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Abstract

Background: Our understanding of the molecular mechanisms underlying Alzheimer’s disease (AD) remains incomplete.
Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and
development of AD. In the past years, numerous genes implicated in this disease have been identified via
genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the
roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis
focusing on the biological function and interactions of these genes in the context of AD will therefore
provide valuable insights to understand the molecular features of the disease.

Method: In this study, we collected genes potentially associated with AD by screening publications on genetic association
studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and
biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk
analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome
and an AD-specific network was inferred using the Steiner minimal tree algorithm.

Results:We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis
indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism,
cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then
revealed that the significantly enriched pathways could be grouped into three interlinked modules—neuronal
and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-
related module—indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an
AD-specific protein network was inferred and novel genes potentially associated with AD were identified.

Conclusion: By means of network and pathway-based methodology, we explored the pathogenetic mechanism
underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the
molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate
the pathological molecular network and genes relevant to other complex diseases or phenotypes.
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Background
Alzheimer’s disease (AD) is the most prevalent neurode-
generative disorder and accounts for the majority of
people diagnosed with dementia [1]. As a complex and
chronic neurological disease, AD affects about 6% of
people aged 65 years and older [2], and is responsible for
about 480,000 deaths per year around the world [3]. In
addition to its affect on the life quality of those suffering
from the disorder and their families, AD also causes a se-
vere burden on society. In the USA alone, the health-care
costs related to AD are about $172 billion per year [4].
AD can be diagnosed by symptoms such as short-term

memory loss, mood swings, learning impairments, and
disruptions in daily activities [5]. However, as an age-
related and progressive disease, some pathological fea-
tures of AD (e.g., amyloid deposition, accumulation of
neurofibrillary tangles, as well as function and structure
changes of brain regions involved in memory) often
appear many years prior to clinical manifestations [6, 7].
These pathological changes eventually lead to the
damage and death of specific neurons, resulting in the
emergence of clinical symptoms.
The cause of AD is still poorly understood although

much effort has been dedicated to exploring the patho-
logical and molecular mechanisms of AD via various
approaches—e.g., animal models, gene expression
profiling, genome-wide association studies (GWAS),
neuroimaging techniques, or a systems biology frame-
work [2, 8–11]. It is agreed that AD develops as a result
of the combination of multiple factors, including genetic
factors, a history of head injuries, depression, or hyper-
tension. Among these factors, it is estimated that about
70% of the risk for AD is attributable to genetics [1, 12].
Established genetic causes of AD include the dominant
mutations of genes encoding amyloid precursor protein
(APP), presenilin 1 (PSEN1), and presenilin 1 (PSEN2).
However, these genes are only responsible for the patho-
genesis of AD in about 5% of patients with clinical
symptoms appearing in midlife. On the other hand,
genetic analyses have suggested that, in complex disor-
ders like AD, individual differences can be caused by
many genes and their variants. Genes with various
biological functions may act in coordination to increase
the risk of AD, with a moderate or small effect exerted
by each gene [1]. Consistent with this view, more and
more genes—e.g., apolipoprotein E (APOE), glycogen
synthase kinase 3 beta (GSK3B), dual specificity tyrosine-
phosphorylation-regulated kinase 1A (DYRK1A), and
Tau—have been found to be potentially associated with
AD [1, 13]. For these genes, although a few plausible
candidate genes have been partially replicated, some are
considered problematic. This is especially true as high-
throughput methods like GWAS are being more widely
applied to genetic studies of AD. Under such

circumstances, a comprehensive analysis of potential
causal genes of AD within a pathway and/or a network
framework may not only provide us with important
insights beyond the conventional single-gene analyses, but
also offer consolidated validation for the individual candi-
date gene.
In the current study, we implemented a comprehen-

sive curation of AD-related genes from genetic associ-
ation studies. We then conducted biological enrichment
analyses to detect the significant functional themes
within these genetic factors and analyzed the interac-
tions among the enriched biochemical pathways by
pathway crosstalk analysis. Furthermore, an AD-specific
protein network was inferred and evaluated with the
human protein–protein interaction network as the
background. This study should offer valuable hints for
understanding the molecular mechanisms of AD from a
perspective of systems biology.

Methods
Identification of AD-related genes
The genes genetically associated with AD were collected
by retrieving the human genetic association studies depos-
ited in PubMed (http://www.ncbi.nlm.nih.gov/pubmed/).
We retrieved publications associated with AD with the
searching term ‘(Alzheimer’s Disease [MeSH]) AND (Poly-
morphism [MeSH] OR Genotype [MeSH] OR Alleles
[MeSH]) NOT (Neoplasms [MeSH])’. By July 7, 2015, a
total of 5298 reports were retrieved. After reviewing all ab-
stracts of these publications, only the genetic association
studies on AD were selected. From the obtained publica-
tion pool, we then concentrated on those studies reporting
a significant association of gene(s) with AD. In order to re-
duce the number of potential false-positive genes, the stud-
ies reporting insignificant or negative associations were
excluded even though some genes in these studies might
actually be truly associated with AD. We then reviewed the
full reports of each selected publication to make sure that
the conclusion was consistent with its contents. In several
studies, some genes were found to function cooperatively
to exert significant influences on AD, with each gene hav-
ing a small or mild impact; these genes were also included
in our list. In addition, the genes from several GWAS ana-
lyses on AD, showing genetic association at a genome-wide
significance level, were also included.

Functional enrichment analysis of genes related to AD
WebGestalt [14] and ToppGene [15] were utilized to
detect the biological themes of the AD-related genes. As
a web-based bioinformation-mining platform, WebGes-
talt integrates information from multiple resources to
determine the biological themes, including identifying
the overrepresented Gene Ontology (GO) terms, amid
the candidate gene listing. In this study, only the GO
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biological process terms with false discovery rate (FDR)
value smaller than 0.05 were kept as the significantly
enriched ones. ToppGene was used to identify and
analyze the enriched biological pathways in the input
genes. Pathways with FDR < 0.05 were considered to be
significantly enriched.

Analysis of crosstalks among pathways
We further built crosstalks among pathways to investi-
gate interlinks and interactions of the enriched path-
ways. To measure the overlap between two pathways,
the overlap coefficient (OC) and the Jaccard coefficient
(JC) were calculated using the corresponding formulas:

OC ¼ A∩Bj j
min Aj j; Bj jð Þ

and

JC ¼ A∩B
A∪B

�
�
�
�

�
�
�
�
;

in which A and B are the lists of genes of the two exam-
ined pathways. Briefly, the following procedure was
adopted to construct the pathway crosstalks:

(1)Only pathways with FDR < 0.05 were kept for
crosstalk analysis. Meanwhile, pathways with five or
fewer candidate genes were discarded because
pathways with too few candidate genes might present
few or biased connections with other pathways.

(2)Counting the common candidate genes of each
pathway pair—those pathway pairs with less than
two overlapped genes were removed.

(3)Measuring the overlap in every pathway pair by the
corresponding JC and OC values.

(4)Constructing the pathway crosstalk with Cytoscape
software [16].

Compilation of the human protein–protein interaction
network
To explore the correlation and interaction among the AD-
related genes, we compiled a comprehensive protein–pro-
tein interaction (PPI) network, based on which the protein
network topological properties of the gene set related to
AD were calculated and analyzed. Briefly, the human pro-
tein–protein interaction data were obtained from the Pro-
tein Interaction Network Analysis (PINA) database (latest
release version: May 21, 2014) [17] by pooling and curating
the unique physical interaction information from six main
public protein interaction databases: BioGRID, IntAct, DIP,
MINT, MIPS/MPact, and HPRD. In the meantime, another
interactome for Homo sapiens [18] that contained 141,296
edges (physical protein interactions) among 13,460 nodes

(proteins), consisting of metabolic pathway-related interac-
tions, regulatory and protein–protein interactions, and
interaction pairs for kinase and specific substrate, was
selected as an additional source of interactome data. After
merging the two interactome data by excluding the self-
interacting and redundant pairs, the proteins in the list
were mapped onto Entrez protein-coding genes for Homo
sapiens via the Uniprot ID mapping tool (http://www.uni-
prot.org/uploadlists). Finally, we compiled a relatively
comprehensive human physical interactome, which com-
prised 16,022 genes/proteins and 228,122 interactions (see
Additional file 1).

Construction of the AD-specific protein subnetwork
A subnetwork specific to a given disease can provide us with
hints for how the disease-related molecules interact with
each other. A network parsimony principle has been dem-
onstrated in the context of biological processes [19]; that is,
the molecular networks/pathways often follow the shortest
molecular paths between known disease-associated compo-
nents (disease-related genes or proteins in our case). The
Steiner minimal tree algorithm coincides with this biological
principle, which uses a greedy heuristic strategy to iteratively
link the smaller trees to larger ones until there is only one
tree connecting all seed nodes [20]. GenRev [21] was utilized
to identify the pathological subnetwork from the human in-
teractome using the curated AD-related genes as input. To
assess the non-randomness of the constructed network,
1000 random networks with the same number of vertices
and interactions as the AD-specific network were generated
using the Erdos-Renyi model in R igraph package [22].

Results
Compilation of genes associated with AD
Genes associated with AD were compiled through searching
the published genetic association studies on AD in PubMed.
Only the publications reporting gene(s) significantly associ-
ated with the disease were pooled, and those reporting a
negative or insignificant association were excluded.
Altogether, from 823 reports, we collected 430 genes re-
ported to be associated with AD (Additional file 2: Table S1;
the gene list is referred to as Alzgset). Among them were
seven apolipoprotein genes (APOA1, APOA4, APOC1,
APOC2, APOC4, APOD, and APOE), five genes encoding
subunits of nicotinic acetylcholine receptors (CHRNA3,
CHRNA4, CHRNA7, CHRNB2, and CHRFAM7A), four
adrenoceptors (ADRA2B, ADRB1, ADRB2, and ADRB3),
two serotonin receptors (HTR2A and HTR6), three dopa-
mine degradation genes (COMT, DBH, and MAOA), and
one dopamine receptor (DRD4). A few transport-related
genes were also collected, such as ATP-binding cassette
transporters (ABCA1, ABCA2, ABCA7, ABCC2, ABCG1,
and ABCG2), a dopamine transporter (SLC6A3), a serotonin
transporter (SLC6A4), two glucose transporters (SLC2A9
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and SLC2A14), a folate transporter (SLC19A1), and ion
transporters (SLC24A4). The other genes were those in-
volved in the biological processes related to nitric oxide syn-
thesis (NOS1 and NOS3), immune response (e.g., IL1A, IL6,
IL10, and NLRC3), as well as mitochondria-specific function
(e.g., MT-ATP6, MT-CO1, MT-CYB, and MTHFR). Clearly,
the genes significantly associated with AD were diverse in
function, consistent with the complexity of this mental
disorder.

Biological function enrichment analysis of Alzgset
Functional enrichment analysis revealed a more detailed
biological function spectrum of these AD-related genes
(see Additional file 2: Table S2). Among the GO terms
overrepresented in Alzgset, those related to lipid and/or
lipoprotein-related processes, drug reactions, neural
development, or synaptic transmission were included.
GO terms associated with drug reactions (e.g., response
to ethanol, response to nicotine, and response to
cocaine) and metabolic processes (e.g., xenobiotic meta-
bolic process) were overrepresented. These results were
in line with previous findings that complicated correla-
tions existed between the pathophysiological state of AD
and drug abuse [23, 24]. Of significance, top-ranked
terms included some lipid/lipoprotein-related processes,
including phospholipid efflux, reverse cholesterol trans-
port, cholesterol homeostasis, and lipoprotein metabolic
processes. Biological process terms related to synaptic
transmission (e.g., positive regulation of transmission of
nerve impulse; synaptic transmission, cholinergic;
regulation of synaptic transmission, dopaminergic; and
regulation of neurotransmitter secretion), dopamine
metabolism (dopamine metabolic process), and other
neural functions (e.g., synaptic vesicle transport, regula-
tion of neuronal synaptic plasticity, neuron migration,
and memory) were also enriched. Meanwhile, GO terms
related to immunological function (e.g., T-helper 1 type
immune response, positive regulation of interleukin-6
production, and chronic inflammatory response) were
overrepresented. The diversity in the function of AD-
related genes demonstrated the complexity of the
disease.

Biochemical pathway enriched in Alzgset
Detecting the biological pathways overrepresented
among Alzgset may provide useful information about
the pathogenic molecular mechanism underlying AD.
For Alzgset, 68 enriched pathways were identified
(Table 1). Among them, several pathways related to
immune processes were included (e.g., cytokines and
inflammatory response, cytokine network, dendritic cells
in regulating TH1 and TH2 development, and IL-5
signaling), consistent with previous studies [25, 26].
Also, neurotransmitter signaling-related pathways were

identified, such as cholinergic synapse, dopaminergic
synapse, serotonergic synapse, and so forth. Additionally,
in the Alzgset enriched pathway list, there were some
pathways related to cell growth and/or survival, includ-
ing neurotrophin signaling, PI3K-Akt signaling, mTOR
signaling, Notch signaling, and so forth, which are vital
for cell growth/survival state of neurons in the process
of AD [27, 28]. Moreover, metabolism-related pathways,
consisting of drug metabolism (cytochrome P450), gluta-
thione metabolism, and metabolism of xenobiotics by
cytochrome P450, were also significantly enriched, indi-
cating that related metabolism processes were involved
in the etiology and development processes of AD. What
is more, the pathway of the intestinal immune network
for IgA production was enriched, which might suggest a
connection between AD and the intestinal microbiota
[29, 30]. Furthermore, pathways involved in osteoclast
differentiation and adipocytokine signaling were also
detected, complying with prior studies [31–33].

Crosstalks among significantly enriched pathways
To explore the correlations between the pathways, we
implemented a pathway crosstalk analysis for the 68
enriched pathways. Here we assumed that crosstalk
existed in a pathway pair if they had a proportion of
common genes in Alzgset [34]. There were 41 pathways
including six or more members in Alzgset, of which 37
pathways met the criterion for crosstalk analysis; that is,
each pathway shared at least two genes with one or
more other pathways. All of the pathway pairs (207
crosstalks among 37 pathways) were used for construct-
ing the pathway crosstalk network and the overlap
significance of each pathway pair was evaluated based
on the average of JC and OC.
Based on their crosstalks, these pathways could be

roughly divided into three major modules, with path-
ways in each group having more crosstalks with each
other than with those outside of this module and more
likely being related to the same or similar biological
process (Fig. 1). The first module primarily included
neuronal-related and xenobiotic or drug metabolism-
related pathways (e.g., calcium signaling, dopaminergic
synapse, cholinergic synapse, serotonergic synapse and
neurotrophin signaling, metabolism of xenobiotics by
cytochrome P450, and drug metabolism—cytochrome
P450). The major theme of the second module was cell
growth/survival and neuroendocrine-related pathways
(e.g., PI3K-Akt signaling, mTOR signaling, notch signal-
ing, prolactin signaling, etc.). The third module included
immune response-related pathways (e.g., toll-like recep-
tor signaling, Fc epsilon RI signaling pathway). At the
same time, the three modules were interlinked with each
other, indicating the existence of an AD-specific
immune-endocrine-neuronal regulatory network.
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Table 1 Pathways enriched in Alzgseta

Pathway p valueb pBH valuec Genes included in the pathwayd

Cytokines and inflammatory response 1.03 × 10–9 8.79 × 10–8 CXCL8, HLA-DRA, HLA-DRB1, IL10, IL12A, IL12B, IL1A, IL4,
IL6, TGFB1, TNF

cytokine network 9.89 × 10–9 3.84 × 10–7 CXCL8, IL10, IL12A, IL12B, IL18, IL1A, IL4, IL6, TNF

Hematopoietic cell lineage 1.92 × 10–7 5.46 × 10–6 CD14, CD33, CD36, CD44, CR1, HLA-DRA, HLA-DRB1,
HLA-DRB5, IL1A, IL1B, IL4, IL6, IL6R, MME, TNF

Dendritic cells in regulating TH1 and TH2
Development

3.11 × 10–7 8.29 × 10–6 CD33, IL10, IL12A, IL12B, IL4, TLR2, TLR4, TLR9

Ovarian steroidogenesis 5.88 × 10–6 1.09 × 10–4 ALOX5, CYP19A1, FSHR, IGF1, INS, LDLR, LHCGR, PLA2G4A,
PTGS2, STAR

IL-5 signaling pathway 9.00 × 10–6 1.60 × 10–4 HLA-DRA, HLA-DRB1, IL1B, IL4, IL6

Neurotrophin signaling pathway 1.08 × 10–5 1.77 × 10–4 BDNF, CAMK2D, GSK3B, IRS1, NGF, NGFR, NTF3, NTRK1,
NTRK2, PIK3R1, PSEN1, PSEN2, SOS2, TP53, TP73

HIF-1 signaling pathway 1.12 × 10–5 1.77 × 10–4 CAMK2D, EIF4EBP1, GAPDH, HMOX1, IGF1, IL6, IL6R, INS,
NOS3, PIK3R1, RPS6KB2, TF, TLR4, VEGFA

NOD-like receptor signaling pathway 1.66 × 10–5 2.37 × 10–4 CARD8, CCL2, CXCL8, IL18, IL1B, IL6, MEFV, NLRP1,
NLRP3, TNF

Mechanism of gene regulation by peroxisome
proliferators via PPARα

1.95 × 10–5 2.69 × 10–4 APOA1, CD36, INS, LPL, PIK3R1, PPARA, PTGS2, RXRA,
SP1, TNF

Th1/Th2 differentiation 2.54 × 10–5 3.19 × 10–4 HLA-DRA, HLA-DRB1, IL12A, IL12B, IL18, IL4

Antigen-dependent B-cell activation 2.68 × 10–5 3.26 × 10–4 FAS, HLA-DRA, HLA-DRB1, IL10, IL4

Oxidative phosphorylation 3.74 × 10–5 4.39 × 10–4 COX10, COX15, MT-ATP6, MT-ATP8, MT-CO1, MT-CO2,
MT-CO3, MT-CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4,
MT-ND4L, MT-ND5, MT-ND6

PI3K-Akt signaling pathway 3.80 × 10–5 4.39 × 10–4 COL11A1, EFNA5, EIF4EBP1, FGF1, GNB3, GSK3B, IGF1, IL4,
IL6, IL6R, INS, IRS1, NGF, NGFR, NOS3, PCK1, PIK3R1,
PPP2R2B, RELN, RPS6KB2, RXRA, SOS2, TLR2, TLR4, TP53,
VEGFA, YWHAQ

NF-κB signaling pathway 4.83 × 10–5 5.42 × 10–4 CD14, CXCL8, ICAM1, IL1B, LCK, PARP1, PLAU, PTGS2, TLR4,
TNF, TRAF2, UBE2I

Phagosome 7.77 × 10–5 8.29 × 10–4 CD14, CD36, CTSS, HLA-A, HLA-DQB1, HLA-DRA, HLA-DRB1,
HLA-DRB5, MBL2, MPO, NOS1, OLR1, RAB7A, TAP2, TLR2, TLR4

Erythrocyte differentiation pathway 9.33 × 10–5 9.49 × 10–4 CCL3, IGF1, IL1A, IL6, TGFB1

IL-10 anti-inflammatory signaling pathway 1.82 × 10–4 1.69 × 10–3 HMOX1, IL10, IL1A, IL6, TNF

Cells and molecules involved in local acute
inflammatory response

1.82 × 10–4 1.69 × 10–3 CXCL8, ICAM1, IL1A, IL6, TNF

Toll-like receptor signaling pathway 2.15 × 10–4 1.95 × 10–3 CCL3, CD14, CXCL8, IL12A, IL12B, IL1B, IL6, PIK3R1, TLR2,
TLR4, TLR9, TNF

Free radical induced apoptosis 2.22 × 10–4 1.97 × 10–3 CXCL8, GPX1, SOD1, TNF

Intestinal immune network for IgA production 2.65 × 10–4 2.26 × 10–3 HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, IL10, IL4, IL6,
TGFB1

Selective expression of chemokine receptors
during T-cell polarization

3.35 × 10–4 2.68 × 10–3 CCL3, CCR2, IL12A, IL12B, IL4, TGFB1

B lymphocyte cell surface molecules 3.39 × 10–4 2.68 × 10–3 CR1, HLA-DRA, HLA-DRB1, ICAM1

Phosphorylation of MEK1 by cdk5/p35
downregulates the MAP kinase pathway

3.39 × 10–4 2.68 × 10–3 CDK5, CDK5R1, NGF, NGFR

Complement and coagulation cascades 4.61 × 10–4 3.58 × 10–3 A2M, C4A, C4B, CFH, CR1, F13A1, MBL2, PLAU,
SERPINA1

ABC transporters 5.87 × 10–4 4.32 × 10–3 ABCA1, ABCA2, ABCA7, ABCC2, ABCG1, ABCG2, TAP2

Signal transduction through IL-1R 6.97 × 10–4 5.05 × 10–3 IL1A, IL1B, IL1RN, IL6, TGFB1, TNF

mTOR signaling pathway 8.19 × 10–4 5.83 × 10–3 EIF4EBP1, IGF1, INS, IRS1, PIK3R1, RPS6KB2, TNF,
VEGFA

Adhesion and diapedesis of granulocytes 9.49 × 10–4 6.65 × 10–3 CXCL8, ICAM1, IL1A, TNF
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Table 1 Pathways enriched in Alzgseta (Continued)

TNF signaling pathway 1.12 × 10–3 7.69 × 10–3 CCL2, FAS, ICAM1, IL1B, IL6, MAGI2, MMP3, PIK3R1,
PTGS2, TNF, TRAF2

MAPK signaling pathway 1.13 × 10–3 7.69 × 10–3 BDNF, CD14, FAS, FGF1, IL1A, IL1B, MAPK8IP1, MAPT,
MEF2C, NGF, NTF3, NTRK1, NTRK2, PLA2G4A, SOS2,
TGFB1, TNF, TP53, TRAF2

The IGF-1 receptor and longevity 1.26 × 10–3 8.28 × 10–3 IGF1, PIK3R1, SOD1, SOD2

Glutathione metabolism 1.45 × 10–3 8.95 × 10–3 GPX1, GSTM1, GSTM3, GSTO1, GSTO2, GSTP1, GSTT1

Cytokine–cytokine receptor interaction 1.48 × 10–3 8.95 × 10–3 CCL2, CCL3, CCR2, CXCL8, FAS, IL10, IL12A, IL12B, IL18,
IL1A, IL1B, IL23R, IL4, IL6, IL6R, NGFR, TGFB1, TNF, VEGFA

Serotonergic synapse 1.50 × 10–3 8.95 × 10–3 ALOX5, APP, CYP2D6, GNB3, HTR2A, HTR6, KCNJ6,
MAOA, PLA2G4A, PTGS2, SLC6A4

Antigen processing and presentation 1.63 × 10–3 9.53 × 10–3 CTSS, HLA-A, HLA-DQB1, HLA-DRA, HLA-DRB1,
HLA-DRB5, HSPA5, TAP2, TNF

Drug metabolism—cytochrome P450 1.88 × 10–3 1.05 × 10–2 CYP2D6, GSTM1, GSTM3, GSTO1, GSTO2, GSTP1,
GSTT1, MAOA

Cell cycle: G1/S check point 2.13 × 10–3 1.18 × 10–2 CDK1, CDKN2A, GSK3B, TGFB1, TP53

Fcε RI signaling pathway 2.26 × 10–3 1.23 × 10–2 FCER1G, GAB2, IL4, INPP5D, PIK3R1, PLA2G4A,
SOS2, TNF

Apoptosis 2.28 × 10–3 1.23 × 10–2 FAS, IL1A, IL1B, NGF, NTRK1, PIK3R1, TNF, TP53,
TRAF2

Role of Erk5 in neuronal survival 2.61 × 10–3 1.39 × 10–2 MEF2A, MEF2C, NTRK1, PIK3R1

Bioactive peptide-induced signaling pathway 2.90 × 10–3 1.52 × 10–2 CAMK2D, CDK5, GNA11, MAPT, MYLK, PTK2B

Control of skeletal myogenesis by HDAC and
calcium/calmodulin-dependent kinase (CaMK)

2.93 × 10–3 1.52 × 10–2 IGF1, INS, MEF2A, MEF2C, PIK3R1

Metabolism of xenobiotics by cytochrome P450 3.22 × 10–3 1.62 × 10–2 CYP2D6, GSTM1, GSTM3, GSTO1, GSTO2, GSTP1,
GSTT1, HSD11B1

Ras-independent pathway in NK cell-mediated
cytotoxicity

3.92 × 10–3 1.88 × 10–2 HLA-A, IL18, PIK3R1, PTK2B

Dopaminergic synapse 4.48 × 10–3 2.11 × 10–2 CAMK2D, CLOCK, COMT, DRD4, GNB3, GRIN2B,
GSK3B, KCNJ6, MAOA, PPP2R2B, SLC6A3

Cholinergic synapse 4.57 × 10–3 2.12 × 10–2 CAMK2D, CHAT, CHRNA3, CHRNA4, CHRNA7,
CHRNB2, GNA11, GNB3, KCNJ6, PIK3R1

The co-stimulatory signal during T-cell activation 4.72 × 10–3 2.17 × 10–2 HLA-DRA, HLA-DRB1, LCK, PIK3R1

Adhesion and diapedesis of lymphocytes 5.03 × 10–3 2.28 × 10–2 CXCL8, ICAM1, IL1A

Notch signaling pathway 5.07 × 10–3 2.28 × 10–2 APH1A, APH1B, NCSTN, PSEN1, PSEN2, PSENEN

Role of ERBB2 in signal transduction and oncology 5.61 × 10–3 2.50 × 10–2 ESR1, IL6, IL6R, PIK3R1

Aminoacyl-tRNA biosynthesis 6.37 × 10–3 2.80 × 10–2 MT-TG, MT-TH, MT-TL2, MT-TQ, MT-TR, MT-TS2, MT-TT

Trka receptor signaling pathway 6.55 × 10–3 2.80 × 10–2 NGF, NTRK1, PIK3R1

Rac 1 cell motility signaling pathway 6.62 × 10–3 2.80 × 10–2 CDK5, CDK5R1, MYLK, PIK3R1

CTCF: first multivalent nuclear factor 6.62 × 10–3 2.80 × 10–2 CDKN2A, PIK3R1, TGFB1, TP53

Regulation of PGC-1a 7.74 × 10–3 3.21 × 10–2 CAMK2D, MEF2A, MEF2C, PPARA

Calcium signaling pathway 7.85 × 10–3 3.22 × 10–2 ADRB1, ADRB2, ADRB3, CAMK2D, CHRNA7, GNA11,
HTR2A, HTR6, LHCGR, MYLK, NOS1, NOS3, PTK2B

Lck and Fyn tyrosine kinases in initiation of
TCR activation

8.30 × 10–3 3.38 × 10–2 HLA-DRA, HLA-DRB1, LCK

Adipocytokine signaling pathway 8.75 × 10–3 3.52 × 10–2 CD36, IRS1, PCK1, PPARA, RXRA, TNF, TRAF2

Ras signaling pathway 9.43 × 10–3 3.76 × 10–2 EFNA5, EXOC2, FGF1, GAB2, GNB3, GRIN2B, IGF1,
INS, NGF, NGFR, PIK3R1, PLA2G3, PLA2G4A, SOS2,
VEGFA

Prolactin signaling pathway 1.02 × 10–2 3.96 × 10–2 ESR1, ESR2, GSK3B, INS, LHCGR, PIK3R1, SOS2

Catecholamine biosynthesis, tyrosine→
dopamine→ noradrenaline→ adrenaline

1.05 × 10–2 3.99 × 10–2 DBH, PNMT
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AD-specific protein network
To further examine the potential pathological protein
network of Alzgset, we constructed a subnetwork for
AD from the human protein–protein interaction net-
work via the Steiner minimal tree algorithm. This
method tries to connect the largest number of input
nodes (genes included in Alzgset in our case) via the
least number of interlinking nodes. As shown in Fig. 2,
the protein network of AD comprised 496 nodes and
1521 edges (interactions).
As shown, 393 out of 430 Alzgset genes were included

in the AD-specific network, which accounted for 79.2%
of 496 genes in the network and 91.4% of Alzgset,
demonstrating a high coverage of Alzgset in the subnet-
work. There were 103 genes in the AD-specific molecu-
lar network outside of Alzgset (Table 2). Given that

these intermediate genes interacted closely with those
known to be related to AD, they might also be involved
in the pathological process of the disease phenotype.
Notably, a number of the genes—e.g., epidermal growth
factor receptor (EGFR), nuclear respiratory factor 1
(NRF1), somatostatin receptor 2 (SSTR2), and sortilin 1
(SORT1)—had been shown related to AD in several pre-
vious studies [35–38]. Some of these genes have not
been reported to be directly involved in the pathophysio-
logical condition of AD, but genes linking to them or
other members of the same protein family may have
been found to play a role in such processes. For instance,
ATP binding cassette subfamily G member 5 (ABCG5), a
member of a transport system superfamily, involved in
ATP binding and transporting of substrates across
cytomembranes, was a node in the AD-specific network

Table 1 Pathways enriched in Alzgseta (Continued)

Fat digestion and absorption 1.14 × 10–2 4.32 × 10–2 ABCA1, APOA1, APOA4, CD36, PLA2G3

Stress induction of HSP regulation 1.26 × 10–2 4.63 × 10–2 FAS, IL1A, TNF

Regulation of hematopoiesis by cytokines 1.26 × 10–2 4.63 × 10–2 CXCL8, IL4, IL6

CTL-mediated immune response against
target cells

1.26 × 10–2 4.63 × 10–2 FAS, HLA-A, ICAM1

Osteoclast differentiation 1.32 × 10–2 4.81 × 10–2 GAB2, IL1A, IL1B, LCK, PIK3R1, PPARG, TGFB1, TNF,
TRAF2, TREM2

aAlzheimer’s disease-related genes gene set
bCalculated by Fisher’s exact test
cAdjusted by the Benjamini and Hochberg (BH) method
dGenes among Alzgset included in the specific pathway

Fig. 1 Crosstalk network amid Alzgset-overrepresented pathways. Vertices, biological pathways; lines, crosstalks among pathways. Width of one line
(edge) shows direct proportion with the crosstalk level of a given pathway pair. Nodes tagged with numbers represent the following corresponding
pathways: 1, intestinal immune network for IgA production; 2, toll-like receptor signaling pathway; 3, cytokine–cytokine receptor interaction; 4,
hematopoietic cell lineage; 5, TNF signaling pathway; 6, apoptosis; 7, Fcε RI signaling pathway
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but was out of Alzgset. However, six members from
the same family were included in Alzgset (ABCA1,
ABCA2, ABCA7, ABCC2, ABCG1, and ABCG2), and
there was experimental evidence for their involvement
in AD; for example, the expression reduction or loss
of function of ABCA7 could alter Alzheimer amyloid
processing [39]. Solute carrier family 40 member 1
(SLC40A1), encoding a cytomembrane protein that
may be linked to iron export from duodenal epithelial
cells, was also included in the AD-specific network.
SLC40A1can interact with Golgi membrane protein 1
(GOLM1) and hepcidin antimicrobial peptide
(HAMP). The former was a gene in Alzgset and its
mutation may be related to reduced regional gray
matter volume in AD patients [40], and the expres-
sion of HAMP was significantly reduced in hippocam-
pal lysates from AD brains [41]. Thus, it is likely that
some of the 103 genes in the AD-specific network
may play roles in AD susceptibility and can be novel
targets for further exploration.

Discussion
We have made great progress in exploring the molecular
mechanisms of Alzheimer’s disease in recent years. With
the advancement and maturity of high-throughput
technology, we are able to identify the elements related
to this disease on much larger scales. Although more
and more genes/proteins potentially involved in the
disease have been reported, a thorough analysis of
the biochemical processes associated with the patho-
genesis of AD from the molecular aspect is still
missing. In such cases, a systematic analysis of AD-
related genes via a pathway-based and network-based
analytical framework will provide us with insight into
the disease beyond the single candidate gene-based
analyses [42–44]. In this study, by pooling and curat-
ing human genes related to AD from genetic studies,
and systematically delineating the interconnection of
these genes by means of pathway-based and network-
based analyses, we analyzed AD-related biochemical
processes and their interactions.

Fig. 2 AD-specific protein network built by means of the Steiner minimal tree algorithm, including 496 vertices and 1521 lines. Circular vertices,
genes of Alzgset; triangular vertices, expanding genes. Color of a typical vertex designates its corresponding degree under the background of the
human protein interactome. Darkness of color for a vertex is directly proportional to the corresponding degree value (Color figure online)
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Table 2 Genes included in the AD-specific network but not in
Alzgseta

Gene symbol Gene name

ABCG5 ATP binding cassette subfamily G member 5

ACHE Acetylcholinesterase (Yt blood group)

ADAMTSL4 ADAMTS-like 4

ADRA1D Adrenoceptor alpha 1D

ALB Albumin

ARFGAP3 ADP-ribosylation factor GTPase activating protein 3

ARG1 Arginase 1

ATP1B2 ATPase, Na+/K+ transporting, beta 2 polypeptide

BEND7 BEN domain containing 7

BMP2 Bone morphogenetic protein 2

BRI3BP BRI3 binding protein

CA8 Carbonic anhydrase VIII

CARD16 Caspase recruitment domain family, member 16

CDH2 Cadherin 2, type 1, N-cadherin (neuronal)

CGB Chorionic gonadotropin, beta polypeptide

CHGB Chromogranin B

CLEC7A C-type lectin domain family 7, member A

COLQ Collagen-like tail subunit (single strand of homotrimer)
of asymmetric acetylcholinesterase

COPS5 COP9 signalosome subunit 5

COX6B2 Cytochrome c oxidase subunit VIb polypeptide 2 (testis)

CRK V-crk avian sarcoma virus CT10 oncogene homolog

CTAG1B Cancer/testis antigen 1B

CTNNA1 Catenin (cadherin-associated protein), alpha 1, 102 kDa

CTSA Cathepsin A

DAO D-amino-acid oxidase

DDR1 Discoidin domain receptor tyrosine kinase 1

DPYSL5 Dihydropyrimidinase-like 5

DYNC1LI2 Dynein, cytoplasmic 1, light intermediate chain 2

EDN1 Endothelin 1

EFNA1 Ephrin-A1

EGFR Epidermal growth factor receptor

ELF3 E74-like factor 3 (ets domain transcription factor,
epithelial-specific)

ERAP1 Endoplasmic reticulum aminopeptidase 1

ERP44 Endoplasmic reticulum protein 44

ETNPPL Ethanolamine-phosphate phospho-lyase

FBXO2 F-box protein 2

FCGR2B Fc fragment of IgG, low affinity IIb, receptor (CD32)

FGFBP1 Fibroblast growth factor binding protein 1

FGG Fibrinogen gamma chain

FOXRED2 FAD-dependent oxidoreductase domain containing 2

GNAS GNAS complex locus

GPLD1 Glycosylphosphatidylinositol specific phospholipase D1

Table 2 Genes included in the AD-specific network but not in
Alzgseta (Continued)

GSTM2 Glutathione S-transferase mu 2 (muscle)

HCRT Hypocretin (orexin) neuropeptide precursor

HIST1H2AG Histone cluster 1, H2ag

HIST1H2AM Histone cluster 1, H2am

HLA-DQA1 Major histocompatibility complex, class II, DQ alpha 1

HSD17B14 Hydroxysteroid (17-beta) dehydrogenase 14

HSPA1L Heat shock 70 kDa protein 1-like

IFNA5 Interferon, alpha 5

IFNAR2 Interferon (alpha, beta and omega) receptor 2

IL18RAP Interleukin-18 receptor accessory protein

IL1R2 Interleukin-1 receptor, type II

IL23A Interleukin-23, alpha subunit p19

KCNJ9 Potassium channel, inwardly rectifying subfamily J,
member 9

KIAA0513 KIAA0513

L3MBTL3 L(3)mbt-like 3 (Drosophila)

MAGEA11 Melanoma antigen family A11

MICAL2 Microtubule associated monooxygenase, calponin
and LIM domain containing 2

MLLT4 Myeloid/lymphoid or mixed-lineage leukemia;
translocated to, 4

MUM1 Melanoma associated antigen (mutated) 1

MYC V-myc avian myelocytomatosis viral oncogene
homolog

NRF1 Nuclear respiratory factor 1

NRXN1 Neurexin 1

OCIAD1 OCIA domain containing 1

PIM1 Pim-1 proto-oncogene, serine/threonine kinase

PKNOX2 PBX/knotted 1 homeobox 2

PLCZ1 Phospholipase C, zeta 1

PLD1 Phospholipase D1, phosphatidylcholine-specific

POR P450 (cytochrome) oxidoreductase

PPP1CA Protein phosphatase 1, catalytic subunit, alpha
isozyme

PVR Poliovirus receptor

RAB26 RAB26, member RAS oncogene family

REST RE1-silencing transcription factor

RNF19A Ring finger protein 19A, RBR E3 ubiquitin protein
ligase

RNF2 Ring finger protein 2

RPSA Ribosomal protein SA

SCNN1A Sodium channel, non voltage gated 1 alpha subunit

SDHA Succinate dehydrogenase complex, subunit A,
flavoprotein (Fp)

SEPT12 Septin 12

SEPT6 Septin 6

SFN Stratifin
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Compared with the candidate gene(s)-based approach,
a comprehensive analysis on AD-related genes
conducted in this study has its own advantages. By
implementing an extensive compilation and curation of
human genes from genetic association studies on AD,
we could obtain valuable gene source data for further
analysis. Especially, because the risk of AD suscepti-
bility can be attributed to many genes, with multiple
genes functioning in a concerted manner and each
gene exerting a small effect [45], we took this into
consideration by also retrieving genes jointly showing
significant genetic association with AD. At the same
time, by focusing on the biological correlation of
genes, pathway and network analysis can not only
give us a more comprehensive view for the patho-
logical mechanisms of AD, but are also more robust
to the influence of false-positive genes.
As revealed by function enrichment analysis, genes in

Alzgset may play important roles in lipid/lipoprotein-re-
lated procedures, the immune system, the metabolic
process, drug response processes, and neurodevelop-
ment. For example, terms such as reverse cholesterol

transport, positive regulation of interleukin-6 produc-
tion, response to ethanol, lipoprotein metabolic process,
diol metabolic process, xenobiotic metabolic process,
and regulation of neuronal synaptic plasticity were over-
represented among Alzgset genes, implying the
important roles of these processes in the pathological
processes of AD. Furthermore, we noticed several terms
of memory, visual learning, social behavior, sleep, axon
regeneration, and axon guidance also emerged in the
enriched list, concurrent with a-priori biological findings
for AD [46–50].
Our biochemical pathway analysis showed that

immune-related pathways were enriched among Alzgset,
which further highlighted the connections between AD
and immune-related biological activities. Previous stud-
ies have shown the involvement of neuroinflammation
in AD pathology, with inflammatory cytokines exerting
central efforts [51, 52]. Simultaneously, four pathways
associated with neurotransmitters were found to be
overrepresented in Alzgset, coinciding with their
essential roles in the etiology and progression of AD.
Acetylcholine, dopamine, and serotonin are major neu-
rotransmitters, involved in advanced neuronal functions
(e.g., learning, memory, language, etc.), exerting key
effects in the pathologic processes of AD. These neuro-
transmitters could be involved in the damaging proced-
ure of synaptic plasticity like long-term potentiation and
long-term depression in AD subjects or animal models,
which in turn may impair some synapse-based higher
brain functions such as memory and cognition [53–55].
Moreover, our results detected several pathways pertain-
ing to neuroendocrine activities (i.e., ovarian steroido-
genesis and prolactin signaling), cuing endocrine
processes for the pathogenesis of AD [56, 57]. In
addition, the adipocytokine signaling pathway was
enriched in Alzgset. Adipocytokines, including leptin,
adiponectin, NAMPT, RBP-4, and other proinflamma-
tory cytokines, have attracted much attention due to
their close connection with AD [32, 57, 58]. Detection of
the adipocytokine signaling pathway in this study pro-
vides further evidence for the relationship between adi-
pocytokine and the development and progression of AD,
and may also support the idea that AD could be a meta-
bolic disease [59–61]. As suggested by the results shown,
the molecular mechanisms underlying AD are pretty
complicated, calling for further thorough studies to de-
code the underlying pathologic mechanisms.
Of significance, we detected three major pathway

groups through pathway crosstalk analysis. One group
basically involved the pathways related to the nervous
system and metabolism-related activities. Amid these
pathways, cholinergic synapse, the calcium signaling
pathway, dopaminergic synapse, serotonergic synapse,
and neurotrophin signaling have been well dissected to

Table 2 Genes included in the AD-specific network but not in
Alzgseta (Continued)

SIRPB1 Signal-regulatory protein beta 1

SLC40A1 Solute carrier family 40 member 1

SORT1 Sortilin 1

SSTR2 Somatostatin receptor 2

STK11IP Serine/threonine kinase 11 interacting protein

TMEM173 Transmembrane protein 173

TNFRSF11A Tumor necrosis factor receptor superfamily,
member 11a, NFKB activator

TNFRSF12A Tumor necrosis factor receptor superfamily,
member 12A

TOMM7 Translocase of outer mitochondrial membrane
7 homolog (yeast)

TRMT6 tRNA methyltransferase 6

TSPY2 Testis specific protein, Y-linked 2

TYROBP TYRO protein tyrosine kinase binding protein

UBC Ubiquitin C

UBE3A Ubiquitin protein ligase E3A

UBIAD1 UbiA prenyltransferase domain containing 1

VKORC1 Vitamin K epoxide reductase complex, subunit 1

VSTM2L V-set and transmembrane domain containing 2 like

WIPF3 WAS/WASL interacting protein family, member 3

YEATS4 YEATS domain containing 4

ZNF423 Zinc finger protein 423

ZNHIT1 Zinc finger, HIT-type containing 1

AD Alzheimer’s disease
aAlzheimer’s disease-related genes gene set
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function in the progress of AD [62–65]. In the second
module, pathways were largely dominated by immune
response or related functions, and by cell growth/sur-
vival and neuroendocrine pathways for the third group.
Furthermore, we could notice that these three pathway
modules were interconnected and acted as an immune-
endocrine-neuronal regulatory network for the AD-re-
lated pathological conditions. Of note, one pathway (i.e.,
intestinal immune network for IgA production) was
found to be a component part of the immune module.
These results might suggest that the gut–brain axis,
made up of immune, neuroendocrine, and neuronal
components, was involved in the pathogenesis of AD
[66–68], in line with results from pathway crosstalk ana-
lysis (i.e., there being three similar modules containing
Alzgset-enriched pathways). Subsequently, via in-depth
examination, we observed that the immune module has
plenty of pathway crosstalks and plenty of crosstalk
strength. In turn, the cell growth/survival and neuroen-
docrine module has lower number and less strength,
compared with the immune module; however, in terms
of the neural module, the number and strength of
crosstalks are greater and larger. In spite of the limited
number of crosstalks, there exist paramount crosstalk
levels among metabolic pathways. These observed
results might provide causal and regulatory hints for
AD. Integrating results from biochemical pathway and
pathway crosstalk analyses and the a-priori biological
knowledge base, the major pathways related to AD could
be summarized in a diagram (Fig. 3).

Further, we extracted an AD-specific protein net-
work on the basis of the human protein–protein
interaction network. It is worth noting that some
linking genes outside Alzgset but included in the hu-
man protein–protein interaction network may be
potentially related to AD. For example, nuclear re-
spiratory factor-1 (NRF1) could be affected by early
changes in genes participating in the insulin and en-
ergy metabolism pathways in an APP/PS1 transgenic
mouse model of AD [69]. TYROBP, a transmembrane
signaling protein, appeared in our AD-specific subnet-
work. By constructing gene regulatory networks in
1647 postmortem brain tissues from late-onset Alz-
heimer’s disease (LOAD) patients and normal sub-
jects, an immune and microglia-related module
dominated by genes participating in pathogen phago-
cytosis was identified, with TYROBP as a key causal
regulator upregulated in LOAD [70]. CDH2, a clas-
sical cadherin playing roles in the development of the
nervous system, was found with the pathogenic copy
number variations from 261 early-onset familial Alz-
heimer’s disease and early/mixed-onset pedigree indi-
viduals using high-density DNA microarrays [71]. By
applying cell-based studies and FBXO2 knockout
mice, it was found that FBXO2 could regulate amyl-
oid precursor protein-related activities in the brain
and might modulate AD pathogenesis, coupling with
our result to consolidate its involvement in AD [72].
Although no evidence indicated that VSTM2L, one of
the intermediate genes, was directly related to AD, it

Fig. 3 Main biochemical pathways related to AD. Numbers of genetics-based studies have revealed the fact that AD is actually a complex dis-
order. These major biochemical pathways involved in AD were connected based on their biological relations
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interacted with ataxin 1 (ATXN1) of Alzgset [73],
whose biological function is presently unknown, and
also might be a secreted antagonist of Humanin (HN)
[74] which mediated attenuation of AD-related mem-
ory impairment and Aβ-induced AD-like pathological
changes [75, 76]. As specified by the results detailed,
this protein subnetwork predicting approach could
not only engender a significant predicted subnetwork
of Alzgset for AD, but could also possess the potenti-
ality to detect promising relevant genes.
There have been several available datasets or projects fo-

cused on the curation of AD-related genes, including Alz-
Gene [77], Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [78], the Alzheimer Disease & Frontotemporal
Dementia Mutation Database (AD&FTDMDB) [79], and
AlzBase [80]. While AlzGene maintains a comprehensive
catalog of genetic association studies on AD and also in-
cludes results from meta-analysis of polymorphisms with
genotype data available in several GWAS projects on AD,
AD&FTDMDB is dedicated to the known mutations of
genes associated with AD and frontotemporal dementias
from the published reports or presentations at scientific
meetings. The ADNI project aims at facilitating the inves-
tigation of genetic influences on AD onset and progres-
sion reflected in imaging changes, fluid biomarkers, and
cognitive status. It has reported several neuroimaging
GWAS with imaging quotas as quantitative phenotypes,
such as hippocampal volume and hippocampal gray mat-
ter density. On the other hand, AlzBase is an integrative
database for genes dysregulated in AD and related dis-
eases, and comprises annotations and expression informa-
tion on more than 7800 differentially expressed genes
collected from multiple microarray datasets. These data-
sets with different features provide valuable information
on genes and/or phenotypes for exploring and under-
standing AD and its mechanisms.
Similar to AlzGene, Alzgset is also a compilation of AD-

related genes identified in genetic association studies.
While AlzGene includes both genes showing positive and
negative association with AD, Alzgset focuses only on the
genes reported to be positively associated with AD by the
original authors. Because AlzGene has not been updated
since April 2011, results from many recent genetic associ-
ation studies may not be included. In association with
studies on candidate genes, some genes may each possess
a mild to moderate p value, but two or more genes could
collectively show a more significant association with AD
due to the fact they probably act in a concerted manner.
In such cases, all of these candidates were included in
Alzgset as long as the original authors could provide suffi-
cient evidence. On the other hand, the genes in AlzGene
were selected from meta-analyses for each polymorphism
and a relative uniform criterion was adopted, so the genes
mentioned may be neglected. Thus, Alzgset should offer

an informative supplement for AlzGene and serve as a
useful dataset for AD investigation.
However, there were several limitations in this study.

First, our pathway-based and network-based analyses
results relied on genes in the publications reported to
be associated with AD. In view of the fact that identifi-
cation of risk genes for AD is still an ongoing task, the
GO biological process terms, biochemical pathways,
and results derived from network analysis should also
be treated in the similar manner. Second, we adopted
the results and conclusions offered by the original au-
thors of each selected report when collecting the genes,
which inevitably impacts our results due to possible
bias and insufficiency in the available reports. Then, in
order to decrease the false-positive rate of AD-
associated genes, we eliminated reports with insignifi-
cant or negative results. Nevertheless, we cannot avoid
the fact that some genes in those studies might be actu-
ally associated with the disease phenotype. Additionally,
although the GO terms enriched in Alzgset could pro-
vide valuable hints and might serve as an important re-
source for understanding the molecular mechanisms of
AD, it should be noted that GO is biased towards fields
like cancer biology and the concepts related to neur-
ology are underrepresented [81]. Thus, some important
neurological processes related to AD may be missed in
our analysis. At the same time, despite overall levels of
protein–protein interaction databases having been
greatly improved, the present human interactome is
still incomplete and some false-positive data may also
be included [82]. Thus, the present research status of
the human interactome may also influence our results.
It can be expected that, as the protein–protein inter-
action data become more comprehensive and accurate,
the inferred AD-specific subnetwork can become more
reliable and valuable.

Conclusions
In summary, via a systems biology approach, we investi-
gated the pathways and molecular networks related to
AD based on the genes associated with the disease.
Integrating biological function, biochemical pathway,
and pathway crosstalk analyses, we identified that
biochemical processes and pathways linked with lipid
and/or lipoprotein-related processes, metabolism, the
immune system, and neural development were overrep-
resented among Alzgset and there existed three inter-
connected pathway modules: neuronal and metabolic
module, cell growth/survival and neuroendocrine clique,
and immunological cluster. What is more, an AD-speci-
fic protein network was built via the Steiner minimal
tree algorithm and some novel genes latently associated
with AD were predicted. Such analysis of genes involved
in AD will not only improve our understanding of the
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contribution of genetic factors and their interaction with
environmental factors to the pathogenesis of this disease,
but will also help us to identify potential biomarkers for
further exploration. It could be anticipated that as more
genetic factors related to AD are identified, a systematic
and comprehensive analysis such as the one adopted in
this study will be more useful to explore the molecular
mechanisms underlying AD.
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