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Abstract
Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess

Plateau in China. The purpose of this study was to investigate the effect of mulching and

nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in

maize root-zone. The experiment was conducted over two consecutive years and used ran-

domly assigned field plots with three replicates. The six treatments consisted of no fertilizer

without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing

(MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and

basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching

(BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil

layers, the soil water content was a little high in the plastic film mulching than that without

mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower

than those measured in the corresponding mulching treatments in 31 days after sowing in

2012. The mulching treatment increased the soil nitrate-N content was observed in the

0–40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly dis-

tributed at 0–20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in

the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treat-

ment greatly increased the soil nitrate-N content in the upper layer of soil (0–40-cm), and

the mean soil nitrate-N content was increased nearly 50 mg kg−1 at 105 days after sowing

compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment

was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to

42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an

increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield

increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treat-

ment is recommended because it increased the grain yield and improved the fertilizer use

efficiency, compared with the no-mulching treatment.
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Introduction
Traditionally, gravel mulching was an effective strategy to increase soil temperature and mois-
ture and, therefore, crop production; this method was recently replaced by plastic film mulch-
ing with the onset of industrial development [1]. Since the middle of the last century, the
advantages of plastic film mulching have been reported that mulching has almost doubled crop
production and reduced the harvest time [2–4]. Recently, with the rapid development of mod-
ern industry since the 1990s, plastic film mulching has been widely adopted for dryland agri-
culture in arid and semi-arid areas of China [5–7]. Studies have indicated that mulching was
significantly enhanced the soil temperature and soil water content during the seedling stage,
which played an important role in maintaining sufficient amounts of heat and water for maize
growth [8, 9]. Mulching also has the benefit of improving soil physical conditions, including
the protection of topsoil stability [10]. The research have demonstrated that the benefits of
plastic mulching result from the adjustment of the soil environment caused by an increase in
soil temperature and a reduction in evaporation, weed competition, soil compaction and soil
erosion. These changes in the soil environment are good for crop root growth, and the stronger
ability of roots, which results in increased absorption of soil water and nutrients [11].

The Loess Plateau has a typical semi-arid monsoon climate, where maize (Zea mays L.) is
one of the most common crops [12–14]. However, low air temperatures and drought during
the early crop growth stage in the spring which may result in poor crop yield. Plastic film
mulching was significantly increasing the maize yield in this region [6, 15, 16], and there was
two major reasons. First, plastic film mulching reduces soil evaporation by intercepting the
steam that is released when water moves from deeper soil layers to the topsoil by capillarity
and maintains the stability of the topsoil water content, which increases crop transpiration
[17]. Second, plastic film mulching increases the soil temperature as the greenhouse effect,
which may absorbs solar radiation above the mulching and reduces heat loss, improving crop
production [18, 19].

Increased yield in response to plastic film mulching not only results in improved soil water
content and increased soil temperature but also directly changes soil microbial environment
and fertility. Maize is one of the high demands for nitrogen crops, and the nitrogen application
levels significantly affect grain yield and biomass yield [20, 21]. Particularly, when the nitrogen
fertilizer input in excess of the crop requirements, the soil nitrogen accumulation and leaching
would happen in the soil profile [22–25]. The research also reported that overuse of chemical
nitrogen fertilizers has result in reduced nitrogen use efficiency and considerable nitrogen
leaching into groundwater nationwide [26]. Usually this is a very exclusive case in Northwest
China, where about 48% of the wheat and 39% of the maize yield were produced by stepped-up
cropping [27]. Furthermore, the high rates of nitrogen fertilizer and irrigation amount, which
may increase in nitrogen leaching and leading to over-consumption of fresh water resources
[27–29].

But above all, the optimum nitrogen application rate in a plastic film mulching ridge-furrow
system needs to be determined for high maize yields and potential environmental benefits. The
proper nitrogen fertilizer application to meet the crops needs is the key to increase crop yield,
nitrogen use efficiency and decrease nitrogen leaching. This requires knowledge of crop nitro-
gen demand and the amount of available nitrogen offered from the soil through mineralization
process. This study evaluated the feasibility of using alternative field management practices to
contribute towards food security and sustainable agriculture. Therefore, the aim of the study
was to (1) evaluate the effect of mulching and nitrogen fertilizer on the vertical distribution of
soil water contents and soil-N content, (2) investigate the soil nitrate-N accumulation, leaching
and nitrogen fertilizer use efficiency of maize in Loess Plateau of Northwest China.
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Materials and Methods

Experimental site
The authority responsible for Changwu Experimental Station who issued the permission for
each location, and the field is not privately owned field. We confirmed that the field studies did
not involve endangered or protected species.

The field experiment was conducted at the Changwu Experimental Station (35°12´N, 107°
40´E and altitude 1206 m) on the Loess Plateau in Changwu county of Shaanxi Province,
China. The climate is temperate semi-arid with a mean annual air temperature of 9.1±2.3°C, a
mean monthly maximum temperature of 22°C (July) and a mean monthly minimum tempera-
ture of –7°C (January). The average annual sunshine duration is 2230 h with more than 171
frost-free days. The mean annual precipitation from 1990 to 2012 was 571±74 mm, of which
approximately 55% fell during the growing season between July and September. The rainfall
during the experimental period was measured using an automatic weather station (Changwu
experimental station meteorological observatory, WS-STD1, England) at the experimental site.
The sum of rainfall during the whole growth period of maize was 396 mm in 2012 and 374 mm
in 2013, and this accounted for 71.1% and 68.9% of the annual rainfall, respectively. According
to the USDA textural classification system, the soil has a silty loam texture, which is derived
from loess with a deep and even soil profile. Soil sample was dried at room temperature (75°C)
in the laboratory to a constant weight and sieved (2 mm) to eliminate coarse soil particles. Soil
acidity (pH) was measured in an aqueous soil extract in de-ionized water (1:2.5 soils: water).
Bulk density was measured by the core method, using cores that measured 3 cm in diameter,
10 cm in length, and 70.68 cm3 in volume. Field capacity at 33 kPa was determined using a
pressure-membrane extraction apparatus. Soil organic matter was determined using the Walk-
ley-Black method [30]. The physicochemical properties of the soil profile were determined in
April 2012 and 2013 (Table 1).

Experimental design
In this experiment, six treatments were designed and applied: (1) a flat plot (8 m × 4 m) with
no basal fertilizer, no top dressing and no mulching (CK); (2) plastic film mulching with no
basal fertilizer and no top dressing (MN0); (3) basal N (80 kg ha−1) and P (80 kg ha−1) [31]
with no top dressing and no mulching (BN1); (4) plastic film mulching and basal N (80 kg
ha−1) and P (80 kg ha−1) with no top dressing (MN1); (5) basal N (80 kg ha−1) and P (80 kg
ha−1) and top dressing N (80 kg ha−1) with no mulching (BN2); and (6) plastic film mulching
with basal N (80 kg ha−1) and P (80 kg ha−1) fertilizer and top dressing N (80 kg ha−1) (MN2).

The experiment was laid out using a randomized block design with three replications; each
plot was 8 m long and 4 m wide. The entire experimental area was ploughed and leveled each
year during the three-year period over which the experiment was conducted. Following

Table 1. Major soil physicochemical characteristics of the experimental site.

Years Soil depth
(cm)

Bulk density (g
cm−3)

Organic matter (g
kg−1)

Total C (g
kg−1)

Total N (g
kg−1)

NH4
+
−N (mg

kg−1)
NO3

-
−N (mg

kg−1)
Avail. P (mg

kg−1)
Avail. K (mg

kg−1)

2012 0—30 1.23 12.20 15.80 0.67 3.80 10.56 36.5 130.4

30—60 1.32 10.10 14.70 0.48 2.70 4.78 24.5 141.7

60—100 1.38 8.70 13.90 0.17 1.90 1.53 15.6 117.8

2013 0—30 1.25 11.70 17.20 0.59 4.20 8.68 42.3 148.4

30—60 1.37 9.40 15.50 0.37 3.10 4.02 22.8 135.7

60—100 1.35 7.80 12.50 0.11 2.10 1.44 13.2 105.6

doi:10.1371/journal.pone.0161612.t001
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dividing and ridging of 18 experimental plots, basal fertilizers (80 kg N ha−1 and 80 kg P ha−1)
were mixed in the soil for the BN1, MN1, BN2 and MN2 treatments. The basal fertilizers appli-
cation schemes were chosen based on commonly practices used by local farmers. Maize was
planted at a 30 cm row and 60 cm line spacing, and a sketch showing the width direction
arrangement is presented in Fig 1. Mulching was laid over the soil surface layer of the ridges,
80 cm wide and 0.008 mm thick (Yonggu suye CO., LTD, Shaanxi, China).

The maize breed (Zea mays L., cv. ‘Liyu 18’) was sown on 21 April 2012 and 29 April 2013,
using a hole-sowing tool (3-cm diameter). Top dressing N (80 kg ha−1) fertilizer was applied in
late June (BN2, MN2). The maize crop was harvested on 18 September 2012 and 28 September
2013. After harvest, the plastic film was gathered and recycled by the manufacturer. Traditional
tillage in dry farming areas of northern China involves mouldboard ploughing (motorized) to
a depth of 16–18-cm, followed by a sequence of harrowing, smoothing, rolling and hoeing
[17].

Sampling and measurements
During the growing season, the soil water content (N = 3) was measured using the gravimetric
method, and the depth interval spacing was 10 cm (from 0 to 100 cm). The soil water content
was measured in the middle of the furrows, and the distance from a plant was 10 cm. The mea-
surements were performed for nearly one month within the entire growth period (21 May, 28
June, 4 August and 9 September in 2012, and 19 May, 21 June, 26 July and 1 September in
2013, respectively). Such measurements were taken before rainfall. The soil water content mea-
surements were performed at the same time as the measurements of the soil nitrate-N content
[17].

The soil nitrate-N content (N = 3) was measured using a spectrophotometer (UV-VIS
8500II, China), with sampling a depth interval of 10 cm, down to 100 cm, and the horizontal
direction was three observation points, near of the plant 5 cm, move towards the furrow 30 cm
and move towards the ridge 30 cm.

Fig 1. A sketch of the experimental arrangement system.

doi:10.1371/journal.pone.0161612.g001

Mulching and Nitrogen on Soil Nitrate-N Distribution and Nitrogen Use Efficiency of Maize

PLOS ONE | DOI:10.1371/journal.pone.0161612 August 25, 2016 4 / 18



• First, 0.5 g of fresh soil was placed in a 100-mL triangular flask.

• Then, 50 ml of a 2-mol/L potassium chloride solution was added. The solution was shaken
for half an hour until uniformity was reached.

• The solution was filtered, and 5 mL was placed in a spectrophotometer and examined at a
wavelength of 210 nm [32].

• The nitrate content was determined using colorimetric analysis.

In this study, the soil nitrate-N below 100 cm soil depth and the ammonium-N throughout
the whole soil profile will not be included in the nitrogen content measurements because most
of the crop roots were mainly distributed in the soil depth of 0–100-cm [33].

Grain yield and nitrogen balance estimation
The maize plants were sampled from a 4-m2 area in each plot at harvest for the measurements of
grain yields and above ground biomass. Subsamples of grain and straw were oven-dried at 75°C
for 24 h to calculate the moisture contents and dry matter. The total nitrogen content in grain and
straw of the subsamples of both wheat and maize were determined by the micro-Kjeldahl method
by digesting the sample in H2SO4–H2O2 solution [34]. Nitrogen uptake by plants was estimated
by multiplying the grain and straw dry matter weight by their nitrogen concentrations [35].

The mass balance approach was used to assess the effect of biomass harvesting on nitrogen
transport [36]. The amounts of nitrogen fertilizer application and soil nitrogen residual are the
main source of soil nitrate-N. The soil nitrogen exported from the microcosm systems are mainly
contained the amounts of nitrogen assimilated by plants, the amounts of nitrogen absorbed by
the substrate, other losses, including ammonia volatilization, N2O and N2 emission [37, 38]. The
fates of nitrogen fertilizer applied to the ordinary crop field are shown in Fig 2.

Items in the nitrogen balance were estimated in each plot for the two crop growing seasons
fromMarch to September in two consecutive years. For each period, the nitrogen balance can
be calculated as following [35, 39].

Ninitial þ Ninput þ Nmin ¼ Nuptake þ Nresidual þ Nloss ðunit : kg N=haÞ ð1Þ

• Ninitial is initial soil nitrate-N in the 0–100 cm soil profiles. The initial of soil NO3
−-N content

was calculated as following.

Ninitial; kg ha
�1 ¼ C1ðmg kg�1Þ � hðcmÞ � rðg cm�3Þ � 10� 0:01

where C1 is soil nitrate-N content, h is soils thickness and ρ is soil bulk density.

• Ninput is the nitrogen fertilizer application levels (0, 80, and 160 kg N ha−1).

• Nmin is nitrogen mineralization.

• Nuptake is nitrogen uptake by plants.

• Nresidual is soil nitrate-N residual in the 0–100 cm soil profiles.

• Nloss is soil nitrate-N loss in the 0–100 cm soil profiles.

Nloss is considered as mainly soil nitrate-N leaching since other nitrogen losses via volatiliza-
tion, denitrification and erosion are relatively low under such environmental conditions [40–42].

Seasonal nitrogen mineralization (Nmin) was calculated by the balance of nitrogen fertilizer
application levels and output in the control treatment (one control treatment with no basal
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fertilizer, no top dressing and no mulching (CK); another control treatment plastic film mulch-
ing with no basal fertilizer and no top dressing (MN0)) as following.

Nmin ¼ Nuptake; 0 þ Nresidual;0 � Ninitial;0 ðunit : kg N ha� 1Þ ð2Þ

where Nuptake,0, Nresidual,0 and Ninitial,0 are crop nitrogen uptake, residual and initial soil nitrate-
N in the control treatment of 0–100 cm soil profile of the controls, respectively.Nitrogen recov-
ery efficiency (NRE, in %) and nitrogen use efficiency (NUE, in %) were analyzed using the fol-
lowing equation [43, 44].

NRE ¼ ðNresidual � NinitialÞ þ ðNuptake � Nuptake;0Þ
Ninput

� 100% ð3Þ

NUE ¼ Nuptake:y

Ninput

� 100% ð4Þ

Fig 2. The fates of nitrogen fertilizer applied to the ordinary crop field.

doi:10.1371/journal.pone.0161612.g002
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where Nuptake.y is the nitrogen uptake contents in grain yield of maize (kg ha−1), Ninput is nitro-
gen fertilizer application levels (kg ha−1).

The partial factor productivity of the fertilizer (PFP, in kg kg−1) was determined by the fol-
lowing equation [45–49].

PFP ¼ Y
Finput

ð5Þ

where Y is maize yield (kg ha−1), and F is the applied fertilizer (kg ha−1), i.e. the sum of nitrogen
and phosphate fertilizer during each crop growing season.

Statistical analysis
Analysis of variance was conducted on the soil water content, soil nitrate-N content and grain
yield, which are using SAS 9.2 (SAS Institute Ltd., North Carolina, USA). Duncan’s multiple
range test was used for paired mean comparisons at a 0.05 probability level [50].

Results and Discussion

Soil water status
The effects of mulching and nitrogen fertilizer treatments on soil water contents in two conse-
cutive years are shown in Fig 3. In the top soil layers, the soil water content was a little high in

Fig 3. The effects of mulching and nitrogen fertilizer treatments on soil water contents in the study years.

doi:10.1371/journal.pone.0161612.g003
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the plastic film mulching than that without mulching. The mean soil water content from 0 to
40 cm without mulching were 3.35% and 2.03% lower than those measured in the correspond-
ing mulching treatments in 31 days after sowing in 2012 and 20 days after sowing in 2013,
respectively. Part of the reason may be that plastic film mulching was covered the ridge and
furrow, which harvesting system makes better use of spat rain by collecting rainwater from the
ridges, then improving water availability to crop growth compared with bare farming practices
[5]. The difference of soil water content between mulching and no mulched treatment was sig-
nificantly increased in 105 days after sowing in 2012 and 88 days after sowing in 2013, the
mean soil water content of mulching treatment was 12.22% and 11.72% higher than without
mulching. Compared with the CK treatment, the soil water content at harvest in both years
was significantly higher in N0 than in N1 and N2 in the 40–100-cm soil layer, with no signifi-
cant differences between nitrogen fertilizer treatments. In 68 days after sowing, all treatments
under plastic film mulching not only significantly increased soil water content in 0–100-cm
soil layer, but also regulated soil water distributed in the upper layer compared to their values
on 31 days after sowing in 2012. The soil water content in the mulching treatment was higher
than that of a bare plot at the time of seeding; after one month, however, these soil water con-
tents were similar [51]. However, at harvest season of maize growth without mulch, the soil
water content in all treatments in the 0–40-cm soil layer sharply decreased compared to values
on 105 days after sowing in 2012.

The MN1 and MN2 treatments had the highest average soil water content at 0–40-cm at
whole growing seasons, except 53 days after sowing in 2013. The result indicated that a higher
soil water content merely exist in the surface layer under mulching treatment, which was prob-
ably due to lower surface run-off and evaporation because there was no change in surface soil
porosity [52, 53]. The average soil water content (0–100 cm) in the CK treatment was 10.42%,
18.50% and 10.95% lower than that in the MN0, MN1 and MN2 treatments at 105 days after
sowing in 2012, respectively, and 12.64%, 14.71% and 11.59% at 88 days after sowing in 2013.
The same result was obtained that soil water content in the 20–100-cm layer decreased steadily
in all of the treatments, and the soil water content of the mulched treatments were always sig-
nificantly (p< 0.05) higher than that of CK [54]. The mulching of the ridge and furrow regu-
lated the soil water conditions, which caused the soil water content of the various soil layers to
differ from each other. However, the average soil water content in the CK treatment was only
3.70%, 6.69% and 5.82% lower than that in the MN0, MN1 and MN2 treatments at 134 days
after sowing in 2012, respectively, and 3.84%, 4.20% and 4.93% at 125 days after sowing in
2013. The result may be related to the canopy density of crop plants at harvest, and the effect of
mulching on soil water contents was decrease with the increase of growth period. Based on the
above results, we can draw a conclusion that plastic film mulching adjusts the regularity of the
vertical distribution of the soil water is limited. These results are compatible to those of previ-
ous studies. The soil water content was significantly decreased in the mulching treatment com-
pared with no-mulching at the same fertilizer in June, and there was no significant difference
in September [17]. The soil water content between mulching and no-mulching treatment varia-
tions were reduced from mid-June to September, most likely because of the more robust can-
opy shading at the late growth stage [1, 55, 56].

Soil nitrate-N content
The effects of mulching and nitrogen fertilizer level on soil nitrate-N content in two consecu-
tive growing seasons are shown in Fig 4. The soil nitrate-N content was significantly decreased
with increase of the soil depth under basal nitrogen fertilizer treatments in 31 days after sowing
in 2012 (Fig 4A). In BN1, MN1, BN2 and MN2 treatments, the mean soil nitrate-N content in
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top soil layer (0–50-cm) was 46.04%, 46.22%, 43.63% and 47.15% higher than the upper soil
layer (50–100-cm). Well, there are two reasons, one because the basal fertilizer was mainly in
the surface layer due to low rainfall [57], and the other reason is that the soil organic matter
content in the surface layer resulted from nitrate-N via digestive functions [58]. The nitrogen
fertilizer treatment significantly increased the soil nitrate-N content in the early growth stage
compared with the CK treatment. However, there was no significant difference between mulch-
ing and no mulched treatment at the same nitrogen fertilizer levels. The gap between the nitro-
gen fertilizer and no fertilizer treatment was significantly increased in 68 days after sowing in
2012 (Fig 4B). The mean soil nitrate-N content in CK was 42.90% and 42.78% lower than BN1

and BN2 in mulching treatment, and the mean soil nitrate-N content in MN0 was 44.95% and
45.65% lower than MN1 and MN2 in no mulch treatment. The plastic film mulching treatment
was particularly effective when compared with the nitrogen fertilizer application treatment.
The mean soil nitrate-N content in CK was only 2.32% lower than MN0 treatment, and the
BN2 was 7.23% lower than MN2 treatment. The same result was discovered that the ability of
the plastic film mulching to improve the soil water content, meanwhile, the availability nitro-
gen was improved with mulching [59].

The nitrogen fertilizer applications significantly affect the soil nitrate-N content in the soil
profile of 0–60-cm in 105 days after sowing in 2012, and the soil nitrate-N content in topdress-
ing nitrogen treatments was found a high concentration in top soil layers of 0–20-cm (Fig 4C).

Fig 4. The effects of mulching and nitrogen fertilizer level on soil nitrate-N content in two consecutive growing seasons.

doi:10.1371/journal.pone.0161612.g004
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The mulching treatment increased the soil nitrate-N content was only observed in the
0–40-cm soil layers. Compared with the CK treatment, the soil nitrate-N content was signifi-
cantly lower in N0 than in N1 and N2 with mulching treatment in the 0–100-cm soil layer, and
the mean soil nitrate-N content in CK was 39.12% and 60.67% lower than MN1 and MN2 treat-
ment. However, there was no significant difference in soil nitrate-N content at the same levels
of nitrogen fertilizer application. The soil nitrate-N content was increased with the increase of
soil depth from 20 cm to 80 cm in 134 days after sowing in 2012 (Fig 4D). The reason may be
the higher nitrogen application rate have exceeded the nitrogen uptake by plants and contrib-
uted to soil nitrate-N accumulation in the 40–100-cm soil layer [60, 61].

In the basal and top dressing treatments, the mean soil nitrate-N content in plastic film
mulching treatment was 24.41% higher than without mulch treatment in 0–100-cm soil layer,
but the basal and no top dressing was 8.45% higher than without mulch treatment and no fer-
tilizer treatment was 6.63% higher than without mulch treatment. The lowest soil nitrate-N
content in CK treatment, which was 44.71%, 49.39%, 60.13% and 69.86% lower than BN1,
MN1, BN2 and MN2 treatments, respectively. The soil nitrate-N content in 0–100-cm soil layer
had the same trend of change law in the whole growth period in 2013. The only difference is
that the soil nitrate-N content was not increased with the increase of soil depth from 20 cm to
80 cm in 125 days after sowing in 2013, except the MN2 treatment. The similar results was
reported that soil moisture had a significant influence on soil nitrate-N movement in the
0–100-cm soil profiles [62]. The content of soil nitrate-N in the 20–80-cm soil layers was only
slightly increased in the treatments of 200 kg N ha−1 [35, 63].

Changes in nitrate-N in the soil profiles
The dynamics of the soil nitrate-N in the root region area of the no-fertilizer treatment with
plastic film mulching in 2012 and 2013 are shown in Fig 5. Soil nitrate-N in the 0–100-cm pro-
files ranged from 8.4 mg kg−1 to 63.0 mg kg−1 during the 31 days after sowing in 2012 and was
similar in 2013 (Fig 5A and 5E). The soil nitrate-N concentration was consistently decreasing
with growing stages and the content of soil nitrate-N was little higher in both sides of root

Fig 5. The effects of mulching and no-fertilizer on the vertical distribution of nitrate-N content in two consecutive growing seasons (mg kg−1).
2012: (A) 31 days after sowing, (B) 68 days after sowing, (C) 105 days after sowing and (D) 134 days after sowing; 2013: (E) 20 days after sowing, (F)
53 days after sowing, (G) 88 days after sowing and (H) 125 days after sowing.

doi:10.1371/journal.pone.0161612.g005
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system. The results indicate that mean nitrate-N concentration in 0–100-cm profiles at 31 days
after sowing was 2.22 times higher than the mean nitrate-N concentration at harvest time. In
the current experiments, soil nitrate-N in the 0–100-cm soil layer ranged from 5.1 mg kg−1 to
24.7 mg kg−1 at harvest in 2012 and from 0.65 mg kg−1 to 12.6 mg kg−1 in 2013 (Fig 5D and
5H). There was a large horizontal difference in the soil nitrate-N concentration in the top layers
(0–40-cm) about a month after sowing in two consecutive years. The trend in the soil nitrate-N
content distribution exhibited symmetrical shapes along the center of the furrow.

The effects of mulching and basal fertilizer application on soil nitrate-N concentration in
the soil profiles are shown in Fig 6. The vertical distribution of soil nitrate-N was similar to the
treatment without nitrogen fertilizer at 31 days after sowing, but the contents of soil nitrate-N
in basal fertilizer treatment was significantly higher than that without fertilizer treatment (Fig
6A). The mean soil nitrate-N concentration in the 0–100-cm soil layer in MN1 was 28.91%
higher than MN0 treatment. In the whole growth period, the soil nitrate-N concentration was
also sustained downward trend. The soil nitrate-N in the top soil layers was move downward
to the soil layer of 60–90-cm in 68 days after sowing in 2012 (Fig 6B). In 105 days after sowing,
the standard symmetrical distribution reduced gradually with the soil depth, but persisted
under the plastic film mulching conditions (Fig 6C). The soil nitrate-N concentration in the
root absorption area was lower than in the other areas, and the trend gradually increased with
the advancement of reproductive period. The soil nitrate-N in 0–30-cm layers was generally
higher in the earlier stage of maize growth than later period. At harvest, the soil nitrate-N con-
centration was significantly decreased in the whole soil profiles, and the content of soil nitrate-
N was ranged from 18.6 mg kg−1 to 40.1 mg kg−1 in 2012 and from 10.1 mg kg−1 to 31.1 mg
kg−1 in 2013 (Fig 6D and 6H).

The vertical distribution of the soil nitrate-N in root area of the basal-topdressing-fertilizer
treatment with plastic film mulching in 2012 and 2013 are shown in Fig 7. The results indicate
that high contents of soil nitrate-N were mainly distributed at 0–20-cm at 31 days after sowing,
and the soil nitrate-N concentration in the basal-topdressing-fertilizer treatment was 1.58
times higher than that did not receive fertilizer (Fig 7A). The mean soil nitrate-N content was

Fig 6. The effects of mulching and basal-fertilizer on the vertical distribution of nitrate-N content in two consecutive growing seasons (mg
kg−1). 2012: (A) 31 days after sowing, (B) 68 days after sowing, (C) 105 days after sowing and (D) 134 days after sowing; 2013: (E) 20 days after
sowing, (F) 53 days after sowing, (G) 88 days after sowing and (H) 125 days after sowing.

doi:10.1371/journal.pone.0161612.g006
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ranged from 25.6 mg kg−1 to 100.0 mg kg−1 at 31 days after sowing in 2012. The nitrate-N in
the root zone was reduced in the soils of the basal and top dressing treatments with the plastic
film mulching at 68 and 53 days after sowing in 2012 and 2013, respectively. There were signifi-
cantly soil nitrate-N concentration differences in the top soil layers (0–40-cm), but there was
no significant difference in the soil nitrate-N content below 50 cm, and the symmetrical distri-
bution was the same as that observed in the MN1 treatment in the top layers (0–40-cm) after
topdressing treatment. The mean soil nitrate-N content in the topsoil (0–40-cm) was reduced
to 39.31 mg kg−1 from 67.69 mg kg−1 at 134 days after sowing in 2012. The soil nitrate-N con-
tent in the subsoil (60–100-cm) increased at 105 and 88 days after sowing compared with 68
and 53 days after sowing in 2012 and 2013, respectively. Especially, there was a nitrate-N accu-
mulation area coming close to 70 cm in 2012 and 60 cm in 2013 at harvest time.

Overall, the mean soil nitrate-N content with basal-fertilizer treatment increased to approxi-
mately 13.44% at 31 days after sowing compared with no-fertilizer treatment. In addition, the
basal-topdressing-fertilizer treatment greatly increased the soil nitrate-N content in the upper
layer of soil (0–40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg−1 at
105 days after sowing compared with no-fertilizer treatment. The soil nitrate-N was concen-
trated at 60 cm to 80 cm at harvest time in top dressing treatment, and there was no difference
along the entire soil profile in all treatment. Previous studies have suggested that the amount of
soil nitrate-N content in the topsoil (0–50-cm) was significantly different from that in the sub-
soil (50–100-cm), and the subsoil nitrate residues were well correlated with root intensity [64].
We found that the nitrate-N concentration in the root absorption area was lower than in the
other areas.

Soil nitrate-N leaching and balance estimation
The soil nitrate-N leached varied considerably between the different plastic film mulching and
fertilization treatments, ranging from 0 kg ha−1 to 55.32 kg ha−1 in 2012 and from 0 kg ha−1 to
70.11 kg ha−1 in 2013 (Table 2). There was a significantly increase in soil nitrate-N leaching

Fig 7. The effects of mulching and basal-topdressing-fertilizer on the vertical distribution of nitrate-N content in two consecutive growing
seasons (mg kg−1). 2012: (A) 31 days after sowing, (B) 68 days after sowing, (C) 105 days after sowing and (D) 134 days after sowing; 2013: (E) 20
days after sowing, (F) 53 days after sowing, (G) 88 days after sowing and (H) 125 days after sowing.

doi:10.1371/journal.pone.0161612.g007
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with the increase of nitrogen fertilizer application rate. The plastic film mulching has a fine
effect on preventing the soil nitrate-N leaching from top to upper soil layers. The soil nitrate-N
leaching amount in mulching treatment was 28.61% and 39.14% lower than no-mulching in
basal-fertilizer treatment in both years, and the mulch effect attained to 42.55% and 65.27% in
basal-topdressing-fertilizer application. These previous studies reported that the application of
higher levels of nitrogen resulted in higher soil nitrate-N leaching from the soil, greatly exceed-
ing the crop requirement and resulting in lower fertilizer use efficiency [27, 65].

The nitrogen fertilizer application levels was significantly affect the nitrate-N residual
amount, and the mulching was only obviously effect the nitrogen residual amount in basal-top-
dressing-fertilizer treatment in two consecutive years. The highest nitrogen residual was
obtained in MN2 treatment, which was 15.75%, 36.55%, 39.88%, 66.02% and 70.29% higher
than BN2, MN1, BN1, MN0 and CK treatment in 2012, and the similar result was observed in
2013. For this reason, many scholars have conducted a lot of research, residual nitrate-N
increases quickly when the nitrogen fertilizer application rate exceeds a certain value, but that
corresponding grain yield do not increase significantly after this certain value is reached [66,
67]. The variation tendency of nitrogen uptake was similar to nitrogen residual, but the single
factors of mulch or nitrogen fertilizer were significant for nitrogen uptake amount. Surpris-
ingly, the nitrogen uptake amount in mulching treatment was 6.88% lower than that without
mulch treatment in 2012. However, the MN1 treatment was 6.58% higher than BN1 treatment
and the MN2 treatment was 7.08% higher than BN2 treatment in 2012, and the result was simi-
lar as 2013.

Table 2. Soil starting Nitrogen (Ninitial), nitrogen input (Ninput), nitrogenmineralization (Nmin), nitrogen uptake by plants (Nuptake), soil nitrate-N resid-
ual (Nresidual) in the 0–100-cm profiles and nitrogen leaching (Nloss) below 100 cm depth as affected by mulching and nitrogen fertilizer application
rate in the maize growing system in 2012 and 2013 (kg ha−1).

Treatment Ninitial Ninput Nmin Nuptake Nresidual Nloss

2012 CK 66.34 0 20.22 56.23±2.94e 30.32±2.15d –

MN0 66.34 0 20.70 52.36±0.79e 34.67±1.81d –

BN1 66.34 80 20.22 75.65±2.2d 61.25±2.02c 29.67±4.21b

MN1 66.34 80 20.70 80.63±2.89c 64.75±2.19c 21.18±3.68c

BN2 66.34 160 20.22 105.27±4.04b 85.97±3.6b 55.32±7.62a

MN2 66.34 160 20.70 112.72±1.84a 102.05±6.54a 31.78±4.72b

Correlation coefficient (r)

Ninput × Nuptake 0.9895

Ninput × Nresidual 0.9814

Ninput × Nloss 0.7155

2013 CK 56.85 0 18.82 52.95±1.35d 22.74±2.78d –

MN0 56.85 0 13.11 52.35±1.37d 17.63±4.92d –

BN1 56.85 80 18.82 69.38±3.78c 46.02±3.69c 40.29±3.41b

MN1 56.85 80 13.11 72.55±4.88c 52.91±3.54c 24.52±8.37c

BN2 56.85 160 18.82 98.20±9.76b 67.37±7.67b 70.11±15.84a

MN2 56.85 160 13.11 109.25±1.63a 96.38±4.59a 24.35±4.88c

Correlation coefficient (r)

Ninput × Nuptake 0.9749

Ninput × Nresidual 0.9445

Ninput × Nloss 0.3975

Means within columns followed by the same lowercase letters are not significantly different (p < 0.05) according to Duncan’s multiple range tests for irrigation

treatments within same season.

doi:10.1371/journal.pone.0161612.t002
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Grain yield and nitrogen use efficiency
The effect of mulching, basal fertilizer and top dressing nitrogen fertilizer on grain yield, dry
matter accumulation, Nitrogen recovery efficiency (NRE), nitrogen use efficiency (NUE) and
the partial factor productivity of the fertilizer (PFP) are shown in Table 3. The result indicated
that higher grain yield of maize was observed in CK treatment compared with the MN0 treat-
ment, but there was no significant difference between the mulching and no-mulching treat-
ments under no basal fertilizer or top dressing. However, there was a significant difference for
the plastic film mulching treatment with basal fertilizer or top dressing, and plastic film mulch-
ing had a positive effect on grain yield. The yield increased with an increase in the basal fertil-
izer and plastic film mulching, and the grain yield in MN1 treatment increase 5.27% and
16.18% compared with BN1 treatment in both years. Further, the MN2 treatment was 19.46%
and 18.40% higher than BN2 treatment in 2012 and 2013, respectively. The yield increased
with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain
yield increase ranged from 31.41% to 79.06% compared with the CK treatment in 2012 and
from 33.30% to 83.61% in 2013. Other studies found that film mulching in field experiments
increased the maize grain yield by approximately 20–30% in very wet years, 60–95% in average
and drought years [68]. Additional mulch in furrows increased the maize grain yield by 8–25%
in the semi-arid Loess region of northwestern China [69].

The dry matter accumulation of maize was increased with the increase of nitrogen fertilizer
application rate, and the plastic film mulching was significantly increased the dry matter accu-
mulation under basal, top dressing fertilizer conditions. Compared to CK treatment, the dry
matter accumulation was 23.31%, 31.43%, 55.99% and 67.05% higher in BN1, MN1, BN2 and
MN2 treatment in 2012, and the result was similar as 2013. However, the dry matter accumula-
tion in MN0 treatment was 6.88% lower than CK treatment in 2012.

The nitrogen recovery efficiency was increased with the increase of nitrogen fertilizer appli-
cation rate and plastic film mulching. The nitrogen recovery efficiency was ranged from
17.91% to 60.05% in 2012 and from 6.97% to 60.25% in 2013. In two consecutive years, the
highest nitrogen recovery efficiency was also observed in MN2 treatment. However, the BN2

treatment was only 42.92% and 34.85%, which was significantly lower than MN2 treatment.

Table 3. The effects of mulching, basal fertilizer and top dressing nitrogen fertilizer on grain yield, dry matter accumulation, Nitrogen recovery effi-
ciency (NRE), nitrogen use efficiency (NUE) and the partial factor productivity of the fertilizer (PFP) in the study years.

Treatment GY (Mg ha−1) DM (Mg ha−1) NRE (%) NUE (%) PFP (kg kg−1)

2012 CK 3.75±0.33d 10.12±0.53e – – –

MN0 3.33±0.06d 9.43±0.14e – – –

BN1 4.93±0.39c 12.48±0.36d 17.91±5.26 28.12±1.47 30.84±2.42

MN1 5.19±0.09bc 13.3±0.48c 33.35±4.60 29.45±0.45 32.46±0.54

BN2 5.63±0.14b 15.79±0.61b 42.92±4.67 18.91±0.55 23.45±0.60

MN2 6.72±0.36a 16.91±0.28a 60.05±2.95 20.16±0.72 28.01±1.51

2013 CK 3.57±0.24d 9.8±0.25d – – –

MN0 3.24±0.28d 9.68±0.25d – – –

BN1 4.76±0.07c 11.79±0.64c 6.97±4.26 26.48±0.67 29.77±0.44

MN1 5.53±0.24b 12.33±0.83c 20.30±10.46 29.45±0.77 34.58±1.47

BN2 5.54±0.36b 13.75±1.37b 34.85±9.90 17.34±0.95 23.09±1.49

MN2 6.56±0.08a 15.29±0.23a 60.25±3.05 18.14±1.22 27.34±0.34

Means within columns followed by the same lowercase letters are not significantly different (p < 0.05) according to Duncan’s multiple range tests for irrigation

treatments within same season.

doi:10.1371/journal.pone.0161612.t003
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The result indicated that the mulching was an obvious increase in nitrogen recovery efficiency
with nitrogen application. In 2012, the nitrogen use efficiency and partial factor productivity of
the fertilizer did not significantly differ between treatments. The more nitrogen fertilizer appli-
cation, the lower values of nitrogen use efficiency and partial factor productivity of the fertilizer
was obtained in both year.

Conclusions
In the topsoil layer, the soil water content in the mulching treatment was significantly higher
than that without mulching treatment. High soil nitrate-N content was mainly distributed in
the 0–40-cm soil layers with basal fertilizer, and the soil nitrate-N was concentrated at 60 cm to
80 cm at harvest time in top dressing treatment. The yield increased with an increase in the
basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged
from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recom-
mended because it increased the grain yield and improved the fertilizer use efficiency, com-
pared with the no-mulching treatment.
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