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Inflammatory breast cancer (IBC) is an aggressive form of primary breast

cancer characterized by rapid onset and high risk of metastasis and poor clin-

ical outcomes. The biological basis for the aggressiveness of IBC is still not

well understood and no IBC-specific targeted therapies exist. In this study,

we report that lipocalin 2 (LCN2), a small secreted glycoprotein belonging to

the lipocalin superfamily, is expressed at significantly higher levels in IBC vs

non-IBC tumors, independently of molecular subtype. LCN2 levels were also

significantly higher in IBC cell lines and in their culture media than in non-

IBC cell lines. High expression was associated with poor-prognosis features

and shorter overall survival in IBC patients. Depletion of LCN2 in IBC cell

lines reduced colony formation, migration, and cancer stem cell populations

in vitro and inhibited tumor growth, skin invasion, and brain metastasis in

mouse models of IBC. Analysis of our proteomics data showed reduced

expression of proteins involved in cell cycle and DNA repair in LCN2-

silenced IBC cells. Our findings support that LCN2 promotes IBC tumor

aggressiveness and offer a new potential therapeutic target for IBC.

1. Introduction

Inflammatory breast cancer (IBC) is the most aggressive

and deadly variant of primary breast cancer. Although

IBC is considered rare in the United States (1–4% of all

breast cancer cases), it accounts for a disproportionate

10% of breast cancer-related deaths because of its

aggressive proliferation and metastasis and limited
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therapeutic options [1–5]. IBC disproportionately affects

young and African American women [1,6]. IBC is associ-

ated with unique clinical and biological features and a

distinctive pattern of recurrence with high incidence in

central nervous system, lung, and liver as first site of

relapse [4,7,8]. Even with multimodality treatment strate-

gies, survival rates for women with IBC are far lower

than for those with other types of breast carcinoma (non-

IBC), with estimated 5-year overall survival rates limited

to 40% vs 63% for non-IBC [4,6–9]. These features

underscore the critical need to better define the mecha-

nisms that drive the aggressive behavior of IBC and to

develop novel agents to improve the overall prognosis

for women with IBC. Efforts have been undertaken to

identify pathways and therapeutic targets distinct to IBC

and to better elucidate the mechanisms of IBC aggres-

siveness [10–15]. However, the molecular and cellular

basis for IBC aggressiveness remains unclear. Identifica-

tion of specific targets and unraveling the mechanisms of

growth and metastasis of this aggressive disease could

lead to improvements in IBC patient survival.

Lipocalin 2 [LCN2, also known as neutrophil

gelatinase-associated Lipocalin (NGAL), siderocalin,

or 24p3] is a 25-kDa secreted glycoprotein that belongs

to the lipocalin superfamily. LCN2 is known to

sequester iron, as it binds siderophore-complexed ferric

iron with high affinity, and has significant roles in

immune and inflammatory responses, angiogenesis, cell

proliferation, survival, and resistance to anticancer

therapies [16–21]. LCN2 has been implicated in the

progression of several types of human tumors, includ-

ing breast cancer, through several mechanisms, such as

stabilization of matrix metallopeptidase 9 (MMP-9),

sequestration of iron, induction of epithelial–mes-

enchymal transition, apoptosis resistance, lymphangio-

genesis, and cell cycle arrest [16–20,22–26]. Moreover,

high LCN2 expression levels have been linked with

poorer survival in patients with breast cancer [16,26–
28]. Little is known regarding the oncogenic role of

LCN2 in IBC tumors.

In the present study, we demonstrate that LCN2

was expressed at significantly higher levels in patients

with IBC and that LCN2 promoted tumor growth,

skin invasion, and metastasis in xenograft mouse mod-

els of IBC.

2. Materials and methods

2.1. Cell lines

The SUM149 cell line was purchased from Asterand

(Detroit, MI, USA), and MDA-IBC3 cell line was

generated in Dr. Woodward’s laboratory [29,30] and

cultured in Ham’s F-12 media supplemented with

10% FBS (GIBCO, Thermo Fisher, Carlsbad, CA,

USA), 1 µg�mL�1 hydrocortisone (#H0888, Sigma-

Aldrich, St. Louis, MO, USA), 5 µg�mL�1 insulin

(#12585014; Thermo Fisher), and 1% antibiotic-

antimycotic (#15240062; Thermo Fisher). HEK293T

cells were purchased from the American Type Culture

Collection (Manassas, VA, USA) and cultured in

Dulbecco’s modified Eagle’s medium supplemented

with 10% FBS and 1% penicillin and streptomycin

(#15140122; Invitrogen, Carlsbad, CA, USA). All cell

lines were kept at 37 °C in a humidified incubator

with 5% CO2 and were authenticated by short tan-

dem repeat profiling at the Cytogenetics and Cell

Authentication Core at UT MD Anderson Cancer

Center.

2.2. Lentivirus-mediated knockdown

LCN2 stable knockdown clones were generated in

SUM149 or MDA-IBC3 cells by using shRNA

(shLCN2-1: TRCN0000060289 from Sigma-Aldrich;

shLCN2-2: RHS4430-200252675 or shLCN2-3:

RHS4430-200246537 from MD Anderson’s Functional

Genomics Core Facility, Houston, TX, USA). The

MISSION(R) pLKO.1-puro Empty Vector (SHC001,

Sigma) was used as control (shCtl). HEK293T cells

were transfected with 4.05 µg of target plasmid,

pCMV-VSV-G (0.45 µg; #8584; Addgene, Watertown,

MA, USA) and pCMV delta R8.2 (3.5 µg, #12263,

Addgene) by using Lipofectamine 2000 (Life Tech-

nologies, Carlsbad, CA, USA) for 24 h. SUM149 and

MDA-IBC3 cells were incubated with the supernatant-

containing virus plus 8 µg�mL�1 of polybrene for

24 h. Stable cell lines were selected with 1 lg�mL�1 of

puromycin.

2.3. RNA isolation and real-time PCR

RNA was isolated by using TRIzol Reagent (Life Tech-

nologies) according to the manufacturer’s instructions.

The cDNA was obtained with a High Capacity cDNA

Reverse Transcription Kit with RNase Inhibitor

(Thermo Fisher Scientific). Real-time PCR was done by

using Power SYBR Green PCR Master Mix (Applied

Biosystems, Foster City, CA, USA) on a 7500 Real-

Time PCR system (Applied Biosystems). LCN2 forward

primer: 30-CCACCTCAGACCTGATCCCA-50, reverse
primer: 30- CCCCTGGAATTGGTTGTCCTG-50;
GAPDH forward primer: 30-GAAGGTGAAGGTC

GGAGT-50, reverse primer: 30-GAAGATGGTGAT

GGGATTTC-50.
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2.4. ELISA

Human LCN2/NGAL Quantikine ELISA Kits

(#DLCN20; R&D Systems, Minneapolis, MN, USA)

were used to measure the levels of LCN2 in the cell

lines according to the manufacturer’s instructions.

Samples were assayed in duplicate.

2.5. Western blotting

Cells were lysed in RIPA buffer (Sigma) supplemented

with 10 µL�mL�1 phosphatase and 10 µL�mL�1 pro-

tease inhibitor cocktail. SDS/PAGE and immunoblot-

ting were carried out as described elsewhere [29]. The

following primary antibodies were used: LCN2 anti-

body (1 : 1000, #MAB1757SP; R&D Systems),

pMEK1/2 (1 : 1000, #9154; Cell Signaling, Danvers,

MA, USA), MEK1/2 (1 : 1000, # 8727; Cell Signal-

ing), pERK1/2 (1 : 1000, # 4370; Cell Signaling),

ERK1/2 (1 : 1000, # 9102; Cell Signaling), or GAPDH

(1 : 5000, #5174; Cell Signaling), and samples were

incubated overnight at 4 °C. Secondary antibodies

(1 : 5000), anti-rat IgG (#HAF005; R&D Systems)

and anti-rabbit IgG (#7074; Cell Signaling) were incu-

bated with the samples for 2 h at room temperature.

Immunoreactivity was visualized with ClarityTM Wes-

tern ECL Substrate (#1705061; Bio-Rad, Hercules,

CA, USA) using ImageQuant LAS4000 (GE Health-

care, Chicago, IL, USA).

2.6. Proliferation

About 2500 cells were seeded in triplicate in a 96-well

plate. Cell proliferation was measured every day for

up to 72 h with the CellTiter-Blue assay (#G8080; Pro-

mega, Madison, WI, USA) according to the manufac-

turer’s instructions. Absorbance was recorded at

OD595 nm with a Multifunctional Reader VICTOR X

3 (PerkinElmer, Waltham, MA, USA).

2.7. Colony-formation assay

About 100 SUM149 or 500 MDA-IBC3 shRNA Con-

trol or LCN2-silenced cells were plated in triplicate in

6-well plates. After 15 days, cells were fixed with

methanol for 2 min and stained with 0.2% (w/v) crys-

tal violet for 30 min. Colonies were counted using Gel-

Count (Oxford Optoronix, Abingdon, UK).

2.8. Migration and invasion assay

For the migration assay, 50 000 cells per well (triplicate)

were seeded in medium without serum onto 8 lm

polypropylene filter inserts in Boyden chambers

(Fisher). Medium with 10% FBS was added onto the

well. After 24 h, cells on the bottom of the filter were

fixed and stained with Thermo Scientific Shandon Kwik

Diff Stains (Fisher). The invasion assay was done as

described above, except that the 8 lm polypropylene fil-

ter inserts were coated with Matrigel (#CB-40234; Corn-

ing Inc., Corning, NY, USA) and incubated for 24 h.

Ten visual fields were randomly chosen under micro-

scopy and cells were quantified by using IMAGEJ software

(National Institutes of Health, Bethesda, MD, USA).

2.9. Mammosphere assay

For primary mammosphere formation, 30 000

SUM149 or MDA-IBC3 control or LCN2-knockdown

cells were plated in ULTRALOW attachment six-well

plates (Corning Inc.) in mammosphere medium

[serum-free MEM supplemented with 20 ng�mL�1 of

bFGF (Gibco), 20 ng�mL�1 epidermal growth factor

(Gibco), B27 19 (Gibco), and gentamycin/penicillin/

streptomycin (Thermo Fisher)]. After 7 days,

5 lg�mL�1 of MTT (Sigma-Aldrich) was added for

30 min and the mammospheres were counted using

GelCount (Oxford Optoronix). For secondary mam-

mosphere formation, primary mammospheres were dis-

sociated and counted, and 10 000 cells were plated in

the ULTRALOW attachment six-well plates in mam-

mosphere media and analyzed after 7 days.

2.10. CD44/CD24 flow cytometry

About 2.5 9 105 cells were suspended in CD24-PE

mouse anti-human (#555428; BD Biosciences) or CD24-

BV421 Mouse Anti-Human (#562789; BD Biosciences,

Franklin Lakes, NJ, USA) and CD44-FITC mouse

anti-human (#555478; BD Biosciences) or CD44-APC

Mouse anti-Human (#559942; BD Biosciences) solu-

tions and incubated for 20 min on ice. Cells only, PE/

BV421 only, and FITC/APC only were used as controls

to set the gating. Fluorescence was detected by using a

Gallios Flow Cytometer (Beckman Coulter, Brea, CA,

USA) at the Flow Cytometry and Cellular Imaging

Core Facility (UT MD Anderson Cancer Center, Hous-

ton, TX, USA). FLOWJO software (Treestar, Ashland,

OR, USA) was used to analyze the data.

2.11. Kinase enrichment analysis

The RPPA data were also used for the phosphopro-

teomic analysis using kinase enrichment analysis (KEA

—https://maayanlab.cloud/kea3/) [31]. Briefly, the 20

proteins that exhibit the highest phosphorylation fold
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change levels in control vs LCN2-silenced cells were

analyzed. Two different analyses were performed using

KEA: (a) The differentially phosphorylated proteins

are queried for enrichment of kinase substrates and (b)

the differentially phosphorylated proteins are queried

for enrichment of interacting proteins across seven

databases. The latter analysis is more general and is

not limited to only kinase substrates. Both analyses

result in the detection of kinases that are putatively

responsible for the observed phosphorylation differ-

ences. Identified proteins by both analyses were

mapped onto the STRING network (https://string-db.

org) to investigate their mutual interactions.

2.12. In vivo experiments

Four- to six-week-old female athymic SCID/Beige mice

were purchased from Harlan Laboratories (Indi-

anapolis, IN, USA) and allowed to acclimate for 1 week

before use. All mice were given free access to food and

water in a specific pathogen-free condition. All animal

experiments were done in accordance with protocols

approved by the Institutional Animal Care and Use

Committee of MD Anderson Cancer Center. Mice were

euthanized with overdose of isoflurane when they met

the institutional criteria for tumor size and overall

health condition. For primary tumor growth, cells were

injected into the orthotopic cleared mammary fat pad of

mice as previously described [32]. Briefly, 5 9 105

SUM149 shRNA Control / LCN2-knockdown cells

were injected (9 mice/Control; 10 mice/LCN2 KD).

Tumor volumes were assessed weekly by measuring pal-

pable tumors with calipers. Volume (V) was determined

as V = (L 9 W 9 W) 9 0.5, with L being length and

W width of the tumor. To determine latency, the first

day when palpable tumors appeared was used to plot

the graph. For brain metastatic colonization studies, we

followed our laboratory protocol [33]. Briefly, 1 9 106

MDA-IBC3 GFP-labeled shRNA Control/LCN2-

knockdown cells (10 mice/group) were injected via the

tail vein into SCID/Beige mice. At 12 weeks after tail-

vein injection, mice were euthanized, and brain tissue

collected and imaged with fluorescent stereomicroscopy

(SMZ1500; Nikon Instruments, Melville, NY, USA). IM-

AGEJ was used to measure GFP-positive areas to quan-

tify the area of brain tumor burden. For mice with more

than one brain metastasis, the area of each metastasis

was considered and measured.

2.13. Statistical analysis

All in vitro experiments were repeated at least three

times, and graphs depict mean � SEM. Statistical

significance was determined with Student’s t-tests (un-

paired, two-tailed) unless otherwise specified. One-way

analysis of variance was used for multiple compar-

isons. Mann–Whitney test was used when normality

was not met. LCN2 expression in breast cancer sam-

ples was analyzed in the IBC Consortium dataset [34]

for IBC and from a meta-dataset previously published

[35]. Tumor samples were stratified as LCN2-high

when expression in tumor was at least two-fold the

mean expression level measured in the normal breast

samples; otherwise, the sample was classified as LCN2-

low. Kaplan–Meier curves and log-rank tests were

used to compare survival distributions. Univariate and

multivariate Cox regression models were used to evalu-

ate the significance of LCN2 expression on overall sur-

vival. A P value of < 0.05 was considered significant.

GRAPHPAD software (GraphPad Prism 8, La Jolla, CA,

USA) was used.

3. Results

3.1. LCN2 mRNA is highly expressed in

inflammatory breast cancer

Previous studies have shown that high LCN2 expres-

sion levels were correlated with poor prognosis in

breast cancer patients [17,25–27]. We further validated

these findings by analyzing a meta-dataset of 8951

breast cancers, in which 87% of tumor samples were

classified as LCN2-low (n = 7830/8951) and 13% as

LCN2-high (n = 1121/8951). Table 1 summarizes the

clinico-pathological patient characteristics stratified by

LCN2 expression status. High expression of LCN2

was associated with variables commonly associated

with poor outcome: younger patients’ age, high grade,

advanced stage tumors (pN-positive and pT3), ductal

type, estrogen receptor (ER)-negative status, proges-

terone receptor (PR)-negative status, Erb-B2 receptor

tyrosine kinase 2 (ERBB2)-positive status, and aggres-

sive molecular subtypes [ERBB2+ and triple-negative

breast cancer (TNBC) subtypes]. In this cohort, we

also analyzed the association of LCN2 expression and

survival over time using the Kaplan–Meier method.

We found that LCN2-high tumors had significantly

shorter overall survival (P < 0.0001) than LCN2-low

tumors (Fig. 1A).

Analysis of microarray data from the IBC World

Consortium Dataset [34] consisting of IBC and non-

IBC patient samples (n = 389; IBC = 137, non-

IBC = 252) showed that LCN2 expression was signifi-

cantly higher in tumors from IBC patients compared

to non-IBC (P = 0.0003; Fig. 1B). We validated this
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finding in another independent dataset [36] that com-

pared mRNA expression of microdissected IBC and

non-IBC tumors (P = 0.0379; Fig. 1C). Here too,

LCN2 expression was higher in ER-negative IBC

patients compared to ER-positive (P = 0.0009;

Fig. 1D) and in more aggressive subtypes, ERBB2-

positive and TNBC, compared to hormone receptor

(HR)-positive/ERBB2-negative subtype (Fig. 1E).

Multivariate analysis showed that LCN2 was expressed

significantly higher in IBC tumors relative to non-IBC

tumors, independently from the molecular subtype dif-

ferences (Odds ratio, 1.71, P = 0.034; Table 2). Here

too, the survival analysis in IBC patients showed that

LCN2-high tumors had significantly shorter overall

survival (P = 0.0317) than LCN2-low tumors

(Fig. 1F). Consistent with the patient data, the levels

of LCN2 were higher in IBC cell lines (Fig. 1G) and

in the supernatants collected from IBC cell lines rela-

tive to non-IBC (Fig. 1H). Taken together, our find-

ings show that LCN2 is highly expressed in IBC

tumors and is correlated with aggressive features and

poor outcome suggesting it may contribute to the

aggressive pathobiology of IBC tumors.

3.2. LCN2-knockdown reduced aggressiveness

features in vitro

We generated stable LCN2-knockdown cell lines

[SUM149 (triple-negative IBC); MDA-IBC3 (HER2+

IBC)] to investigate the role of LCN2 in IBC aggres-

siveness in vitro and in vivo. LCN2-knockdown was

confirmed by qRT-PCR and immunoblotting (Fig. 2A,

B). Because LCN2 is a secreted protein, we evaluated

levels of LCN2 protein in the supernatants from con-

trol and LCN2-silenced IBC cell lines by using ELISA.

We observed significant reduction of secreted LCN2 in

the LCN2-silenced IBC cells (Fig. 2C). Silencing

LCN2 slightly reduced proliferation of SUM149 cells

but did not affect MDA-IBC3 cells (Fig. 2D). Deple-

tion of LCN2 reduced the capacity of the cells to form

colonies (Fig. 2E) and to migrate and invade (Fig. 3A,

B). LCN2 silencing also significantly reduced the per-

centage of cancer stem cell populations in LCN2-

silenced IBC cells relative to control, as shown by

reductions in primary and secondary mammosphere

formation efficiency (Fig. 3C,D) and CD44+CD24�

cell subpopulations (Fig. 3E). These findings indicate

Table 1. Clinico-pathological characteristics of tumor samples from patients with IBC or non-IBC according to LCN2 expression. The

percentage between brackets is relative to the total number of samples informative in each column.

Characteristics Level All (n = 8951) LCN2-low (n = 7830) LCN2-high (n = 1121) P value

Age (years) ≤ 50 2587 (36%) 2218 (36%) 369 (42%) 1.10E-04

> 50 4520 (64%) 4018 (64%) 502 (58%)

Pathological grade 1 717 (11%) 680 (13%) 37 (4%) < 1.00E-06

2 2549 (41%) 2359 (43%) 190 (22%)

3 3016 (48%) 2389 (44%) 627 (73%)

Pathological node (pN) Negative 3666 (57%) 3253 (57%) 413 (53%) 3.89E-02

Positive 2788 (43%) 2426 (43%) 362 (47%)

Pathological size (pT) pT1 2116 (37%) 1912 (38%) 204 (31%) 2.00E-06

pT2 2931 (52%) 2588 (52%) 343 (53%)

pT3 604 (11%) 498 (10%) 106 (16%)

Pathological type Ductal 4027 (79%) 3492 (78%) 535 (86%) 3.00E-06

Lobular 500 (10%) 471 (11%) 29 (5%)

Other 574 (64%) 519 (12%) 55 (9%)

ER statusa Negative 2753 (31%) 1955 (25%) 798 (71%) 1.97E-215

Positive 6198 (69%) 5875 (75%) 323 (29%)

PR statusa Negative 4635 (52%) 3746 (48%) 889 (80%) 3.06E-86

Positive 4284 (48%) 4055 (52%) 229 (20%)

ERBB2 statusa Negative 7862 (88%) 6975 (89%) 887 (79%) 2.37E-21

Positive 1089 (12%) 855 (11%) 234 (21%)

HR subtypea HR+/ERBB2� 5914 (66%) 5598 (72%) 316 (28%) < 1.00E-06

ERBB2+ 1089 (12%) 855 (11%) 234 (21%)

TNBC 1938 (22%) 1368 (17%) 570 (51%)

Overall survivalb 4984 1.00 1.58 (1.34–1.86)c 3.31E-08

a

mRNA status.
b

Univariate analysis.
c

Hazard ratio (95% confidence interval)
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Fig. 1. LCN2 was highly expressed in tumors from patients with IBC. (A) High LCN2 expression was associated with shorter overall survival

in a meta-dataset of patients with non-IBC. (B, C) LCN2 mRNA expression was higher in tumors from IBC patients vs non-IBC patients in

two independent breast cancer datasets [IBC World Consortium Dataset; GSE45582]. (D) LCN2 mRNA expression was higher in ER-
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and TNBC, compared to HR-positive/HERBB2-negative subtype. (F) LCN2-high expression correlates with shorter overall survival in patients

with IBC. (G) LCN2 mRNA expression was higher in IBC cell lines compared to non-IBC cell lines. (H, I) LCN2 protein expression was higher

in IBC cell lines compared to non-IBC cell lines shown by (H) immunoblotting or (I) ELISA for secreted LCN2 in supernatants. Bar graphs

indicate mean � SEM from three independent experiments. GRAPHPAD PRISM software was used to obtain the P values, with Mann–Whitney

tests used to compare two categories or one-way analysis of variance to compare three or more categories. Black lines in each group (B–E,

and G) indicate mean � SD.
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that suppression of LCN2 in IBC cells reduced in vitro

aggressiveness features.

3.3. Silencing of LCN2 inhibited tumor growth

and skin invasion

To investigate the effects of LCN2 on tumor growth

and skin invasion, key characteristics of IBC tumors

[4], we injected SUM149 control or LCN2-silenced

cells into the cleared mammary fat pad of SCID/Beige

mice. Silencing of LCN2 reduced tumor volumes

(P = 0.0037; Fig. 4A) and tumor latency, that is, the

ability to initiate tumor growth: mice transplanted

with SUM149 LCN2-silenced cells took longer to initi-

ate tumors than did those transplanted with SUM149

control cells (P = 0.0145; Fig. 4B). Because IBC typi-

cally manifests with skin invasion and formation of

tumor emboli [4], we assessed skin invasion visually

during primary tumor growth, as evidenced by loss of

fur at the tumor site and skin redness and thickness,

and during tumor excision when tumors were firmly

connected with the skin. Analysis of resected tumors

showed that significantly fewer mice with SUM149

LCN2-silenced cells had skin invasion/recurrence com-

pared with mice implanted with control cells [shLCN2:

two of eight mice (25%) vs shControl: seven of eight

mice (87.5%), P = 0.01; Fig. 4C,D]. On histologic

examination, tumors generated from LCN2-silenced

cells were more differentiated than those generated

from control SUM149 cells (Fig. 4E); we further

Table 2. Univariate and multivariate Cox regression analysis of IBC patient samples vs non-IBC (n = 389).

IBC vs non-IBC

Univariate Multivariate

Odds ratio 95% CI P value Odds ratio 95% CI P value

LCN2, high vs low 2.09 1.43–3.06 1.43E-03 1.71 1.13–2.6 3.42E-02

Molecular subtype

ERBB2+ vs HR+/ERBB2� 2.82 1.82–4.38 1.02E-04 2.5 1.59–3.93 8.16E-04

TNBC vs HR+/ERBB2� 1.9 1.22–2.97 1.69E-02 1.51 0.93–2.44 0.162
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Fig. 2. Silencing LCN2 decreased colony formation efficiency. LCN2 was knocked down (shLCN2) in two IBC cell lines (SUM149 and MDA-

IBC3) and confirmed by (A) qRT-PCR and (B) immunoblotting. (C) Secreted LCN2 measured in control and silenced cells by ELISA at the

indicated times. Bar graphs indicate mean � SEM, calculated after three independent experiments; P values from t-tests. (D) Proliferation
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2758 Molecular Oncology 15 (2021) 2752–2765 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

LCN2 promotes tumorigenesis in IBC E. S. Villodre et al.



observed tumor emboli, another hallmark of IBC

tumors, in SUM149 control-transplanted tumors but

not in tumors generated from LCN2-silenced SUM149

cells (Fig. 4E).

We recently generated xenograft mouse models of

brain and lung metastasis via tail-vein injection of IBC

cell lines [29,33]. We also showed that sublines of

SUM149 generated from brain metastases (BrMS) and

lung metastases (LuMS) have distinct morphologic

and molecular features [29]. Microarray profiling of

these sublines showed upregulation of LCN2 in the

brain metastatic sublines (Fig. S1A), and we confirmed

higher levels of secreted LCN2 in the BrMS sublines

vs LuMS by ELISA (Fig. S1B). Most recently, Chi

et al. [37] elegantly demonstrated that LCN2 promotes

brain metastatic growth in mouse models of lep-

tomeningeal metastasis, highlighting a potential brain

metastasis-promoting role for LCN2. We investigated

the functional role of LCN2 in IBC brain metastasis

by using our HER2+ MDA-IBC3 mouse model, which

has a high propensity to metastasize to the brain and

has been used to identify targets and develop therapeu-

tics against brain metastasis [29,38–40]. We found that

the brain metastatic burden was significantly lower in

mice that had received tail-vein injection of LCN2-

silenced MDA-IBC3 cells than in mice injected with

control cells (Fig. 4F, P = 0.0059). Also, fewer mice

injected with LCN2-silenced cells developed brain

metastasis [one of 10 (10%)] than did mice injected

with control cells [five of 10 mice (50%)], although this
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trend was not statistically significant (P = 0.1409;

Fig. 4G). Representative stereofluorescence and hema-

toxylin and eosin images of brain metastasis are shown

in Fig. 4H. Overall, our findings suggest that LCN2

may drive IBC tumor progression, skin invasion/recur-

rence, and brain metastasis.

3.4. LCN2 silencing impairs cell cycle-associated

proteins

To identify potential mechanisms and pathways

involved in suppression of tumor growth and skin inva-

sion in LCN2-silenced cells, we used reverse-phase pro-

teomics assay (RPPA) profiling to compare control and

LCN2-silenced SUM149 cells. Our analysis showed

reduced expression of cell cycle-associated proteins

[such as AXL, FOXM1, Chk1, CDK1, Wee1, Aurora-

B, and cyclin-B1 and the mammalian target of rapamy-

cin (mTOR)/AKT pathway] in LCN2-silenced IBC cells

(Fig. 5A). Gene set enrichment analysis revealed several

key signaling pathways that were enriched in the control

cells, including those associated with cell cycling, DNA

repair, and mTOR signaling (Fig. 5B). Furthermore, we

performed KEA [31] on the 20 proteins that exhibited

the highest phosphorylation fold changes in LCN2-

control vs LCN2-silenced SUM149 cells (Table S1).

Based on the set of predicted activated kinases (Tables

S1 and S2), an interaction network was generated

(Fig. 5C). Based on the node degree distribution (i.e.,

the distribution of the number of interactions per gene

in the network), mitogen-activated protein kinase 1

(MAPK1; N = 10), MAPK8 (N = 7), ribosomal protein

S6 kinase B1 (RPS6KB1; N = 7), and MTOR (N = 11)

appear to be central to LCN2 action in SUM149 cells.

Our immunoblotting experiments confirmed that silenc-

ing LCN2 reduces the phosphorylated forms of MEK

(pMEK) and ERK (pERK) of the MAPK signaling

pathway (Fig. 5D). Thus, LCN2 may regulate different

pathways, including cell cycle, MAPK, and mTOR pro-

teins to promote tumor growth in IBC.
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4. Discussion

Inflammatory breast cancer is an aggressive form of

breast cancer with poor survival outcomes. Although

considerable effort has been undertaken to understand

the unique biology of IBC, insights are still limited as

to the molecular properties that mediate the develop-

ment and aggressiveness of IBC. Herein, we report

that the secreted glycoprotein LCN2 was highly

expressed in tumors from IBC patients and in IBC cell

lines. We further demonstrate, with in vitro and in vivo

studies, that LCN2 has a tumor promoter function in

IBC.

LCN2 has been implicated in the progression of sev-

eral types of human tumors. LCN2 expression is

higher in solid tumors than in corresponding normal

tissues [41,25], and it is mainly described as tumor pro-

moter in many cancers, including pancreas, glioblas-

toma, thyroid, kidney, esophagus, and breast cancer

[19,28,42–48].
In breast cancer, increased LCN2 expression was

associated with poor outcomes and shown to be an

independent prognostic marker of disease-specific-free

survival [27,49,48]. LCN2 also correlates with several

important unfavorable prognostic factors in breast

cancer, such as hormone-negative status, high prolifer-

ation levels, high histologic grade, and the presence of

lymph node metastases [27,49,48]. Further, serum

levels of LCN2 have been shown to correlate with can-

cer progression and higher likelihood of metastasis in
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breast cancer [26,50]. The oncogenic role of LCN2 has

been reported in xenograft and LCN2-knockout

mouse models. Disruption of the LCN2 gene in

MMTV-PyMT mice was found to suppress primary

tumor formation without affecting lung metastasis

[51]. Using the spontaneous MMTV-ErbB2(V664E)

LCN2�/� mouse model, Leng et al. [18] reported

delayed tumor growth and reduced lung metastasis

burden in these LCN2�/� mice. Another group showed

that injection of wild-type PyMT tumor cells into

LCN2-deficient mice did not alter primary tumor for-

mation but did significantly reduce lung metastasis

[52]. LCN2 has also been shown to promote tumor

progression in xenograft mouse models [16,26]. Consis-

tent with these studies, our current work with xeno-

graft mouse models of IBC supports that LCN2 has a

tumor promoter function in IBC tumors. We demon-

strated that silencing of LCN2 reduced tumor initia-

tion and growth, skin invasion/recurrence, and brain

metastasis burden in preclinical mouse models of IBC.

We further reported that depletion of LCN2 in IBC

cell cultures reduced features associated with aggres-

siveness in vitro, including migration, invasion, and

cancer stem cell populations. Others have also found

that reduction of LCN2 levels affected the same fea-

tures in MDA-MB-231 cells (TNBC cell line) and in

SK-BR-3 (HER2+ breast cancer cell line) [18,26]. How-

ever, our data demonstrating higher levels of secreted

LCN2 in IBC vs non-IBC cell lines and showing sig-

nificant inhibition of key IBC tumor features such as

tumor emboli/skin invasion in LCN2-silenced tumors

suggest that LCN2 may exert its influence via an IBC-

specific mechanism. The LCN2 protein has many func-

tions, including transport of fatty acids and iron,

induction of apoptosis, suppression of bacterial

growth, and modulation of inflammatory responses

[16–20,26,53]. In malignant cells, LCN2 promotes

oncogenesis through several mechanisms, including

stabilization of MMP-9, sequestration of iron, induc-

tion of EMT, apoptosis resistance, and regulation of

cell cycling [16–20,26,53]. Here, we report that LCN2

could regulate cell cycle-associated proteins such as

FOXM1, Chk1, CDK1, Aurora-B, Wee1, and cyclin-

B1 to promote its oncogenic role in IBC tumors.

Others have also found that silencing of LCN2

affected the expression of cell cycle proteins by reduc-

ing cyclin-D1 and inducing p21, resulting in G0-G1

cell cycle arrest [22,24,25].

LCN2 is also a potential therapeutic target in cancer

and other diseases. An antibody against LCN2 was

found to decreased lung metastasis in a 4T1-induced

aggressive mammary tumor model [18]. In cervical

cancer cells, treatment with LCN2-neutralizing

antibody reduced the migration and invasion of cells

that overexpressed LCN2 [54]. In other diseases, use of

an anti-LCN2-neutralizing antibody showed reductions

in reperfusion injury after stroke and attenuated skin

lesions in a psoriasis mouse model [55,56]. These find-

ings suggest that LCN2 could be an exploitable thera-

peutic target in IBC and other aggressive tumors.

Further studies are needed to explore therapeutic

strategies in IBC models by using antibodies against

LCN2 or targeting LCN2-associated molecular path-

ways, including those involved in cell cycling.

5. Conclusion

In summary, our studies provide evidence, for the first

time, that LCN2 is highly upregulated in IBC tumors

and that it is required for tumor growth and skin inva-

sion in mouse models of IBC; our findings further sug-

gest that LCN2 could be a therapeutic target for IBC

and other aggressive cancers.
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Fig. S1. LCN2 expression is higher in sublines gener-

ated from brain metastasis (BrMS) than those gener-

ated from lung metastasis (LuMS). (A) Microarray

analysis of sublines generated from BrMS or LuMS of

SUM149 cells showed LCN2 to be one of the top

upregulated genes in BrMS (red arrow). Samples are

described in Debeb 2016 [29]. (B) LCN2 is secreted in

higher levels in BrMS vs LuMS.

Table S1. Top kinases predicted to be activated based

on kinase-substrate interactions of differentially phos-

phorylated proteins.

Table S2. Top kinases predicted to be activated based

on kinase-substrate and protein-protein interaction

analysis of differentially phosphorylated proteins

across 10 different knowledge bases.
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