trying to adapt to changing environments, the virus
has developed a number of mutations that could strongly affect its transmissibility and
infectivity. These mutations are also prone to increasing and spreading worldwide, due to
natural selection [11–14]. Therefore, considering the constantly emerging viral mutants and
the absence of approved, fully effective medications, there is an urgent need for developing
an efficient treatment for COVID-19.

2. SARS-CoV-2 Structure and the Main Protease of SARS-CoV-2 as a Potential
Protein Target

Similar to other viruses in the Coronaviridae family, SARS-CoV-2 has a single-stranded,
positive-sense RNA (+ssRNA) genome of approximately 29 kb [15,16]. The viral RNA is
composed of more than six open reading frames (ORFs), the first one of which (ORF1)

Plants 2022, 11, 1862. https://doi.org/10.3390/plants11141862 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants11141862
https://doi.org/10.3390/plants11141862
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-6718-4818
https://orcid.org/0000-0001-8569-6665
https://doi.org/10.3390/plants11141862
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11141862?type=check_update&version=2


Plants 2022, 11, 1862 2 of 23

serves as a template for producing two polyproteins essential for viral replication and
transcription: pp1a and pp1ab [17,18]. These two polyproteins undergo extensive pro-
cessing by the viral main protease (Mpro) and another protease known as papain-like
protease (PLP), producing 16 nonstructural proteins (NSPs) [3,19]. The other ORFs encode
at least four main structural proteins: the spike (S), membrane (M), envelope (E), and
nucleocapsid (N) proteins [17,20,21].

Mpro, also known as 3-chymotrypsin-like protease (3CLpro), is a 33.8 kDa, three-domain
cysteine protease, essential for proteolytic maturation and viral replication [9,18,22,23]. Mpro
was found to be conserved among coronaviruses (CoVs), along with some common features
of its substrates in different CoVs [18,24]. In addition to its vital role in the SARS-CoV-2 life
cycle, the absence of any closely related human homologous Mpro makes it an ideal protein
target for potential antiviral drugs, as its inhibitors are unlikely to be toxic in humans [25].
Furthermore, vaccines, as we have learned from previous viruses, can represent a selection
pressure resulting in the evolution of novel resistant viral mutants, which again highlights
SARS-CoV-2 Mpro as a good drug target, as it is less subject to such selection pressure
caused by vaccines targeting the viral spike protein [26,27].

3. Standard Approaches That Could Be Applied in the Search for Mpro
Potential Inhibitors
3.1. Virtual In Silico Screening: (The Data-Driven Approach)

Enabled by the development of bioinformatics tools along with eased access to pro-
tein databases, virtual screening has proven to be a fundamental tool in drug design and
drug repurposing research [28,29]. In the virtual screening approach, automated molec-
ular docking tools are usually used to predict the best possible variant for binding one
molecule to another, considering the best orientation with the best binding affinity [30].
These tools enable the screening of large numbers of candidates against a specific studied
target, at a very low cost [31]. Virtual screening is a data-driven approach that can be
either target-based, where a library of candidate ligands is docked against the target and
analyzed, or ligand-based, where a similarity search or a machine learning strategy can
be applied [32–35].

Since the beginning of the COVID-19 pandemic, a large number of studies around the
world have used this approach to search for potential inhibitors of SARS-CoV-2 [22,36–38].
Joshi R.S. et al. used this approach in their study conducted in 2020 to scan over 7000 com-
pounds from different origins against SARS-CoV-2 Mpro [39]. Another study conducted
by Tallei E.T. et al. in 2020 used this approach to evaluate the potency of plant-derived
bioactive compounds against Mpro, resulting in the identification of pectolinarin, hes-
peridin, nabiximols, rhoifolin, and epigallocatechin gallate as potential antiviral phyto-
chemicals [40]. Research by Tahir Ul Qamar et al. also resulted in the identification of
5,7,3′,4′-Tetrahydroxy-2′-(3,3-dimethylallyl) isoflavone, amaranthin, licoleafol, calceolario-
side B, and methyl rosmarinate as potential inhibitors of the target, using this approach [41].
Khaerunnisa S. et al. extended the list with kaempferol, quercetin, luteolin-7-glucoside,
demetoxycurcumine, naringenin, apigenin-7-glucoside, oleuropein, catechin, curcumin,
zingerol, gingerol, and allicin [42]. Essential oils have also shown their effectiveness against
SARS-CoV-2 Mpro in silico [43–45]. Therefore, using this approach, multiple natural
compounds have been identified as strong binders of SARS-CoV-2 Mpro, and some of
them were also identified as multi-target inhibitors that could be applied in COVID-19
management approaches [36–45].

3.2. The Classical Approach of High-Throughput Screening (HTS)

High-throughput screening (HTS) is a method for automated testing of thousands
to millions of compounds for their biological activity against specific targets on model
systems [46]. The development of robotics, laboratory equipment, laboratory methods,
and software for the control of sample preparation, incubation, results detection, and
data processing has allowed the HTS approach to be used to quickly search for lead
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compounds. Therefore, it is possible to quickly and inexpensively test large libraries of
chemical compounds for their biochemical activity [47].

In practice, HTS is implemented in the form of a large number of miniature in vitro
assays to identify molecules that can modulate the activity of a biological target. These
reactions are run in 96-well, 386-well, or 1536-well plates [48]. Most often, the results of
such biochemical analyses are obtained using various fluorescence detection methods [49],
for example, direct measurement of fluorescence, fluorescence polarization, fluorescence
resonance energy transfer (FRET), fluorescence quenching energy transfer (QFRET), or
time-resolved fluorescence [46].

Since the early stage of COVID-19 pandemic, a large number of HTS assays have
been developed worldwide to screen huge libraries of either previously approved drugs
or potential inhibitors against SARS-CoV-2 [50–53]. Using this approach in their study to
screen a library of 10,755 potential inhibitory compounds against SARS-CoV-2 Mpro, along
with drugs previously approved for other viruses, Zhu W. et al. identified 23 potential
inhibitors with different half-maximal inhibitory concentration values (IC50), the efficacy
of 7 of which was confirmed in a later cytopathic effect assay [54]. Given the high safety
level required of laboratories studying and manipulating the live SARS-CoV-2 virus (BSL-3
laboratories), Zhang, Q.Y. et al. proposed a new HTS assay to enable potential antiviral
testing in a BSL-2 research facility, where they constructed a reporter replicon of the
virus using Renilla luciferase (Rluc) reporter gene and validated it later using hit natural
compounds [52]. Froggatt H. M. et al. also developed a fluorescence-based HTS assay using
a protein derived from green fluorescent protein (GFP) to serve as a target for SARS-CoV-2
Mpro, and hence a reporter for the enzyme’s inhibition and activation, enabling rapid
screening of libraries and identification of lead compounds [55]. A further improvement
of HTS can be achieved by combining it with the previous in silico approach to yield
an ultra-high-throughput virtual screening approach, where huge libraries can be tested
against multiple viral targets efficiently and rapidly [56]. Gorgulla C. et al. conducted a
study to search for SARS-CoV-2 inhibitors using this large-scale HTS screening approach
and were able to screen over one billion candidate molecules against 40 different target
sites on 17 potential targets, both in the virus and the host [56]. Although the results were
obtained from computational data and have not all been tested with experimental analyses
yet, this filtration of candidates could narrow down research targets for later more detailed
and efficient analyses.

3.3. Antiviral Activity Cell-Based Assays

Cell-based assays offer an advantage over virtual or biochemical screening assays, as
they provide a whole physiological environment, reflecting the complexity of a living sys-
tem rather than focusing on a specific isolated target and thereby enabling a more accurate
evaluation of the biological activity and potential toxicity of screened compounds [57–59].
Due to practical considerations, it is important to develop and test drug compounds that ex-
hibit inhibitory activity at various stages of the virus life cycle. Therefore, test systems have
been developed to evaluate the effectiveness of inhibitors of entry, uncoating, replication,
assembly (in which viral proteases are active), and maturation of viruses [60]. However,
the whole variety of such systems can be reduced to two main mechanisms for their im-
plementation: cytopathic and reporter mechanisms [61]. In the first case, the activity of
antiviral agents is assessed by reducing the formation of plaques due to the accumulation
of coloring or luminescent agents in living cells [62,63]. In the second, viruses and cells
with report inserts are used, and the activity of inhibitors helps in reducing the expression
of the reporter protein [64].

Since work with a live virus is accompanied by significant organizational restrictions,
approaches have been developed for evaluating the effectiveness of antiviral agents that
model various stages of the life cycle of viruses in cells of HeLa [65], Escherichia coli [66], and
Saccharomyces cerevisiae [61]. Moreover, cell-based assays are nowadays increasingly integrated
into HTS assays to accomplish rapid screens in a relevant physiological environment [58].
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Several recent studies have used antiviral activity cell-based assays, either after or com-
bined with the previously described approaches, to investigate previously approved drugs
and herbal medicines for their potential inhibition potency against SARS-CoV-2 [9,67–70].
Applying this methodology followed by a further in vivo validation, Jan J.T. et al. screened
a 3000-candidate library of both pharmaceuticals and herbal medicines to test their effec-
tiveness against SARS-CoV-2 Mpro and RNA polymerase and proposed multiple herbal
extracts as potential herbal inhibitors against the targeted viral enzymes [68]. Another
recent study conducted by Qiao J. et al. also applied this approach to investigate 32 different
inhibitors against SARS-CoV-2 Mpro, 6 of which were found to have a high inhibition
potency and were used to select candidates for further in vivo investigation [71].

The phased use of these three approaches makes it possible to identify those that
exhibit the targeted therapeutic activity from the variety of known plant secondary metabo-
lites. Among these compounds, there may be those that have not previously exhibited
such properties. Furthermore, compounds for which hypothetical activity is found can
be quickly tested for their effectiveness on cell-free and then on cellular systems. Such a
screening strategy has shown to be effective in the search for inhibitors of SARS-CoV-2
Mpro, which indicates its potential in the search for drugs against new pathogens [9].

Therefore, at each stage of applying these methods, it is possible to significantly narrow
the range of compounds under study, which facilitates a significant simplification and
accelerates the search for molecules with clinical potential, therefore enabling moving on to
the next stage of preclinical trials as soon as possible.

4. Phytochemicals as a Reservoir to Search for SARS-CoV-2 Mpro Potential Inhibitors

As mother nature has always provided an infinite library of natural products and
chemicals, the use of herbal medicines and their derivatives to combat diseases dates back
to more than 60,000 years ago in ancient history [72–74]. A study by Fabricant D. S. and
Farnsworth N. R. in 2001 estimated that there were more than 250,000 species of higher
plants on our planet, of which only 6% had been tested and evaluated for their biologic
activity at the time [72]. Today, advanced screening techniques and assays have led to
phytochemicals composing a significant part of the pharmaceutical market [75–82]. Plants
can be used as sources of medicinal active compounds using several methodologies. In
some cases, the whole plant or parts of the plant could be used as herbal remedy, e.g.,
garlic or curcumin [72,78,83]. Another methodology uses the plant as a direct source of
bioactive compounds such as digoxin or morphine [72,84]. Sometimes, plants can provide
compounds that could be used later as a starting point for producing highly effective,
less toxic, easy-to-obtain, semisynthetic or synthetic compounds, as in the case of narcotic
analgesics [72,85]. With such knowledge, thousands of studies all over the world have
been conducted on searching for anti-SARS-CoV-2 treatments from plant origins, with
Mpro being one of the most targeted viral components in this research, and the in silico
data-driven approach being the most frequently applied [23,73,86,87].

Several classes of bioactive phytochemicals have been shown to be potential inhibitors
of SARS-CoV-2 Mpro, including phenols [88,89], polyphenols [90,91], terpenoids [92], etc.
(Figure 1). The main classes of SARS-CoV-2 Mpro inhibitors and their specific representa-
tives are summarized in Table 1.
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Table 1. Phytochemicals reported to have potential inhibitory properties against SARS-CoV-2 Mpro.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Isoflavone Daidzein Streptomyces, and predominantly in
Fabaceae plant family

Vigna radiata,
Glycine max 56 −6.5 [93]

Isoflavone Puerarin Predominantly in Fabaceae plant family

Cicer arietinum,
Glycine max,

Glycyrrhiza glabra,
Phaseolus vulgaris,

Pisum sativum,
Vigna radiata

42 ± 2 −6.63 [94]

Flavonol Myricetin Widely distributed in various plant families

Buchanania lanzan,
Mangifera indica,

Asparagus officinalis,
Davidsonia pruriens,

Hippophae rhamnoides,
Vicia faba,

Salvia hispanica,
Thymus capitatus,
Punica granatum,

Hibiscus sabdariffa L.,
Moringa oleifera,

Eugenia jambolana,
Pimenta dioica,
Plinia pinnata,

Syzygium aromaticum,
Syzygium cumini,

Syzygium samarangense,
Diploknema butyracea,

Ampelopsis grossedentata,
Morella rubra

43 ± 1 −22.13 [41,91]
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Table 1. Cont.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Flavonol Quercetin Mucor hiemalis, and widely distributed in
various plant families

Allium cepa,
Allium Sativum,

Allium ascalonicum,
Mangifera indica,
Annona muricata,

Asparagus officinalis,
Capparis spinosa,

Carica papaya,
Garcinia cowa,
Garcinia dulcis,

Brassica oleracea var. gongylodes,
Raphanus sativus,

Momordica charantia,
Ceratonia siliqua,

Vicia faba,
Crocus sativus,

Punica granatum,
Toona sinensis,

Moringa stenopetala,
Musa acuminata,
Psidium guajava,

Phyllanthus emblica,
Zea mays,

Nigella sativa,
Eriobotrya japonica,

Prunus avium,
Kadsura heteroclita,
Capsicum annuum,
Zingiber officinale

93 ± 5 −7.6 [23,91]
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Table 1. Cont.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Flavonol Quercetagetin
(Quercetagenin)

Asteraceae, Eriocaulaceae, Fabaceae
plant families

Acacia catechu,
Leucaena glauca 145 ± 6 −15.2 [91]

Flavanonol Ampelopsin
(dihydromyricetin) Widely distributed in various plant families

Asparagus officinalis,
Punica granatum L.,

Pimenta dioica,
Zea mays,

Syzygium cumini,
Capsicum annuum,
Vitis rotundifolia,
Manilkara zapota,

128 ± 5 −7.5 [91,95]

Flavanonol Ampelopsin-4′-O-α-
d-glucopyranoside Widely distributed in various plant families - 195 ± 5 7.4 [91]

Flavanone Naringenin Widely distributed in various plant families

Camellia sinensis,
Prunus cerasus,
Prunus persica,

Citrus grandi, etc.

150 ± 10 −7.7 [91,96]

Flavan-3-ol Epigallocatechin
gallate (EGCG) Widely distributed in various plant families Vitis vinifera 171 ± 5 −7.6

−8.2 [88,91,93]

Flavone Vitexin Widely distributed in various plant families Pisum sativum 180 ± 6 −7.6 [97]

Hydrocinnamic acid Chlorogenic acid Widely distributed in various plant families Lactuca sativa 39.48 ± 5.51 −12.98 [91,98]
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Table 1. Cont.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Dihydroxycinnamic acid Caffeic acid Widely distributed in various plant families

Actinidia deliciosa,
Allium Sativum,
Mangifera indica,

Ilex paraguariensis,
Carica papaya,
Beta vulgaris,

Terminalia catappa,
Terminalia chebula,

Brassica oleracea var. gongylodes,
Raphanus sativus,

Momordica charantia,
Arachis hypogaea,
Cicer arietinum,

Glycine max,
Phaseolus vulgaris,

Pisum sativum,
Tetrapleura tetraptera,

Ocimum basilicum,
Rosmarinus officinalis,

Thymus capitatus,
Punica granatum,
Triticum aestivum,

Zea mays,
Crataegus pinnatifida,

Prunus avium,
Coffea arabica,
Citrus limon,

Citrus sinensis,
Solanum lycopersicum,

Solanum phureja,
Solanum pimpinellifollium,

Solanum tuberosum,
Curcuma longa,
Bergera koenigii

197 ± 1 −12.4985 [91,99]
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Table 1. Cont.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Polyphenol Ellagic acid Widely distributed in various plant families

Mangifera indica,
Terminalia chebula,
Punica granatum,
Moringa oleifera,

Moringa peregrine,
Moringa stenopetala,
Eugenia jambolana,
Myrciaria cauliflora,

Syzygium aromaticum,
Syzygium cumini,
Emblica officinalis,
Rubus idaeus L.,

11.8 ± 5.7 −15.955 [100,101]

Phenylpropanoid Chicoric acid Alliaceae, Asteraceae, and Labiatae plant
families

Lactuca sativa,
Ocimum basilicum,
Cichorium intybus

- −8.2 [93]

Polyphenol Gallocatechin
gallate (GCG)

Cistaceae, Elaeagnaceae, Ericaceae,
Polygonaceae, Theaceae, and Vitaceae

plant families

Hippophae rhamnoides,
Camellia sinensis,

Vitis vinifera
5.774 ± 0.805 −9 [93]

Flavan-3-ol Epicatechin
gallate (ECG)

Cistaceae, Elaeagnaceae, Ericaceae,
Polygonaceae, Theaceae, and Vitaceae

plant families

Hippophae rhamnoides,
Camellia sinensis,

Vitis vinifera,
Rheum sp.

12.5 −8.2 [93,102]

Flavonoids Kaempferol
glycosides Widely distributed in various plant families Prunus avium,

Allium cepa 125.00 −7.4,
−8.1 [103,104]

Flavonoids Isorhamnetin
glycosides Widely distributed in various plant families Brassica oleracea,

Allium ascalonicum 13.13 −6.6,
−8.2 [104,105]

Flavonoids Pectolinarin Labiatae, Plantaginaceae, and Verbenaceae
plant families 37.7 −8.2 [40,106,107]
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Table 1. Cont.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Flavonoid Herbacetin

Asteraceae, Chenopodiaceae, Crassulaceae,
Ephedraceae, Equisetaceae, Linaceae, Malvaceae,

Papaveraceae, Phrymaceae, Primulaceae,
Rosaceae, Rutaceae, and Taxaceae

plant families

Linum usitatissimum,
Citrus limon 33.1 −7.2 [40,106]

Flavonoid
Rhoifolin

(apigenin-7-O-
rhamnoglucoside)

Acanthaceae, Anacardiaceae, Apocynaceae,
Fabaceae, Lythraceae, Oleaceae, Rutaceae, and

Caprifoliaceae plant families

Vicia faba,
Hordeum vulgare L 27.4 −8.2 [40,106]

Flavonoid metabolite Vicenin Rare compound Trigonella foenum-graecum 38.856 −8.97 [87,108]

Flavone
Isorientin

4′-O-glucoside 2′′-O-
p-hydroxybenzoate

Gentianaceae and
Lamiaceae Ocimum sanctum - −8.55 [87]

Biflavonoid Amentoflavone Various plant species: yew, juniper, oak,
and willow

Garcinia brasiliensis,
Garcinia dulcis,

Garcinia hombroniana,
Garcinia indica,

Garcinia intermedia,
Garcinia livingstonei,

Garcinia madruno,
Garcinia mangostana,

Garcinia morella,
Garcinia wightii,

Garcinia xanthochymus,

- −10.0 [23]

Flavonoid Silymarin (silibinin) Asteraceae Silybum marianum 46.88 −7.6 [23]

Isoflavone Torvanol A Solanaceae - −7.5 [23]
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Table 1. Cont.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Flavone Scutellarein

Asphodelaceae,
Asteraceae,

Fabaceae, Bignoniaceae, Labiatae,
Plantaginaceae, Polygonaceae, and

Verbenaceae plant families

Oroxylum indicum,
Garcinia andamanica
Origanum majorana

- −7.4 [23]

Flavone Apigenin Widely distributed in various plant
families, mainly in Labiatae

Artemisia diffusa.,
Ocimum americanum var. pilosum

Ocimum basilicum,
Ocimum x citriodorum,
Rosmarinus officinalis,

Salvia officinalis,
Thymus piperella,
Passiflora foetida,
Piper peepuloides,

Kaempferia parviflora

925 −7.1 [23,109]

Isoflavone
5,7,3′,4′-Tetrahydroxy-
2′-(3,3-dimethylallyl)

isoflavone
Fabaceae - −29.57 [41]

Polyphenol Methyl rosmarinate Labiatae Rosmarinus officinalis 21.32 −20.62 [41,110]

Flavonoid Baicalin Mainly in Labiatae Oroxylum indicum
6.41 ± 0.95 µM in vitro

27.87 ± 0.04 µM in
cells

−8.85 [99,111]

Flavonoid Baicalein Mainly in Labiatae Oroxylum indicum 0.94 ± 0.20 µM in vitro
2.94 ± 1.19 µM in cells [98]

Alkaloid Capsaicin Solanaceae Capsicum annuum - −13.90 [112]

Alkaloid Psychotrine Mainly in Rubiaceae - −13.5 [112]

Alkaloid Achyranthine Amaranthaceae - 4.1 [113]

Terpenoid Withanoside V Solanaceae 5.774 ± 0.805 −10.32 [114]
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Table 1. Cont.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Triterpenoid Ursolic acid

Apocynaceae, Asteraceae, Boraginaceae,
Dryopteridaceae, Ericaceae, Gesneriaceae,

Labiatae, Lamiaceae, Lythraceae, Moraceae,
Myricaceae, Nothofagaceae, Oleaceae, Rosaceae,

Rubiaceae, Solanaceae, Stilbaceae, and
Ulmaceae plant families

Vaccinium macrocarpon,
Punica granatum,

Olea europaea,
Prunus avium,

Pyrus spp.

12.6 −8.2 [114]

Triterpenoid Glycyrrhizic acid Asteraceae and Fabaceae Stevia rebaudiana,
Glycyrrhiza glabra - −8.03 [115,116]

Pentacyclic
triterpenoid Torvoside H Solanaceae - - −8.4 [23]

Pentacyclic
triterpenoid Lupeol In Coprinaceae, and widely distributed in

various plant families

Cichorium intybus,
Zanthoxylum armatum,

Olea europaea,
Myrica rubra,
Morus alba,
Ficus carica,

Carica papaya

- −7.6 [116]

Diterpene Scopadulcic acid B Plantaginaceae (Scoparia dulcis) - - −8.5 [23]

Diterpene Ovatodiolide Lamiaceae - - −6.9 [23]

Terpene Curcumin Mainly in Zingiberaceae
Curcuma longa,

Curcuma mangga,
Zingiber officinale

11.9 −6.5 [23,117]

Terpene Parthenolide Asteraceae, Magnoliaceae, and Celastraceae
plant families - - −6.0 [23]

Meroterpenoid Illicinone A Illiaceae Illiciumverum - −5.0 [23]

Meroterpenoid Piperitenone Labiatae and Poaceae Mentha spp. - −4.3 [23]
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Table 1. Cont.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Cyclic monoterpene Limonene Widely distributed in various plant families

Citrus aurantium,
Citrus aurantifolia,

Citrus bergamia,
Citrus grandis,
Citrus junos,

Citrus latifolia,
Citrus limettioides,

Citrus limon,
Citrus medica,
Citrus paradisi,

Citrus reticulata,
Citrus sinensis,

Zanthoxylum armatum,
Allium sativum,

Anacardium occidentale,
Mangifera indica,

Monodora myristica,
Xylopia aethiopica,

Cuminum cyminum.
Foeniculum vulgare,

Petroselinum crispum,
Porophyllum ruderale,

Beta vulgaris,
Ocimum basilicum,
Thymus piperella,
Acca sellowiana,
Psidium guajava,

Averrhoa carambola,
Piper nigrum

Prunus avium,
Coffea arabica,

Coffea canephora,
Citrus aurantifolia,
Curcuma amada,
Curcuma longa

- −5.2 [113]
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Table 1. Cont.

Class of Compound Compound Distributed in Including Food Plants
and Spices *

Inhibition (%), with
IC50 Value, µM

Binding Energy **
(kcal/mol) Ref.

Cyclic monoterpene Sabinene Labiatae, Cupressaceae, Myristicaceae,
and Pinaceae plant families - - −4.8 [113]

Bicyclic monoterpene Pinene Widely distributed in various
plant families

Piper nigrum,
Allium sativum, Anacardium

occidentale,
Mangifera indica,

Pistacia vera,
Monodora myristica,
Cuminum cyminum,
Foeniculum vulgare,

Petroselinum crispum,
Ocimum basilicum,
Origanum vulgare,

Rosmarinus officinalis,
Myristica fragrans,
Eriobotrya japonica,

Fragaria vesca,
Citrofortunella mitis,
Citrus aurantifolia,

Citrus spp.,
Curcuma mangga,
Curcuma amada,

Aframomum melegueta,
Solanum lycopersicum,
Zanthoxylum armatum,

- −4.6 [113]

Labdane diterpenoid Andrographolide Acanthaceae - - −6.6 [118]

Triterpene 1β-hydroxyaleuritolic acid
3-p-hydroxybenzoate Euphorbiaceae - - −8.5 [119]

Steroidal lactone Withaferin A Solanaceae - - −9.83 [89]

Tannin Tannic acid Ephedraceae and Geraniaceae - 13.4 −7.5 [120,121]

* KNApSAcK Core System (KNApSAcK DB group (skanayagtc.naist.jp). ** The binding energy of Mpro to Lopinavir (−9.1 Kcal/mol) or Nelfinavir (−8.4 Kcal/mol) is given for
comparison of this value for herbal compounds [122].
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Most often, SARS-CoV-2 Mpro inhibitors are found among flavonoids and terpenoids.
A common feature of compounds of these classes that exhibit SARS-CoV-2 Mpro inhibitory
activity is an alpha-beta-unsaturated ketone group conjugated to an aromatic ring. It
has also been shown that the presence of bicyclic aromatic rings in the structure and the
presence of hydroxyl groups on all rings, especially on the B-ring of flavonoids, increase
their respective activities [37,123].

Flavonoids, which are widespread in plants, are represented by compounds of various
structures, often present together, which can lead to synergistic effects, including antiviral
properties, for example, in tea, garlic, fruits, vegetables, etc. [124,125].

A study conducted by Nguyen T. et al. investigated the potential inhibitory effects of
plant-derived polyphenols on SARS-CoV-2 Mpro, mainly those derived from black garlic ex-
tract prepared by heating raw garlic (Allium sativum) to high temperatures [91]. The studied
extract contained many polyphenols, including both phenolic acids and flavonoids [126],
of which several were found to have inhibitory effects against SARS-CoV-2 Mpro and were
selected for further determination of their IC50 values (Table 1) [91].

Salvadora persica contains 10 flavonoid metabolites that were found to have substan-
tially stable binding affinities for the SARS-CoV2 Mpro, including glycosides of kaempferol
and its O-methylated derivatives [104]. Another study, conducted by Jo S. et al., used a
fluorescence resonance energy transfer assay (FRET) to screen a flavonoids library against
SARS-CoV2 Mpro, resulting in the identification of three flavonoids as potential inhibitors:
herbacetin, rhoifolin, and pectolinarin [107]. Plants from Indian traditional medicine have
also been found to contain potential inhibitors of SARS-CoV-2 Mpro [23,87]. One example is
tulsi (Ocimum sanctum), with its derived polyphenols vicenin and isorientin 4′-O-glucoside
2′′-O-p-hydroxybenzoate [87]. Another example of flavonoids derived from Indian medici-
nal plants showing such inhibitory effects was also presented in a recent study conducted
by Saravanan K. et al. in 2020 [23]. In this study, 41 compounds from different plants were
docked against SARS-CoV-2 Mpro. Several flavonoids of the candidate compounds showed
relatively high binding affinity values, with the highest value being that of amentoflavone,
a flavonoid derived from Torreya nucifera that has previously been shown to have in vitro
antiviral properties [23,127].

Catechins are another group of phytochemicals representing a subclass of polypheno-
lic compounds found in a variety of plants and plant-derived dietary supplements such
as green tea, cocoa, vinegar, wine, and garlic [91,128]. Due to the 3-galloyl and 5′-OH
groups in their structure [129], catechins from green tea, mainly the previously mentioned
epigallocatechin-3-O-gallate (EGCG), were found to exhibit antiviral properties against
SARS-CoV-2 and specifically against its Mpro [88]. The same compounds were found in
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black garlic extract [91] and the petals of Himalayan Rhododendron arboreum [130], with
similar potential anti-SARS-CoV-2-Mpro properties, using both in silico and in vitro analy-
ses. In green tea (Camellia sinensis), three polyphenols were found to have good binding
affinities for SARS-CoV-2 Mpro: EGCG, epicatechingallate (ECG), and gallocatechin-3-
gallate (GCG). They were proven to be highly stable, similarly compacted, and subject to
low conformational variability [110]. EGCG, found in different plant sources including
Camellia sinensis, Vitis vinifera, and black garlic extract, was further investigated in several
in vitro and in vivo studies to test its effectiveness against COVID-19 [131–134]. EGCG and
its oxidized form were found to inhibit Mpro in vitro [133,134], to directly inhibit an early
infection [132], and to reduce viral replication in mouse lung cells [132].

Lactones derived from plants have also shown potential inhibitory anti-SARS-CoV-
2-Mpro properties [89]. An example of such lactones is withaferin A, a steroidal lactone
derived from the well-known Indian medicinal plant Ashwagandha (Withania somnifera),
which has shown inhibitory potencies against the targeted protease in a molecular docking
study conducted by Sudeep H.V. et al. in 2020, with a binding score of −9.83 Kcal/mol [89].

In addition, plant tannins have been reported to have antibacterial, antifungal, and
antiviral properties [135], and accordingly have been screened in several studies to investi-
gate their potential inhibitory effects against SARS-CoV-2 Mpro [121]. A study by Wang
S.C. et al. tested the effectiveness of tannic acid, a tannin found abundantly in red wine
and in berries, grapes, pomegranate, and other fruits [136], against SARS-CoV-2 Mpro both
in silico and in vitro, using pseudotyped viral particles. The obtained data suggested that
tannic acid was a potential inhibitor of the targeted enzyme, as it was found to form a ther-
modynamically stable complex with Mpro. Cinnamtannin-B is another naturally occurring
tannin that has been reported as a top hit against SARS-CoV-2 Mpro [137]. Cinnamtannin-B
is derived from the cinnamon plant (Cinnamomum zeylanicum) and can only be isolated from
a limited number of plants such as Linderae umbellatae and bay laurel (Laurus nobilis) [138].

Alkaloids represent another group of natural phytochemicals that have a broad spec-
trum of biological activities, mainly antiviral [139]. One example is capsaicin, a plant-
derived alkaloid that is derived mainly from the fruit of the Capsicum genus [140] and has
been found by in silico research to be a potential inhibitor of SARS-CoV-2 Mpro, similar to
another plant-derived alkaloid named psychotrine [112]. Achyranthine is another alkaloid
derived mainly from Achyranthes aspera [141] that was found to bind three sites of Mpro,
with binding scores ranging between −4.1 and −4.7 [113].

Terpenes and their modified class of terpenoids represent a huge group of phyto-
chemicals that have also been found to have antiviral properties in general and inhibitory
potential effectiveness against SARS-CoV-2 Mpro in particular [92]. Plant terpenoids
with medicinal potential are estimated to include more than 100,000 compounds on our
planet, with more than 12,000 belonging to the diterpenoid group alone [142]. Of the
ayurvedic medicinal plants, two terpenoids were suggested by in silico research as po-
tential inhibitors of SARS-CoV-2 Mpro: ursolic acid from tulsi (Ocimum sanctum) and
withanoside V from ashwagandha (Withania somnifera) [87]. Other examples of terpenes
from Indian medicinal plants with inhibitory properties against SARS-CoV-2 are listed
in Table 1. Some of these terpenes, e.g., curcumin, have already been proven to show
antiviral activity in humans, protecting against acute and chronic lung diseases including
pneumonia [143,144], and accordingly have been further suggested for application in clini-
cal use as a prophylactic measure against COVID-19 [145]. From Citrus limon, two cyclic
monoterpenes have been proven to interact with SARS-CoV-2 Mpro, including limonene
and sabinene [113]. Glycyrrhizic acid (glycyrrhizin), another plant-derived triterpenoid
saponin found mainly in Glycyrrhiza glabra, was also proven to have in vitro anti-SARS-
CoV-2-Mpro potential [116]. Another main source of terpenes, mainly monoterpenes, is
plant essential oils [146], which have been proven in several studies to have a wide variety
of antimicrobial properties [147–149]. One example of such a plant-essential-oil-derived
monoterpene with antiviral properties is pinene, a bioactive compound of black pepper
(Piper nigrum), that was proven to bind Mpro in silico [113,150]. Similarly, the diterpenoid
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andrographolide from Andrographis paniculate was successfully docked against SARS-CoV-2
Mpro in two different molecular docking studies and was therefore suggested as a poten-
tial inhibitor to be evaluated in further in vitro analyses [89,151]. From medicinal Arabic
plants, betulinic acid, a pentacyclic triterpenoid derived from the Christ’s thorn plant
(Ziziphus spina-christi), was found by in silico research to successfully bind SARS-CoV-2
Mpro [152]. Roots of the plant Maprounea africana are also considered to be a source of
several bioactive compounds, including triterpenes [153] such as 1β-hydroxyaleuritolic
acid 3-p-hydroxybenzoate that have shown in silico inhibitory potential against Mpro [119].

5. Perspectives of Large-Scale Synthesis of Anti-SARS-CoV-2 Compounds

The large-scale production of newly discovered compounds with anti-SARS-CoV-2
activity can proceed in several ways. Some compounds can be obtained relatively easily by
means of chemical synthesis. This applies to many of the flavonoids. Others are preferably
obtained using cell cultures. A number of anti-SARS-CoV-2 compounds have attracted
interest in the past due to their wide range of biological activities. For this reason, methods
for their production in cell cultures have been developed and constantly optimized. For
example, compounds such as tanshinones and rosmarinic acid can be effectively produced
in hairy root cultures of Salvia miltiorrhiza Bunge [154] and catechins are produced in hairy
roots of Camellia sinensis (L.) O. Kuntze [155].

In addition, there are several approaches for increasing the yield of specialized metabo-
lites, including metabolic engineering of tanshinones [154–156], phenolic acids [155,157],
flavonoids [158], and diterpenoids [159] or varying the cultivation conditions [155,157].

Finally, natural compounds can be precursors for subsequent chemical modification.
For example, chemical synthesis based on chalcones allowed the development of more
effective anti-SARS-CoV-2 compounds [160].

6. Conclusions

Plants have been used for a long time as a resource for bioactive compounds and
phytochemicals to be applied in therapeutic approaches for different diseases. Since the
COVID-19 pandemic is still ongoing, phytochemicals could be used to find effective and
safe treatments for the disease. To date, using computer modeling of cell-free and cell-based
screening approaches, some progress has been made in the search for potential drugs aimed
at inhibiting the main protease of the coronavirus. They are represented by phytochemicals
from several classes, including polyphenols, terpenoids, catechins, lactones, and tannins.
Some plants containing promising compounds can be used as food directly, e.g., garlic,
and others can serve as sources of pure substances for pharmacology. Future studies
should shift their focus towards assessing possible toxic effects on cells, since even the most
promising protease inhibitors will not be able to find application if they are found to have a
toxic effect.
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