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Abstract

Graph analysis is a promising tool to quantify brain connectivity. However, an

essential requirement is that the graph measures are reproducible and robust. We

have studied the reproducibility and robustness of various graph measures in group

based and in individual binary and weighted networks derived from a task fMRI

experiment during explicit associative-semantic processing of words and pictures.

The nodes of the network were defined using an independent study and the

connectivity was based on the partial correlation of the time series between any pair

of nodes. The results showed that in case of binary networks, global graph

measures exhibit a good reproducibility and robustness for networks which are not

too sparse and these figures of merit depend on the graph measure and on the

density of the network. Furthermore, group based binary networks should be

derived from groups of sufficient size and the lower the density the more subjects

are required to obtain robust values. Local graph measures are very variable in

terms of reproducibility and should be interpreted with care. For weighted networks,

we found good reproducibility (average test-retest variability ,5% and ICC values

.0.4) when using subject specific networks and this will allow us to relate network

properties to individual subject information.
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Introduction

There is a surge of interest in mapping and modelling the complicated networks

within the brain. Functional connectivity analyses of neuroimaging data are based

on the concept of synchrony between the signal responses in spatially distinct

brain regions [1]. Analysing networks extracted from functional imaging data has

proven to be a promising tool to investigate the complex functional structure of

the human brain that influences the dynamics underlying cognition [2–4].

A promising tool to rigorously study the problem is graph analysis. This

provides a framework to characterize and to quantify networks [5–9]. Many non-

trivial graph characteristics, such as small-worldness, modularity and highly

connected hubs, have been observed in human brain networks. Differences in

graph properties have been found in people with Alzheimer’s disease [10] and

schizophrenia [6, 11, 12], and also in association with age [7, 13]. Changes in

graph measures were also found during motor learning [14] and taking nicotine

[15]. All these studies suggest that graph analysis can be a promising tool in

clinical and basic research to characterize brain connectivity in a way that is both

biologically meaningful and related to normal and abnormal function. However,

an essential requirement when using this type of quantification is that the

different measures are reproducible and robust.

The reproducibility of graph measures has already been investigated in a

number of studies looking at binarized networks derived from structural MRI

[16, 17], diffusion-weighted MRI [18–21], resting state fMRI [10, 22, 23], MEG

[24] and resting-state functional near infrared spectroscopy [25]. Only one study

has looked at the reproducibility of graph measures when using task fMRI [23].

Graph measures using task fMRI is expected to be different compared to resting

state fMRI since functional connectivity between two nodes depend on the

context (i.e. resting state versus a specific task context). Furthermore, the

reproducibility of weighted graph measures has received very little attention: only

two studies are available which addressed this problem and both were using

graphs derived from diffusion-weighted MRI [26, 27]. Therefore, we investigated

the reproducibility and the robustness of graph measures of weighted and

binarized networks derived from a task fMRI during explicit associative-semantic

processing of words and pictures. This task activates a distributed set of brain

areas that has been replicated across a wide range of studies [28–38]. Previously,

we have applied graph analysis to examine the structure of this network [39].

Materials and Methods

Participants

A group of 54 healthy elderly participants (age (mean + std): 65.2 + 5.6 yrs; 31

male) [40] performed an associative-semantic judgement task. Twenty-eight

subjects were scanned on a 3T Philips Intera system equipped with an 8-channel

receive-only head coil (Philips SENSitivity Encoding head coil). Twenty-six

subjects could not undergo the fMRI in the Intera system due to space limitation
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in the scanner lumen in combination with the screen. These subjects were scanned

on a 3T Philips Achieva system equipped with a 32-channel receive-only head coil

(Philips 10 SENSitivity Encoding head coil) which used a screen placed behind the

individual’s head for the projection.

The protocol was approved by the Ethics Committee University Hospitals

Leuven (EudraCT: 2009-014475-45) and written informed consent was obtained

from all subjects in accordance with the Declaration of Helsinki.

Experimental design

Stimuli were projected onto a screen (resolution of 10246768 pixels, refresh rate

60 Hz) using Presentation 14.8 (NeuroBehavioural Systems, Albany, CA, USA).

The design of the fMRI experiment was factorial [28–31]. The first factor, task,

had two levels: associative-semantic versus visuoperceptual judgement. The

second factor, input modality, also had two levels: pictures versus printed words.

During a trial of the associative-semantic condition, a triplet of stimuli was

presented for 5250 ms, one stimulus on top (the sample stimulus) and one in each

lower quadrant (the test stimuli), at 4.6˚ eccentricity, followed by a 1500 ms

interstimulus interval. Subjects had to press a left- or right-hand key depending

on which of the two test stimuli matched the sample stimulus more closely in

meaning. A given triplet was presented either as pictures or as words and this was

counterbalanced across subjects. In the visuoperceptual control condition, a

picture or word stimulus was presented in three different sizes (mean picture size

was 3.7˚ and mean letter size 1.2˚). Subjects had to press a left- or right-hand key

depending on which of the two test stimuli matched the sample stimulus more

closely in size on the screen. An epoch, i.e. a block of trials belonging to the same

condition, consisted of four trials (total duration 27 s). The fifth condition

consisted of a resting baseline condition during which a fixation point was

presented in the centre of the screen. During each fMRI run (5 runs in total), a

series of the 5 epoch types, was replicated 3 times. The order of conditions was

pseudorandom and differed across runs of the same subject. Subjects received a

practice session before entering the scanner. In this session we determined which

size difference (9%, 6%, 3%, or 1%) for the visuoperceptual conditions was

needed for each individual subject to obtain comparable accuracies as for the

associative-semantic conditions.

Preprocessing of the data

Image analysis was performed using Statistical Parametric Mapping (SPM8,

Wellcome Department of Cognitive Neurology, London, UK. http://www.fil.ion.

ucl.ac.uk/spm). Functional images of each subject were realigned to correct for

small head motion during each run. The anatomical T1-weighted image was

coregistered to the average of the realigned functional volumes and non-linearly

normalized to Montreal Neurological Institute (MNI) space using the unified

segmentation approach [41] and the resulting transformation was used to
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spatially normalize the functional images. The voxel size of the images in MNI

space was 36363 mm3. Images were smoothed using a 66666 mm3 Full

Width at Half Maximum (FWHM) Gaussian kernel. We also applied a temporal

high-pass filter (cutoff 270s) and a low-pass filter consisting of the canonical

hemodynamic response function. The epoch-related response was modelled by a

canonical hemodynamic response function convolved with a boxcar.

Network construction

Volumes of interests (VOI) were taken from a previously published study on the

associative-semantic network [39], namely fifty-seven spheres (radius 6 mm)

located at least 20 mm apart. The spheres were centred on group-specific

activation maxima (from the main effect of task) determined from this previous

study. Note that the position of the VOIs was identical as in the previous study,

i.e. the functional information in the current study was not used to position the

VOIs. We have previously shown that the nodes of the associative semantic

network have a low anatomical inter-subject variability [42].

For each subject, we applied each of these VOIs to the current dataset and we

extracted the time series after whitening, filtering and removing effects of no

interest (session specific effects) using code from statistical parametric mapping

software (SPM8; Wellcome Department of Cognitive Neurology, London, UK;

http://www.fil.ion.ucl.ac.uk/spm). Finally, the average time series in the VOI was

calculated as the mean of the time series over all voxels in the VOI. Time series of

different runs were concatenated. It is important to note that we used the whole

time series, i.e. it includes all the different conditions as well as the null condition.

Based on the average time series, partial correlation coefficients between

volumes of interest were calculated. Partial correlation was used to obtain the

degree of association between regions, with the effect of other regions removed

[43, 44]. Among the methods evaluating functional interdependencies between

functional MRI time courses in different regions, partial correlations have a high

sensitivity to network connection detection [44]. An association matrix was

defined in which each element represents the association strength between two

regions. The association strength is defined as the absolute value of the z-score

which is calculated from the partial correlation using the Fisher r-to-z transform

[45]:

z~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n{3{(p{2)

p

2
ln

1zr
1{r

ð1Þ

in which r is the partial correlation, n the number of data points in the time series

and p the number of nodes.

The great majority of network analysis in systems neuroscience relies on the

construction of undirected and unweighted graphs through thresholding of the

association matrix [3, 4]. The thresholded association matrix represents a binary

adjacency matrix with 1 indicating the presence and 0 indicating the absence of an

edge (connection) between two vertices (nodes/regions). A possible approach to
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define the threshold is to fix the network’s edge density (also referred to as wiring

cost), i.e. the number of existing edges divided by the number of possible edges. In

order to investigate changes in the network topology as a function of network

density, we thresholded the association matrix at network densities ranging from

5% to 45%, in steps of 5%. Densities below 5% are considered too sparse and

densities above 50% are less likely to be biological [46, 47]. Furthermore, we also

included a density of 7.8% corresponding to the density of the associative-

semantic network in the previously published study [39].

The binarization of connections has one major drawback: it enhances scale

contrast by underrating (overrating) connections because connections around the

threshold may vary considerably between subjects. To avoid this problem,

weighted graph analysis [11, 48–51], which preserves all the edge information, is

also used. To obtain weights W with 0ƒWƒ1, we applied a nonlinear mapping

of z score to weight:

W~2W(jzj){1 ð2Þ

where W is the cumulative distribution function of the standard normal

distribution.

Graph-theoretical analysis

Local and global graph measures were calculated for the binary network (at

different densities) as well as for the weighted network using the brain

connectivity toolbox version 2013_12_25 (https://sites.google.com/a/brain-

connectivity-toolbox.net/bct/Home; [4]). We calculated the following local graph

measures for node i: node degree ki, average path length Li, local clustering

coefficient Ci, local efficiency Eloc,i, efficiency Ei and betweenness centrality bi.

Global measures included characteristic path length l, mean clustering coefficient

C, mean local efficiency Eloc, global efficiency E and mean betweenness centrality

b. For the definition of these network measures, we refer to [4]. It should be noted

that isolated nodes can be present when the density of the network is very low. In

that case, these nodes were not taking into account when calculating the network

measures.

The network itself was either defined at the individual level (for every subject

separately) or at the group level (after averaging the association matrices across

the subjects belonging to that group).

Reproducibility at the individual level

To look at the intra-subject reproducibility, two groups were constructed by

evenly splitting each subject’s time series into two parts by randomly assigning

four of the five runs to one of the two even parts. This corresponds to the

situation in which each subject is measured twice under the same conditions. In

this way we constructed two groups of paired subjects. We refer to this situation

as the split-half case. A partial correlation based network and corresponding graph
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measures were obtained for each subject in each group across a range of densities

or using the weights of the network.

The intraclass correlation coefficient (ICC) was used to analyse reproducibility

of the network [52]. More specifically, values were merged into a 2654 matrix

(number of measurements x subjects). The total variance was split into the

between-subject (BMS) and the residual (EMS) variance. ICC values were

calculated according to the equation [53]:

ICC(3,1)~
BMS{EMS
BMSzEMS

: ð3Þ

By randomly switching (100 random realizations) time series parts between the

two measurements, we can calculate the mean and variance of the ICC for each

graph measure. ICC w0:4 is usually considered as a cut-off for a fairly reliable

measure [54].

We also calculated the test-retest value between the two measurements of the

same subject and averaged this over all subjects to obtain the average test-retest

value. The test-retest T RT was calculated as:

T RT~100
m2{m1

m1zm2
2

�����

�����
, ð4Þ

where :j j denotes the absolute value and m1 and m2 are the values of the graph

measure under investigation obtained in the first and second measurement

respectively.

Reproducibility for group-based graph measures

Averaging the association matrices across subjects summarizes the overall

characteristics of the group [55, 56]. To study the reproducibility for group-based

graph measures, we looked at the test-retest T RT calculated as equation 4 except

that m1 and m2 represent the measures obtained for the first and second group.

Mean and variance of each graph measure were calculated based upon the 100

random realizations of switching time series parts.

However, a more challenging situation occurs when we want to compare two

independent groups which are scanned on MR scanners with different field

strength and which differ slightly in the fMRI paradigm. This is the case when we

want to compare the results of the current group with the results of our previous

study [39]. In that study we used the same paradigm (except that we did not

include a null condition in our measurement). Furthermore, the data of this

group (n~33) were acquired on a 1.5 T Siemens Sonata. Age (67.2 + 8.5 years)

and gender (19 M/14 F) were similar to the current study. We refer in the

remaining of the paper to the comparison of these two studies as the between-

independent groups case. The test-retest values were calculated according to

equation 4.
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Hubs and community structure

We also assessed the reproducibility of the community structure and the

identification of hubs for binary and weighted networks at the individual and the

group level.

The identification of hubs was based on a hub score [2, 11, 14, 39, 57–59], which

is the sum of dummy values for four criteria. We gave a score of 1 or 0 depending

on whether or not the node belongs to the top 20% of nodes with 1) the highest

node degree, 2) the highest betweenness centrality, 3) the lowest local cluster

coefficient (limited to nodes with a degree w2), and 4) the lowest average path

length. Nodes with a hub score §2 were considered hubs.

We evaluated the consistency of hubs by measuring the co-occurrence of hubs

(HC) across networks. If HA is a list of hubs in network A and HB in network B,

the co-occurrence is calculated as

HC~
2 HA\HBj j
HAj jz HBj j

ð5Þ

where :j j denotes the cardinality of the set. A value of 1 corresponds to a perfect

agreement of hubs while 0 reflects no agreement at all.

To determine the community structure of the network, we used the algorithm

of Newman [60] as implemented in the Brain Connectivity Toolbox. The

algorithm starts from a random order of the nodes which lead to a slightly

different community structure each time the algorithm is applied. To generate a

consensus assignment of nodes to communities, we used a two step procedure

[61]. In the first step, we computed a co-assignment matrix represented as an

N � N matrix, where cell (i,j) was equal to 1 if node i and node j were assigned to

the same community. During the second step, a probabilistic co-assignment

matrix is then obtained by averaging 100 realizations of co-assignment matrices.

The consistency of the community structure of the network was assessed by

probabilistic scaled inclusivity (pSI), a metric quantifying the consistency of

communities across multiple networks and which is an extension of the scaled

inclusivity SI [62, 63]. SI is calculated by measuring the overlap of modules across

multiple networks while penalizing for disjunction of modules. For example, a

node i is part of module Ai in network A and module Bi in network B. Then SI for

node i, denoted as SIi, is calculated as

SIi~
SAi\SBi

�� ��

SAi

�� ��
SAi\SBi

�� ��

SBi

�� �� ð6Þ

where SAi and SBi denote sets of nodes in modules Ai and Bi and :j j denotes the

cardinality of a set. If the two modules Ai and Bi consist of an identical set of

nodes, then SIi~1. The SI value between two networks is a value between 0 and 1;

if SI~1 at a particular node, it means that the node is in the same module with

exactly the same set of nodes in the two networks. A problem with this way of

calculating the SI value is that it requires a final assignment of nodes to a

community. This can be done based upon the probabilistic co-assignment matrix

Reproducibility and Robustness of Graph Measures
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but may lead to different results depending on the algorithm to assign the final

community to each node. An alternative is to use the probabilistic co-assignment

matrix directly to calculate a probabilistic SI value. This is done as follows:

pSI(i)~
(
PN

j~1 PA(i,j):PB(i,j))2

PN
j~1 PA(i,j):

PN
j~1 PB(i,j)

ð7Þ

in which PA(i,j) and PB(i,j) are the probability co-assignment between nodes i and

j in network A and network B.

To further characterize the consistent parts of the communities, we averaged

the co-assignment matrices for the two groups in the between-independent groups

case or across every possible pair in the split-half case.

There’s no established rule to define which HC and pSI are sufficiently high to

ensure consistency between networks but we can determine if it is significantly

different from the value obtained under random conditions by comparing it to

the distribution of values obtained from null networks, i.e. networks with the

same number of nodes and connections which were generated by randomly (1000

realizations) rewiring the observed network [64]. The weighted null network is

obtained by randomly rewiring connections with the same distribution of weights.

Robustness of the data

Group size effect

We applied a bootstrapping procedure (100 realizations) to calculate graph

measures as a function of group size. More specifically, we created random

subsamples from our 54 subjects, each time creating a subgroup with a certain

number of subjects, and we repeated this for subgroup sizes ranging from 10 to

53. Results were calculated as the relative change (in %) taking the values of the

complete group of 54 subjects as the reference.

Network robustness

When we identify the nodes of the network, we may not have captured all nodes.

The question then arises, in how far is this affecting the quantification of the

network. To address this question, we assume that the 57 nodes represent all

nodes of the underlying network and we removed nodes from this network to

investigate the impact when nodes were not captured. The procedure is similar to

network robustness analysis against random failures and targeted attacks

[5, 17, 65] although the interpretation is clearly different. Since it is more likely to

miss the least significant nodes, we conducted our analysis by removing nodes

based on their significance in the main effect of task in the fMRI study starting by

removing the least significant ones. The degree of tolerance will be expressed as

the relative change of the graph measures compared to values of the network with

all 57 nodes.

Reproducibility and Robustness of Graph Measures
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Statistics

To evaluate if ICC values were significantly higher than 0.4, we performed a one-

sample t-test. The same test was used to evaluate if the test-retest variability was

v 5% or v 10%. The comparison between subject-specific graph measures

obtained in two independent groups was assessed by a two-sample t-test. To test

the relation between test-retest variability of global graph measures and density,

we first log-transformed the test-retest values and performed a linear regression.

The statistical threshold to reach significance was set to pcorv0:05. We

corrected for the number of densities under investigation in case of global graph

measures and additionally for the number of nodes in case of local graph

measures.

Results

In table 1 a summary of the main findings is given.

Reproducibility at the individual level (subject-specific networks)

Averaged global ICC across all randomizations are shown in Fig. 1 for binary

(over a range of densities) and weighted networks. For binary networks, global

efficiency E, characteristic path length l and mean betweenness centrality b show

significant (pcorv10{4) reproducibility (ICCw0:4) when the network density is

high (§40%). This is not the case for the mean cluster coefficient and the mean

local efficiency. Weighted global graph measures show significant (pcorv10{8)

reproducibility (ICCw0:4) for all the measures investigated (Fig. 1).

As can be expected, reproducibility at the nodal level exhibits heterogeneity

across graph measures and nodes (see S1 Table). Efficiency Ei and average path

length Li are the most reproducible nodal graph measures (although only in 2

nodes a significant (pcorv0:05) ICC value w 0.4 was found) in contrast to the

betweenness centrality bi which is the least reproducible one. In case of weighted

local graph measures, we observed the folowing range of averaged (across

subjects) ICC values: 0:03ƒEiƒ0:45; 0:01ƒLiƒ0:44; 0:03ƒbiƒ0:32;

3|10{4
ƒEloc,iƒ0:36 and 0:02ƒCiƒ0:38.

The intra subject split-half test-retest values (TRT) for global graph measures

are shown for binary and weighted networks (Fig. 2). The test-retest values of

global graph measures decreases with the increase of density in case of binary

networks (for all global graph measures under investigation pcorv10{10). For

weighted networks, the test-retest values were excellent (v 5%): E:1.12%

(pcorv10{10);l: 1.11% (pcorv10{10); b: 4.09% (pcorv10{4); Eloc: 1.93%

(pcorv10{10) and C: 2.40% (pcorv10{10).

In table 2, we show the comparison of the global graph measures derived from

subject-specific weighted networks for the two independent groups. The values in

the current group are significantly different from those obtained in our previous

study [39] and the test-retest values of the mean of the global graph measures

Reproducibility and Robustness of Graph Measures
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derived from subject-specific weighted networks for two independent groups

varied between 7 and 17% (table 2).

Reproducibility for group-based graph measures

Test-retest variability for the different global graph measures are shown for the

split-half case (Fig. 3) and the between-independent groups case (Fig. 4) for binary

and weighted networks.

In the split-half case (Fig. 3), all graph measures show a significantly

(pcorv10{5) small test-retest variability (v10%) for binary (with densities

§25%) and weighted networks. The global graph measures showing the smallest

overall test-retest variability are the global efficiency and the characteristic path

length. For binary networks, test-retest variability of global graph measures

decreases as the network becomes more dense (for all global graph measures

under investigation: pcorv10{10). When looking at the local graph measures

(table 3), we observe that the efficiency and average path length in the majority of

Table 1. Summary of the main findings.

Subject-specific networks

Binary networks

N Global efficiency, characteristic path length and mean betweenness centrality are reproducible only when the network density is high.

N The intra subject split-half test-retest values of global graph measures decreases with the increase of density.

Weighted networks

N Global graph measures are reproducible for all the measures investigated.

N The intra subject split-half test-retest values of global graph measures were very low.

N The test-retest values of the mean of the global graph measures derived from subject-specific weighted networks for two independent groups varied
between 7 and 17%.

N Communities are consistent for both intra-subject (in the split-half case) and inter-subject comparisons.

N The average global graph measures are not critically depending on the group size.

N The average global graph measures show robustness against missing nodes.

Group-based networks

Binary and weighted networks

N In the split-half case, all graph measures show test-retest variability v10%

N Hubs show a significant high consistency in the split-half case compared to the values obtained from random null networks.

N Communities show consistency for both the split-half case and when comparing independent groups

N A sufficiently large group size is required to obtain reliable results.

N Global efficiency and characteristic path length are more robust for the group size.

N Global efficiency, characteristic path length, mean local efficiency and clustering coefficient are more robust against missing nodes compared to the mean
betweenness centrality

Binary networks

N Test-retest variability of global graph measures decreases as the network becomes more dense.

Weighted networks

N The global efficiency and the characteristic path length have the smallest overall test-retest variability.

doi:10.1371/journal.pone.0115215.t001
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nodes show a significantly (pcorv 0.05) small test-retest variability (v10%) for

both binary (with densities §10%) and weighted networks. On the other hand,

betweenness centrality has the largest test-retest variability.

In the between-independent groups situation, there was a trend that the test-

retest variability of global graph measures in case of binary networks (Fig. 4)

decreases as the network becomes more dense (for all global graph measures

under investigation: uncorrected pv0:05). Furthermore, the test-retest variability

for graph measures of weighted networks in this situation are mostly above 10%.

When looking at the local graph measures (table 4), we observe that the efficiency

and average path length in the majority of nodes show small test-retest variability

(v10%) for binary networks with densities §15%.

Fig. 1. Reproducibility at the individual level. ICC for the global efficiency (E), the characteristic path length (l), the mean betweenness centrality (b), the
mean local efficiency (Eloc) and the mean clustering coefficient (C). The results are shown for binary (over a range of densities) and weighted (w) networks.
Error bars denote the standard deviation. Values significantly (pcorv0:05) higher than 0:4 are indicated with *.

doi:10.1371/journal.pone.0115215.g001
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Hubs and communities

We analysed the hubs and community structure for binary and weighted networks

at the individual and group-averaged level.

At the group-averaged level, table 5 shows the co-occurrence of hubs HC in the

split-half case and in the comparison between independent groups. For binary and

weighted networks, hubs show a significant (pcorv0:05) high consistency in the

split-half case compared to the values obtained from random null networks.

However, when comparing two independent groups the consistency of the hubs is

clearly reduced.

The results for the consistency of the community structure are given in table 6

as the mean pSI for both binary and weighted networks. Communities show

consistency for both the split-half case and when comparing independent groups,

i.e. the pSI values are significantly different from those obtained from random

null networks. When we look at groups of nodes which are consistently assigned

Fig. 2. Intra-subject split-half test-retest variability (%). The results are shown for binary (over a range of densities) and weighted (w) networks. Error bars
refer to the standard deviation across all randomization and subjects. E: global efficiency; l: the characteristic path length; b: the mean betweenness
centrality; Eloc: the mean local efficiency; C: the mean clustering coefficient. Test-retest variabilities significantly (pcorv0:05) lower than 10% are indicated with
*.

doi:10.1371/journal.pone.0115215.g002
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(average value in the co-assignment matrix w 0.95) to the same module between

the two independent groups at the density 7:8%, we find the following groups: 1)

nodes in the dorsomedial prefrontal gyrus, the left superior frontal gyrus, the left

supplementary motor area, the left anterior and the right cingulate gyrus; 2) nodes

in the left inferior frontal gyrus pars orbitalis, the left posterior middle temporal

gyrus, the left anterior and posterior superior temporal sulcus and the left

supramarginal gyrus; 3) nodes in the left lingual gyrus, the left intraparietal sulcus

and the left middle occipital gyrus; 4) nodes in the left superior frontal gyrus and

the left medial frontal; 5) nodes in the right caudate, the left anterior thalamus and

posterior thalamus; 6) nodes in the right inferior and middle occipital gyrus.

At the individual level for weigthed networks in the split-half case, the mean

intra-subject co-occurrence of hubs HC across all 54 subjects and 100

randomization is 0:32 (puncorw0:1) while the mean inter-subject HC across all

pairs of subjects is 0:31 (puncorw0:1). The mean intra-subject consistency of the

community structure pSI across all 54 subjects and 100 randomization is 0:19
(pcorv0:05) while the mean inter-subject pSI across all pairs of subjects is 0:21
(pcorv0:05).

At the individual level for weigthed networks in the comparison of two

independent groups, the mean inter-subject HC across all pairs of subjects was

0:31 for the current study and this was not significantly different form 0:32
obtained from the data of the previous study [39]. However, the mean inter-

subject pSI across all pairs of subjects was significantly (pv10{10) different: 0:21
for the current study versus 0:18 for the previous study [39].

Group size effect

For group based networks, the relative change of global graph measures as a

function of group size are shown in Fig. 5 for networks with a density of 5%, 20%,

45% as well as for the weighted network. Overall, the relative difference in graph

measures when taken the complete group (54 subjects) as the reference, decreases

when the number of participants and/or the density increase. Furthermore, some

binary graph measures are more robust for the group size: the absolute value of

the relative error of global efficiency and characteristic path length are

Table 2. Comparison of global graph measures derived from subject-specific weighted networks between two independent groups.

Current study mean + std Previous study [39] mean + std TRT of the mean %

mean clustering coefficient 0.588 + 0.020 0.520 + 0.022 12

characteristic path length 1.444 + 0.028 1.544 + 0.034 7

global efficiency 0.739 + 0.014 0.690 + 0.016 7

mean local efficiency 0.629 + 0.018 0.566 + 0.020 11

mean betweenness centrality 0.0057 + 0.0003 0.0067 + 0.0004 17

TRT: test-retest variability.

doi:10.1371/journal.pone.0115215.t002
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significantly (pcorv0:05) smaller than 10% even for smaller group sizes (§10
subjects) for all densities §7:8%. The mean betweenness centrality, the mean

local efficiency and the mean clustering coefficient show a similar behaviour but

for minimum group sizes of respectively 17, 38 and 44 subjects for a binary

network at a density of §7:8%. At a density of 5%, the minimum group size to

obtain relative errors significantly (pcorv0:05) smaller than 10% in absolute value,

could only be determined for E, Eloc, C and l and this size was respectively 42, 44,

44 and 49 subjects. For the weighted network, the minimum group size is 13, 14,

19, 20 and 23 for E, l, b, Eloc and C respectively.

At the individual level for weigthed networks, all the average global graph

measures showed a small relative error (v5% in absolute value, pcorv0:05) as a

result of the smaller group size even for groups as small as 10 subjects (Fig. 6).

Fig. 3. Test-retest variability (%) for the split-half case. The results are shown for binary (over a range of densities) and weighted (w) networks. Error bars
refer to the standard deviation. E: global efficiency; l: the characteristic path length; b: the mean betweenness centrality; Eloc: the mean local efficiency; C: the
mean clustering coefficient. Test-retest variabilities significantly (pcorv0:05) lower than 10% are indicated with *.

doi:10.1371/journal.pone.0115215.g003
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Network robustness

For group based networks, the robustness of graph measures in case we missed the

least significant nodes is shown in Fig. 7 for binary (with an initial density of 5%,

20%, 45%) and weighted networks. The robustness depends on the network

measure under investigation. Global efficiency, characteristic path length, mean

local efficiency and clustering coefficient are more robust compared to the mean

betweenness centrality.

At the individual level for weigthed networks, the robustness to missing nodes

remains within 10% error (pcorv0:05) up to removal of the 8 least significant

nodes (Fig. 8).

Discussion

In this work, reproducibility and robustness of the functional connectivity

network associated with an associative-semantic task was examined by studying

local and global graph measures, hubs and the community structure. The nodes of

Fig. 4. Test-retest variability (%) between independent groups for binary (over a range of densities) and weighted (w) networks. E: global efficiency;
l: the characteristic path length; b: the mean betweenness centrality; Eloc: the mean local efficiency; C: the mean clustering coefficient.

doi:10.1371/journal.pone.0115215.g004
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the associative-semantic network were taken from a previous study [39]. The

paradigm that we used gives a highly consistent activation pattern using univariate

analyses and this is replicated in our and other centers [28–38]. Furthermore, we

have shown previously that the nodes have a low anatomical inter-subject

variability [42]. This consistency and reproducibility at the nodal level is essential

when looking at the network measures.

Table 3. The split-half case: the test-retest variability of local graph measures across densities.

% of nodes with a significant (pcorv 0.05) test-retest variability v10%

density% 5 7.8 10 15 20 25 30 35 40 45 w

node degree 28 9 7 0 0 0 0 2 0 0 98

cluster coefficient 9 0 0 0 0 0 4 12 37 75 98

average path length 0 53 91 95 98 100 100 100 100 100 100

efficiency 23 65 89 95 96 100 100 100 100 100 100

local efficiency 7 2 2 2 21 46 79 95 100 100 98

betweenness centrality 0 0 0 0 0 0 0 0 0 0 0

median test-retest variability (%)

density% 5 7.8 10 15 20 25 30 35 40 45 w

node degree 15 18 18 16 16 15 14 13 12 11 5

cluster coefficient 56 41 31 24 20 16 13 10 9 7 6

average path length 15 8 6 5 4 4 3 3 3 3 3

efficiency 11 7 6 5 4 4 3 3 3 3 3

local efficiency 58 46 34 23 14 8 5 4 3 2 6

betweenness centrality 90 69 58 52 49 44 40 37 33 29 42

doi:10.1371/journal.pone.0115215.t003

Table 4. Between independent groups: the test-retest variability of local graph measures across densities.

% of nodes with a test-retest variability v10%

density% 5 7.8 10 15 20 25 30 35 40 45 w

node degree 26 18 25 19 16 16 23 21 26 35 25

cluster coefficient 7 7 12 14 19 19 32 53 53 75 26

average path length 23 47 46 60 65 72 79 84 81 75 30

efficiency 30 44 53 60 65 68 72 77 72 75 35

local efficiency 4 7 16 26 40 53 70 88 98 100 30

betweenness centrality 7 5 2 4 7 7 11 12 16 16 14

median test-retest variability (%)

density% 5 7.8 10 15 20 25 30 35 40 45 w

node degree 40 40 29 25 27 29 24 20 18 16 18

cluster coefficient 129 73 57 26 26 20 13 9 9 6 19

average path length 18 11 11 8 7 7 5 4 4 5 16

efficiency 17 11 9 8 8 6 6 5 5 5 15

local efficiency 133 79 53 22 17 8 5 3 3 2 18

betweenness centrality 116 118 105 91 60 62 58 52 44 37 67

doi:10.1371/journal.pone.0115215.t004
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Choice of connectivity measure

A network is dependent on the choice of the measure of connectivity between

different brain regions. Many groups investigating functional networks in the

human brain use the Pearson correlation coefficient [8, 50, 66]. Other similarity

measures have also been used, including the correlation between wavelet

components [5, 10, 67] and mutual information [44]. However, constructing a

network by correlation or mutual information does not necessarily imply that the

functional connection between two nodes is direct. The distinction between direct

and indirect functional relationships between areas is very important in terms of

correctly estimating the network. Hence, partial correlation became a hot topic in

recent years (e.g.[43, 68, 69]). Partial correlation provides a convenient summary

of conditional independence and turns out to be an effective way to model the

connectivity [44]. In our work, partial correlations are used to remove mutual

dependencies on common influences from other brain areas. By conditioning the

dependencies between two nodes on other nodes, the functional connectivity (i.e.

partial correlation) reflects a quantity that is more closely related to direct

interaction, taking the analysis of functional connectivity closer to the

characterization of functional interactions in terms of effective connectivity. It is

data-driven in the sense that, unlike existing methods such as structural equation

modelling (SEM) and dynamic causal modelling (DCM), it does not require any

prior information regarding functional interactions.

Table 5. Co-occurrence of hubs HC .

Split-half case

density% 5 7.8 10 15 20 25 30 35 40 45 w

Hc 0.62 0.70 0.78 0.75 0.73 0.70 0.68 0.66 0.64 0.62 0.79

Between-independent groups

density% 5 7.8 10 15 20 25 30 35 40 45 w

Hc 0.43 0.32 0.52 0.31 0.31 0.30 0.41 0.30 0.34 0.40 0.43

Bold: Values which are significantly (pcorv0:05) different from the value obtained from null networks (see text). Italic: puncorv0:05.

doi:10.1371/journal.pone.0115215.t005

Table 6. Mean pSI.

Split-half case

density% 5 7.8 10 15 20 25 30 35 40 45 w

pSI 0.31 0.35 0.40 0.42 0.42 0.47 0.50 0.56 0.54 0.49 0.50

Between-independent groups

density% 5 7.8 10 15 20 25 30 35 40 45 w

pSI 0.14 0.13 0.15 0.18 0.14 0.29 0.23 0.35 0.33 0.37 0.44

Bold: Values which are significantly (pcorv0:05) different from the value obtained from null networks (see text). Italic: puncorv0:05.

doi:10.1371/journal.pone.0115215.t006

Reproducibility and Robustness of Graph Measures

PLOS ONE | DOI:10.1371/journal.pone.0115215 December 12, 2014 17 / 28



Split-half variability versus comparison of two independent

groups

In this work, we have studied two situations which reflect two complete different

situations when looking at the variability of the measurement. The first situation

is the one in which we have split the timeseries in two even parts to assess the

split-half variability. This corresponds to a situation in which subjects are

measured twice under almost similar conditions (i.e. exactly the same scanner, the

same sequence, the same paradigm) within one session and assuming no time

effects. The limitation of this approach is that we have violated the temporal order

of the runs and that the number of runs in the newly composed parts is small. The

other situation corresponds to the measurement of two independent groups on

different scanners using a slightly different paradigm. As can be expected, the test-

retest variability in the latter case is larger than the split-half variability in case of

weighted networks and for most densities. The test-retest values of the mean of

Fig. 5. Group size effect for group based networks. The effect of group size for networks at a density of 5% (top row), 20% (second row), 45% (third row)
and the weighted network (bottom row). A bootstrapping procedure was used (100 realizations) to randomly group the subjects with increasing group size.
For graph measures the relative change (%) to the reference value (which is obtained when taking the complete group) are shown. Full lines denote the
mean (bold) and+ standard deviation of the metric. Dotted lines represent a relative change of+ 10%. E: global efficiency; l: the characteristic path length;
b: the mean betweenness centrality; Eloc: the mean local efficiency and C: the mean clustering coefficient.

doi:10.1371/journal.pone.0115215.g005
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the global graph measures derived from subject-specific weighted networks for

two independent groups varied between 7 and 17%. However, the values were

significantly different between both groups most likely due to the inclusion of a

null condition in the current study.

Reproducibility

For binary group based networks, we observed that the reproducibility improves

when the density of the network increases. Networks with high density, weighted

group based networks and weigthed individual networks show all a very good

reprodubility for the global graph measures. Only when we compared two

independent groups, the weighted group based network showed a weaker

reproducibility. Networks with low density (e.g. 5%), showed weak reproduci-

bility and this was depending on the graph measure itself.

Fig. 6. Group size effect for groups of individual networks. The average across subjects of the weighted graph measures determined from the
individual’s network is shown as function of group size. A bootstrapping procedure was used (100 realizations) to randomly group the subjects with
increasing group size. For graph measures the relative change (%) to the reference value (which is obtained by averaging across all subjects) are shown.
Full lines denote the mean (bold) + standard deviation of the metric. Dotted lines represent a relative change of + 10%. E: global efficiency; l: the
characteristic path length; b: the mean betweenness centrality; Eloc: the mean local efficiency and C: the mean clustering coefficient.

doi:10.1371/journal.pone.0115215.g006
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Local graph measures showed weak reproducibility in almost all situations for

most nodes and therefore quantification of local graph properties needs to be

interpreted with care.

Hubs and community structure

A node playing a pivotal role in the flow of information is called a hub but the

operational definition of a hub differs between studies. In the current study, we

have taken a similar approach as [11]. We observe a high co-occurrence in the

split-half case but a low co-occurrence for the comparison between independent

groups. We also observe that the co-occurrence is relatively stable over the

Fig. 7. Robustness to missing nodes for networks with an initial density of 5% (top row), 20% (second row), 45% (third row) and the weighted
network (bottom row). The relative change (%) to the value obtained when taking the intact network as the reference is shown. The nodes were removed
based on their significance in the main effect of task (starting with the least significant ones). Dotted lines indicate the + 10% interval. Relative changes
significantly (pcorv0:05) lower than 10% in absolute value are indicated with *.

doi:10.1371/journal.pone.0115215.g007
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different densities and this is also the case for the weighted graph measures. The

average inter-subject and intra-subject co-occurrence of hubs in case of individual

weighted networks is somewhat lower and this is probably due to the higher

variability which one can expect in individual networks compared to group based

networks.

The community structure represents how nodes are separated into interacting

(integrated) but distinct (segregated) functional modules. A major challenge in

examining network module organization is the reproducibility of modules and

how to measure this reproducibility. Several studies compared modularity Q and

number of communities to achieve this goal [49, 50, 70]. However, the value of Q

only gives a sense of the network strength in dividing itself into modules. One

could easily have two networks which may be considerably different, yet sharing

the same number of communities and similar Q values. A more appropriate

measure is to use scaled inclusivity which is a measure for the overlap of modules

Fig. 8. Robustness to missing nodes for individual weighted networks. The relative change (%) to the value obtained when taking the intact network as
the reference is shown. The nodes were removed based on their significance in the main effect of task (starting with the least significant ones). Full lines
denote the mean (bold) + standard deviation of the metric across all subjects.

doi:10.1371/journal.pone.0115215.g008
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across networks while penalizing for disjunction of modules [62, 63]. The

calculation requires a final assignment of nodes to a community. In this work, we

have extended this formula so that it is now directly based on the probabilistic co-

assignment matrix without the need to assign each node to a community. In case

the co-assignment matrix is binarized (which is similar to assigning each node to a

community) it reduces to the original formula. We found that the reproducibility

of the community structure of weighted group based networks was similar or even

better compared to the values for dense binarized networks. When looking at the

average intra- and intersubject probabilistic scaled inclusivity, we observed smaller

values most likely again due to the higher variability which you can expect in

individual networks compared to group based networks.

Group size effect

An important issue relates to the number of subjects required to obtain robust

graph measures. In a recent study [71], it was emphasized that a small sample size

undermines the reproducibility of neuroscience. We found that in low density

networks, a large number of subjects is required to obtain robust values and this

depends on the graph measure under investigation (global efficiency and

characteristic path being the most stable measures). The use of weighted graph

measures leads to robust values. This is also true for the averaged graph measures

in case of individual weighted networks.

Robustness against missing nodes

If we have not captured all nodes of the network, the question is in how far graph

measures will be influenced. Indeed, some nodes are only weakly activitated in an

fMRI experiment and the choice of selection of inclusion of nodes can be based on

a statistical criterion. We found that all graph measures, except the mean

betweenness centrality, are robust even if we didn’t include several of these weaker

nodes.

Binary versus weighted networks

The popularity of binary network analysis may arise from the fact that in most

cases it is simpler to characterize[4]. In our previous study [39], we have binarized

the network based on a statistical criterion (significant association values). If we

would have applied the same criterion in our current study, we would have found

much more significant connections (and therefore a higher density) because of the

larger cohort size, the inclusion of a null condition and the use of an MRI scanner

with a higher magnetic field. Networks with different densities can have different

properties [51]. To overcome this problem, we used an equi-density thresholding

[67, 72] and we have studied the networks at different densities like most other

studies [13, 50, 66, 67]. Another problem with the use of a threshold to binarize
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the network is that a small change in the association (connectivity) strength can

lead to a change in connectivity (just below versus just above a threshold).

To overcome these problems, one can define a weighted network. The question

is then how to define these weights. Some groups take the connection with the

highest connectivity value and set this to one and scale the remaining connections

accordingly [11]. This approach is straightforward and simple but it is also more

sensitive to noise. We propose an approach which is based on the fact that the

partial correlations were transformed to a Z-score using a Fisher r-to-Z transform

and by applying a non-linear transform based on the cumulative distribution of

the standard normal distribution. This approach is less sensitive to noise (or to

outliers) in connection strength and it leads in a natural way to positive weights

between 0 and 1.

Subject specific versus group based networks

When studying brain networks in a group of subjects we have two possible

approaches: 1) define the network for each subject, calculate the variables of

interest (e.g. network measures) and use these values for further analysis or 2)

define the network based upon the group itself by e.g. averaging the association

matrices across the subjects of the group and by calculating the network (and the

corresponding measures) based upon this averaged association matrix. The first

approach gives information about the individual variability and we can relate

directly graph measures to other subject specific information. This is important

especially in the light of comparing and quantifying networks in normals and

patients. However, the disadvantage is that the results are more sensitive to noise

in the measurements. On the other hand, the notion that averaging connection

strengths across subjects summarizes the overall characteristics of the group is

widely accepted [55, 56].

Based on the ICC values and on the intra-subject test-retest results, weighted

individual networks can be realiably determined. The fact that the identification of

hubs and communities is more variable compared to the group based networks is

less important since it may also be a result of subject specific behaviour and in that

sense it may capture the underlying biological variability.

Conclusions

We have studied the reproducibility and robustness of various graph measures in

group based and in individual binary and weighted networks derived from an

fMRI experiment using an associative-semantic paradigm. We have shown that

global graph measures exhibit a good reproducibility and robustness but the

results depend on the graph measure itself and on the density in case of binary

networks. Group based binary networks should be derived from groups of

sufficient size and the lower the density the more subjects are required to obtain

robust values. Local graph measures are very variable in terms of reproducibility
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and should be interpreted with care. For weighted networks, we found good

reproducibility when using subject specific networks and this will allow us to

relate network properties to individual subject information.

Supporting Information

S1 Figure. Graph of the associative-semantic network. The connection strength is

determined by the partial correlation. Only connections which are significant at

uncorrected pv0.05 are shown. The density is 42.6%.

doi:10.1371/journal.pone.0115215.s001 (JPG)

S2 Figure. Graph of the associative-semantic network. The connection strength is

determined by the partial correlation. Only connections which are significant at

corrected (for the number of possible connections) pv0.05 are shown. The

density is 14%.

doi:10.1371/journal.pone.0115215.s002 (JPG)

S3 Figure. Correlation between the average contrast values (based on the beta

values and the main contrast of task) of any pair of nodes and the strength of the

functional connectivity (expressed as the Z-values obtained from the partial

correlations after a Fisher r-to-z transform) between these nodes to investigate if

there is a relation between GLM results and the likelihood of having an edge.

Values are plotted for every connection and every subject. The correlation is weak

(r50.027) but very significant (pv10{10).

doi:10.1371/journal.pone.0115215.s003 (JPG)

S1 Table. ICC values for each node for different graph measures at different

densities and for the weighted network.

doi:10.1371/journal.pone.0115215.s004 (XLSX)
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