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Osteoporosis is a skeletal system disease characterized by low bone mass and

altered bone microarchitecture, with an increased risk of fractures. Classical

theories hold that osteoporosis is essentially a bone remodeling disorder

caused by estrogen deficiency/aging (primary osteoporosis) or secondary to

diseases/drugs (secondary osteoporosis). However, with the in-depth

understanding of the intricate nexus between both bone and the immune

system in recent decades, the novel field of “Immunoporosis” was proposed by

Srivastava et al. (2018, 2022), which delineated and characterized the growing

importance of immune cells in osteoporosis. This review aimed to summarize

the response of the immune system (immune cells and inflammatory factors) in

different types of osteoporosis. In postmenopausal osteoporosis, estrogen

deficiency-mediated alteration of immune cells stimulates the activation of

osteoclasts in varying degrees. In senile osteoporosis, aging contributes to

continuous activation of the immune system at a low level which breaks

immune balance, ultimately resulting in bone loss. Further in diabetic

osteoporosis, insulin deficiency or resistance-induced hyperglycemia could

lead to abnormal regulation of the immune cells, with excessive production of

proinflammatory factors, resulting in osteoporosis. Thus, we reviewed the

pathophysiology of osteoporosis from a novel insight-immunoporosis, which

is expected to provide a specific therapeutic target for different types

of osteoporosis.
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1 Introduction

Osteoporosis is the most common skeletal disease

characterized by low bone mass and microarchitectural

alteration of bone tissue, accompanied by the increased risk of

fractures (1). The causes of osteoporosis are divided into primary

(postmenopausal and senile osteoporosis) and secondary

(diabetic osteoporosis, glucocorticoid-induced osteoporosis)

causes. The burden of osteoporosis affects patients’ quality of

life, mainly due to femur and vertebrae fractures (1). Due to the

aging population, osteoporosis incidence is rapidly increasing

and gradually becoming a public health problem.

Physiologically, the skeletal system undergoes an orderly and

coupled process called bone remodeling (2). Bone remodeling

begins with the absorption of mineralized bone by osteoclasts

and follows by the osteoblast-mediated formation of bone

matrix that becomes mineralized in succession. However, the

process of bone remodeling is affected by physiological

alterations, including estrogen deficiency, aging, diseases and

drugs. Once the balance of bone remodeling breaks, specifically,

when the process of bone resorption takes over bone formation,

it results in bone loss and ultimately leads to osteoporosis (1).

Although classical theories define osteoporosis as an endocrine

disease (3), many studies reported that interactive

communication exists between skeletal and immune systems

in osteoporosis. During the past two decades, a novel

interdisciplinary field “osteoimmunology” was established to

explore the intricate relationship between the skeletal and

immune systems (4). Osteoblast and osteoclast activities are

regulated by various soluble mediators secreted from immune

cells, including cytokines, chemokines, and growth factors. In

reverse, osteoblasts and osteoclasts regulate the hematopoietic

stem cell niche from which immune cells are derived (5).

Recently, accumulating evidence demonstrated that both

innate and adaptive immune cells contribute to the

pathogenesis of osteoporosis by producing pro-inflammatory

mediators (6, 7). The term “immunoporosis” was proposed and

coined by Srivastava et al. (2018, 2022) to establish a novel field

emphasizing the role of immune cells in the development of

osteoporosis (8, 9).

This review will present the relationship between immune

cells and bone remodeling. More importantly, we focused on the

pathophysiology of different types of osteoporosis using the
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novel insight-immunoporosis. This review helps to understand

the pathogenesis of different types of osteoporosis from the level

of immune cells and is expected to provide a specific therapeutic

target for different types of osteoporosis.
2 Bone remodeling and immune
cells

Bone remodeling is a dynamic and continuous process that

maintains skeletal health (10). The process involves three

consecutive phases: osteoclasts-mediated resorption; reversal,

during which mesenchymal derived osteoblasts are recruited to

the bone site of bone resorption; and osteoblasts-mediated

formation. Hence, osteoblasts and osteoclasts are two major

players in bone remodeling. However, multiple pro-

osteoclastogenic and pro-osteogenic mediators are released by

innate and adaptive immune cells influencing bone cell function

(Table 1). In addition, different types of bone cells affect the

activity of immune cells, and their complex interactions form a

complex bone microenvironment. Therefore, we reviewed the

relationship between common immune cells and bone

remodeling (Figure 1).
2.1 Innate immune cells

2.1.1 Macrophages
Macrophages derive from the monocytic lineage, which

performs immune sentinel and homeostatic functions by

recognizing and eliminating pathogenic organisms.

Macrophages play an essential role in the recruitment and

activation of other immune cells, including T lymphocytes (T

cells). Furthermore, macrophages maintain immune

homeostasis by transforming polarized phenotypes (22). They

infiltrate tissues during inflammation, forming pro-

inflammatory phenotypes (M1) and anti-inflammatory

phenotypes (M2) in different immune microenvironments. M1

macrophages are polarized by lipopolysaccharide (LPS) either

alone or accompanied by T-helper 1 (Th1) cytokines, such as

Interferon-g (IFN-g), and have the pro-inflammatory effect by

producing cytokines, including interleukin-1b (IL-1b), IL-6, IL-
12 and tumor necrosis factor-alpha (TNF-a). Under the
TABLE 1 The pro-osteoclastogenic and pro-osteogenic mediators secreted by immune cells.

Cells pro- osteoclastogenic mediators pro-osteogenic mediators Reference

macrophages TNF-a, IL-1b, IL-6, ROS TGF-b, IGF-1, CCL2, CCL5 (11, 12)

Dendritic cells IL-1, IL-6, IL-7, IL-15, TNF-a – (13, 14)

neutrophils IL-17, RANKL FGF-2, PDGF, TGF-b (15–17)

T cells TNF-a, RANKL, IFN-g, IL-1, IL-6, IL-17, IL-22 IFN-g, IL-10, TGF-b, IL-17 (18–20)

B cells RANKL – (21)
fro
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stimulation of T-helper 2 (Th2) cytokines, such as IL-4 and IL-

13, M2 macrophages paly an anti-inflammatory and

immunoregulatory role by secreting anti-inflammatory

cytokines, such as IL-10 and TGF-b. The prevailing effect of

M1 macrophages is the promotion of osteoclastogenesis with a

high level of reactive oxygen species (ROS) (23) and pro-

osteoclastogenic cytokines, including TNF-a and IL-1b (11).

In addition, a study by Liang B et al. found that M1macrophages

can promote osteogenesis by secreting high levels of chemokines

to recruit mesenchymal stem cells (MSCs) (11), while another

study found that M1 macrophages could promote osteoblast

differentiation via cyclooxygenase-2 (COX-2)-prostaglandin E2

(PGE2) pathway (24). In contrast, M2 macrophages have a

bone-protective role (22) and promote bone mineralization by

stimulating MSCs and precursor osteoblasts by differentiating

into mature osteoblasts. On the other hand, M2 macrophages

have a high angiogenic potential, indirectly promoting

osteogenesis. Additionally, M2 macrophage subsets participate

in apoptotic cell clearance, contributing to steady-state bone

turnover. A recent study by Kalluri R et al. found that

extracellular vesicles (EVs), which contain protein and micro-

RNA cargo, are secreted by some cells and endocytosed by target

cells whose function is affected by those EVs’ cargo (25).

Although macrophage-derived EVs contain different types of

miRNAs, the current mainstream view is that naïve (M0) and

M2-derived EVs promote repair/regeneration and M1 EVs

inhibit bone repair and promote bone loss (26, 27).

Interestingly, mesenchymal stem cell-derived EVs affect the

activity and polarization of macrophages (28, 29), suggesting

the interaction between mesenchymal stem cells and immune
Frontiers in Endocrinology 03
cells. The balance of M1/M2 macrophage polarization governs

the fate of an injured or inflamed organ. Similarly, the

phenotypic switch between M1 and M2 macrophage

populations is”fluid” rather than “fixed” in response to the

local bone microenvironment, which is closely related to bone

remodeling (12, 22). Hence, the relationship between

macrophages and bone remodeling attracts more attention.
2.1.2 Dendritic cells
DCs are the primary antigen-presenting cells derived from

monocyte/macrophage progenitor cells and can activate

adaptive immune responses. In addition to the exceptional

ability to present antigens, DCs play distinct roles in

regulating T lymphocytes cells development, differentiation,

and function. Current evidence shows that DCs critically

contribute to the differentiation and homeostasis of Treg cells,

which serve an essential role in promoting osteogenesis and

inhibiting osteoclastogenesis via anti-inflammatory effect (30).

However, DCs express receptor activator of NF-kappaB (RANK)

expressed in osteoclasts. Additionally, DCs also produce pro-

inflammatory cytokines to promote the formation of osteoclasts,

including IL-1, IL-6, and TNF-a. A recent study confirmed that

in the presence of the receptor activator of NF-kappaB ligand

(RANKL), DCs could transdifferentiate into osteoclasts and

involve bone resorption (13). Newly formed osteoclasts can

induce chemotaxis of DCs to call on more DCs, creating an

osteoclast-DC cycle that continues to increase bone destruction

(13). This evidence suggests that DCs serve a dual role in bone

remodeling and has great potential for further research.
FIGURE 1

Immune cells promote osteoclastogenesis by secreting pro-osteoclastogenic mediators. Those immune cells include M1 macrophages, DCs,
neutrophils, Th1, Th17 and B cells. M1 macrophages are also involved in osteogenic difference. M1 macrophages and Treg cells promote
osteogenic differences by releasing pro-osteogenic mediators. Th2 cells play a bone-protective role. In addition to promoting
osteoclastogenesis, neutrophils can recruit Th17cells and inhibit the maturation of B cells. B cells play a dual role in osteoclastogenesis. Note:
Various types of immune cell image materials are from https://smart.servier.com.
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2.1.3 Neutrophils
Neutrophils, an effector of the innate immune response,

originate from hematopoietic precursors in the bone marrow

and are recruited into infected tissue to neutralize pathogens by

releasing proteases and toxic enzymes. Neutrophils are reported

to have protective functions for bone formation at the early

stages of bone healing. A review of the role of neutrophils

infiltrated that neutrophils can secrete many pro-angiogenic

growth factors and osteogenic factors, such as fibroblast

growth factor-2 (FGF-2), platelet-derived growth factor

(PDGF), and transforming growth factor beta (TGF-b) (15).

However, the hyperactive neutrophils triggered by infection or

injury can harm bone homeostasis. Hajishengallis G et al. argued

that neutrophils could produce chemokines to recruit

proinflammatory cells, such as Th17 cells, and suppress B

lymphocytes, thereby promoting inflammatory bone loss (16).

In addition, Chakravarti A et al. confirmed this idea using in

vitro experiments and found that activated neutrophils secrete

RANKL, contributing to the formation and maturation of

osteoclasts (17). According to the available evidence, the role

of neutrophils on bone remodeling depends on the

microenvironment, but the mechanism remains unclear, which

needs to be explored further.

2.1.4 Another innate immune cells
Mast cells (MCs) are derived from hematopoietic stem cells

in bone marrow, and MCs participate in the regulation of bone

homeostasis and the pathogenesis of bone diseases through

mediators such as synthase and cytokines. In the study about

the osteogenic function of MCs in patients with rheumatoid

arthritis, Kim KW et al. found that MCs could directly stimulate

osteoclast formation or indirectly produce tissue-destroying

cytokines (31). Natural killer (NK) cells are cytotoxic

lymphocytes of the innate immune system that develop from

hematopoietic stem cells. NK cells induce differentiation of

osteoclasts in an M-CSF and RANKL-dependent manner to

regulate bone remodeling (32). Moreover, through the in vitro

validation, Feng S et al. found that cytotoxic NK cells could

control the pathogenic bone resorption of osteoclasts (33).

However, other studies have shown that IL-15-activated NK

cells could kill osteoclasts and inhibit bone erosion, which

requires contact between NK cells and osteoclasts (34).

Therefore, NK cells can control or increase osteoporosis

depending on the tissue microenvironment.
2.2 Adaptive immune cells

2.2.1 T lymphocytes (T cells)
T cells originate from bone marrow and mainly mature in

the thymus, including two prominent cell families: CD4+

(helper) and CD8+ (cytotoxic) groups. T cell-mediated cellular
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immune response plays a vital role in inflammatory diseases,

which can directly kill target cells by specifically binding and

disrupting the membrane or releasing lymphokines that amplify

and enhance the immune effect.

CD4+ T cells interact with other immune cells by surface

receptors and secret cytokines to increase or decrease their

activation state (35). According to their cytokine expression

profile, CD4+ T cells are divided into different subsets, including

Th1, Th2, Th9, Th17, Th22, Tfh, and Treg cells. Th1, Th2, Th17,

and Treg cells are differentiated from Th0 cells as the main

effector cells. Th1 cells are involved in the cell-mediated response

to local inflammation, and they can secrete cytokines that act

mainly on macrophages to exert pro-inflammatory effects.

Trigged by IL-12, Th1 cells produce IFN-g and TNF-a and

can stimulate macrophage polarization toward the M1

phenotype. Previously, Th1 cells were thought to be primarily

involved in inflammatory bone loss (36). However, later

evidence found that Th1 cells may play a dual role in

osteoclastogenesis due to the effect of IFN-g. On the one hand,

IFN-g increases the degradation of ubiquitin ligase TRAF6,

inhibiting the formation of osteoclasts. Further, IFN-g
promotes osteoclast maturation in the late stage of osteoclast

formation (18). Additionally, Th1 cells are also the producers of

TNF-a, which are reported to increase osteoblast apoptosis and

promote osteoclastogenesis by increasing the expression of

RANKL (37), and the mechanism of action needs to be

explored further. Usually, Th2 cells are involved in the

humoral immune process and assist in activating B cells,

which play an anti-inflammatory role. In addition, Th2 cells

are characterized by the production of IL-4, IL-5, and IL-13; they

also participate in macrophage polarization to the M2

phenotype. There is some evidence for the relationship

between Th2 cells and osteoclasts. The available evidence

suggests that Th2 cells may serve a bone-protective role. A

review by Pacifici R et al. concluded that active Th2 cells

maintain osteoblast activity by enhancing the production of

parathyroid hormone (PTH) (38). However, there are

fewer relevant studies on its role in bone metabolism,

specifically about the relationship between Th2 cells and

osteoclasts. Th17 cells are essential in developing autoimmune

diseases by secreting various pro-inflammatory factors,

participating in the development of inflammation, and

enhancing immunopathological damage. It can promote

osteoclastogenesis by secreting various pro-inflammatory

cytokines, including IL-1, IL-17, IL-22, and TNF-a (19). The

prevailing view was that IL-17 upregulates the RANK receptor

on osteoclast precursors to promote osteoclast differentiation

(39). However, its role in osteoblasts is still controversial.

Conversely, IL-17 can inhibit BMP-2-induced osteoblast

differentiation (40) and induce pyroptosis in osteoblasts

through the NLRP3 inflammasome pathway in vitro (41).

Recent studies have reported that IL-17 can promote

osteoblast differentiation, bone regeneration, and remodeling
frontiersin.org
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in mice (42). These different accounts provide clues to the IL-17

role in bone metabolism and deserve further investigation. Treg

cells are a subset of cells with broad immunosuppressive and

immunomodulatory effects. Producing anti-inflammatory

cytokines, including IL-10 and TGF-b, can inhibit the over-

activation and proliferation of many immune cells in the body,

weaken the inflammatory response and maintain the stability of

the immune system. A prevailing view pointed out that Treg

cells can directly suppress the maturation of osteoclasts by

expressing cytotoxic T lymphocyte-associated antigen-4

(CTLA-4) to remove the costimulatory molecule, CD80/CD86

expressed on osteoclast precursors (43). However, a recent study

reported that Treg cells have a bone-protective effect by reducing

osteoclast numbers rather than causing an intrinsic defect in

osteoclast differentiation (44). However, these ideas are not yet

fully developed, and the role of Treg on osteoblasts is still

unclear, which needs to be further explored. Accordingly, the

balance of Th1/Th2 and Th17/Treg cells is crucial in

maintaining bone homeostasis in the physiological state. Once

pathogenic factors cause the disorder in Th1/Th2 and Th17/

Treg balance, the bone remodeling process is bound to be

affected, resulting in various bone diseases.

CD8+ T cells serve an important role in the clearance of

intracellular pathogens and emergent neoplasms, and the

mature CD8+ T cell is known as a cytotoxic T cell because of

its role in recognizing damaged somatic cells and triggering the

death pathway through cytotoxic proteins. They can kill target

cells and enhance T cell-target cell interactions specifically. It has

been reported that CD8+ T cells have an inhibitory effect on

osteoclastogenesis by secreting various soluble proteins, such as

osteoprotegerin (OPG), a soluble RANKL decoy receptor, to

suppress the interaction of RANKL-RANK (45). In addition,

osteoclasts and CD8+ T cells can form a negative feedback loop,

contributing to the homeostasis of the skeletal and immune

systems, which play a protective role in bone resorption (46). It

has been shown that osteoclasts from peripheral blood

mononuclear cells can activate CD8+ T cells (47). These CD8+

T cells are shown to be noncytolytic and anergic, expressing

CD25 and Foxp3, therefore referred to as osteoclast-induced

regulatory CD8+ T cells or OC-iTcREG. OC-iTcREG can

express membrane-bound RANKL and CTLA-4 and produce

IFN-g, IL-6, IL-10, and IL-2 (48, 49). These factors can have

either positive or negative effects on osteoclasts, thus allowing

CD8+ T cells to play a regulatory role in the process of bone

remodeling. However, the role of CD8+ T cells on osteoblasts is

unclear and needs to be explored further. In addition, different

types of bone cells have different effects on T cells. There is

evidence that osteoblasts support the differentiation of T cells in

the bone marrow. A study by Yu VW et al. confirmed that the

expression of Notch ligand deltalike 4 by osteoblasts contributes

to supporting the development of T cell progenitor (50). Studies

on osteoclasts have revealed that antiresorptive drugs can affect

the activity of immune cells by inhibiting osteoclast activity. For
Frontiers in Endocrinology 05
example, osteoclast precursor cells were shown to have the

ability to inhibit T cell proliferation in a mouse model of

autoimmune arthritis (51). This evidence suggests a regulatory

role of bone cells on T cells, although it is not sufficient and

needs to be further explored.

2.2.2 B lymphocytes (B cells)
B cells are derived from pluripotent stem cells in the bone

marrow and are known for producing antibodies in adaptive

immune responses. B cells can be stimulated by antigens and

subsequently proliferate or differentiate into a large number of

plasma cells, which secrete antibodies that play an immune

clearance role in blood circulation. Further, as antigen-

presenting cells, B cells can directly activate T cells and

macrophages, thus playing an immunomodulatory role (52). It

was reported that both B cells and B-cell-derived plasma cells

could regulate osteoclastogenesis by delivering RANKL (21).

However, the B cell is also a major source of osteoprotegerin

(OPG). In addition, the effect of B cells is influenced by T cell

subsets. When activated by Th1 cytokines, B cells can inhibit

osteoclastogenesis, but under the stimulation of Th2 cytokines, B

cells promote osteoclastogenesis (53). Although current

attention to B cells is paid to osteoclastogenesis, a recent study

found that B cells inhibited osteoblast differentiation by

activating extracellular signal-regulated kinase (ERK) and

nuclear factor-kappaB (NF-kB) signaling pathways (54), which

resulted in the inhibition of bone formation. However, the study

has also shown that mTORC1 signaling in pre-osteoblasts is

required for normal B cell development in mice, which means

that there may be a bidirectional interaction between B cells and

osteoblasts (55). While many aspects of B cell biology in bone

remodeling remain unclear, B cell is emerging as one of the key

regulators of the process. Apart from that, bone cells affect the

activity and function of B cells. Greenbaum A et al. found that

depletion of CXCL12 in osteoblasts reduced the number of B

lymphoid progenitors in the bone marrow. Therefore, it

demonstrated that osteoblasts could support the differentiation

of B cells in the bone marrow (56). Furthermore, as a potent

inhibitor of osteoblast formation produced by osteocytes,

sclerostin deficient mice exhibited high bone mass and

reduced mature B cells, suggesting that the regulation of B

cells by osteocytes is involved in the bone remodeling process

(57). This evidence suggests an inextricable link between the

immune and skeletal systems, and thus the concept of the

interdependence of the two systems must be considered when

exploring disease mechanisms or therapeutic strategies (58).
3 Postmenopausal osteoporosis

Postmenopausal osteoporosis (PMOP) is prevalent in primary

osteoporosis and is characterized by excess osteoclastogenesis
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leading to net bone loss and brittle fractures. A previous WHO

report showed that the risk of osteoporotic fractures in

postmenopausal women is at least 30% and even closer to 40%

(59), suggesting that the health of middle-aged and older women is

affected by PMOP-related bone injury which has become one of the

urgent clinical problems to be solved. It was reported that PMOP is

a high-bone turnover disease: bone resorption is increased, while

bone formation is also increased, just not keeping up with the bone

resorption (60). The classical theory defined estrogen deficiency as a

primary pathogenetic factor in PMOP. Estrogen is shown to have a

protective effect on bone resorption by inducing osteoclasts

apoptosis and blocking the maturation of osteoclasts (61, 62).

However, without the protective effect of estrogen, the balance of

bone remodeling favors bone resorption, resulting in PMOP (63). A

recent study reported that estrogen deficiency-mediated bone loss

has a complex mechanism mainly involving the immune system

rather than a mere direct effect of estrogen on bone cells (64). Next,

we reviewed the role of estrogen deficiency-mediated alteration of

various immune cells on PMOP development (Figure 2).
3.1 Innate immune cells and PMOP

3.1.1 Macrophages
An ovariectomy (OVX) animal experiment demonstrated

that estrogen deficiency made the M1 polarization enhanced

and the M2 polarization impaired (65). Further, an increased

level of pro-inflammatory cytokines was observed in

postmenopausal patients, such as TNF-a and IL-1b (66).

Accordingly, M1 macrophages have a promotive effect on
Frontiers in Endocrinology 06
osteoclastogenesis, which gives a reason for bone resorption

in PMOP [8]. Meanwhile, blunted M2 activation leads to bone

loss in PMOP (67). Contrary to our knowledge, M1

macrophages are the potential precursors of osteoclasts, and

the researchers found that M2 macrophages can differentiate

into osteoclasts without estrogen protection in the presence of

RANKL (65). Although M2 macrophages are well known to

promote osteogenesis, there is no direct evidence to confirm

the relationship between estrogen deficiency-mediated

alteration of M2 macrophages and impaired osteogenesis;

thus, providing a view to exploring the role of macrophages

in PMOP. Recently, the role of residual tissue residual

macrophages in bone, osteal macrophages, has received more

attention (68). Osteal macrophages are shown to support

osteoclast-mediated resorption by scavenging degraded bone

byproducts, inflecting that residual tissue macrophages also

play an essential role in the pathology of PMOP (69).
3.1.2 DCs and neutrophils
In the absence of estrogen, DCs will long live with increased

expression of IL-7 and IL-15. IL-7 and IL-15 induce IL-17 and

TNF-a production in a subset of memory T cells, independent of

antigen activation (14). These pro-inflammatory cytokines

contribute to inflammation-mediated bone loss in PMOP by

activating low-grade inflammation. The neutrophil, ratio is

considered a helpful clinical tool in assessing PMOP due to its

strong association with bone mineral density (70). Accordingly,

hyperactive neutrophils favor osteoclastic bone resorption. The

in vitro assays confirmed that estrogen blocks inflammatory-
FIGURE 2

PMOP is a high-bone turnover disease. Estrogen deficiency leads to changes in the number and function of immune cells, which ultimately
affecting bone remodeling and leads to osteoporosis. These changes included: the balance of M1/M2 and Th17/Treg favors pro-inflammatory
M1 and Th17 cells; the activation of M2 macrophages and Treg cells are impaired; Th17 cells are overactivated and Treg cells can convert into
Th17 cells; DCs become long-lived; neutrophils are activated; The number of B cells and plasma cells is increased. Note: Various types of
immune cell image materials are from https://smart.servier.com.
frontiersin.org
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induced neutrophil overactivation (71), suggesting estrogen

deficiency may cause neutrophil activation, which is important

in PMOP development.
3.2 Adaptive immune cells and PMOP

3.2.1 T cells
Physiologically, thymic output and peripheral consumption

contribute to the maintenance and renewal of the T cells in

peripheral blood. A recent clinical cross-sectional study

demonstrated that compared with premenopausal women, the

leukocyte count is elevated in postmenopausal women, reflecting

increased total lymphocytes and monocytes (72). Consistently,

previous experimental data showed that estrogen deficiency

increases the thymus output of T cells in peripheral blood

(73). Further analysis found that T cells are overactivated

under estrogen deficiency, particularly CD4+ T cells. Although

the different subtypes of T cells may play a role in promoting or

inhibiting bone resorption, it is well recognized that activated T

cells contribute to osteoclastogenesis by strongly expressing

RANKL in PMOP (74). As an osteoclastogenic subset of T

cells, the Th17 cells population was found to be increased in

bone marrow, accompanied by the elevated IL-17 level in

peripheral blood. Blocking the IL-17 pathway had an effective

protective role in bone loss in OVX mice (75). These results

suggested that Th17 cells are a potent mediator in PMOP. In

contrast, Treg cells have a bone-protective role in PMOP

development (76). More importantly, it was reported that

Th17/Treg balance is disturbed under estrogen deficiency,

enhanced Th17, and decreased Treg cells (77). Tregs cells may

lose their immunosuppressive function under estrogen

deficiency and convert to Th17 cells, which explains the

unbalance of Th17/Treg in PMOP (77).

3.2.2 B cells
The role of B cells is also of interest in PMOP development.

Studies found that estrogen deficiency causes an increase in B

cells number in the bone marrow, and some of the increased B

cells give rise to osteoclasts (78). It was also supported that in

OVX mice, estrogen deficiency selectively stimulated the

accumulation of B cell precursors, while in the presence of

estrogen, the stromal cell-dependent B cells were greatly

inhibited (79). In addition, B cells isolated from the bone

marrow of postmenopausal women have been reported to

secrete RANKL, contributing to osteoclastogenesis (80). These

results suggested that estrogen deficiency can directly promote

osteoclast formation through stimulating B cells. However, an

OVX animal experiment reported that the bone loss in mature B

cell-deficient mice was the same as that of wild-type (WT)

control mice, suggesting B lymphocytes may not be the central

mediators of ovariectomy-induced bone loss (81).
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4 Senile osteoporosis

Senile osteoporosis commonly occurs in older people above

70s and has become a worldwide health concern with the rising

aging world population. Senile osteoporosis is usually described

as a low-bone turnover disease with decreased resorption and

significantly reduced bone formation (82). However, in recent

years, a careful observation found that aging is usually

accompanied by systemic low-grade chronic inflammation and

enhanced inflammatory mediators, such as IL-6 and TNF-a
(83). This will provide an important view of the development of

senile osteoporosis (Figure 3).
4.1 Innate immune cells and
senile osteoporosis

4.1.1 Macrophages, neutrophils, and DCs
A recent study found that senescent immune cells, such as

macrophages and neutrophils, accumulate in bone marrow during

aging in rats and mice (84). The senescent macrophages and

neutrophils repress osteogenesis by promoting bone marrow

mesenchymal stromal cell adipogenesis. In addition to directly

inhibiting osteogenesis, the senescent immune cells contribute to

chronic inflammation, thus leading to inflammatory bone

resorption. The M1/M2 macrophage polarization balance favors

the pro-inflammatory M1 polarization phenotype in old mice

(85). Moreover, neutrophil proportions increased and became

long-lived and hypersegmented in elder mice, and the persistently

low level of increased neutrophils contributes to chronic

inflammation by releasing pro-inflammatory TNF-a during

aging (86). Additionally, the endocytosis and antigen

presentation capacity of DCs diminishes with aging, which may

affect the production of T cell-specific cytokines (87), and thus

participate in the inflammatory response and osteoporosis

process. In summary, the alteration of innate immune cells in

the number or function may be one of the mechanisms of

senile osteoporosis.
4.2 Adaptive immune cells and
senile osteoporosis

4.2.1 T cells
The data from experimental models found significant defects

in CD8+ and CD4+ T cell responses with aging (88). The

diversity of CD8+ T cells was reduced and severely limited the

initiation of effective immune responses, leaving in a prolonged

state of chronic inflammation (89). In addition, the activation of

CD4+ T cells was impaired due to aging-induced alteration in
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cell surface glycosylation and key signaling molecules (90, 91). It

has been reported that the unbalance of CD4+ T cell subsets may

be responsible for chronic inflammation (72). Aging could tilt

the balance of Th1/Th2 toward Th2 cells, resulting in an

increased inflammatory response (92). Besides, by analyzing

the proportion of Th17 and Treg cells in four different age

groups from healthy human donors, Vanessa et al. found that

the ratio of Th17/Tregs appeared to increase with aging, which

may lead the immune system into a hypo-activated state with a

high production of pro-inflammatory cytokines (93). In

summary, aging contributes to continuous chronic

inflammation at a low level by impairing the function of T

cells or breaking immune balance, ultimately resulting in

bone loss.

4.2.2 B cells
It has been widely demonstrated that aging greatly

influences the number and function of B cells. A significant

reduction of circulating B cells was observed in the aged bone

marrow microenvironment, primarily due to the decreased

formation of B cells in bone marrow (94). Besides, the elderly

showed the impaired ability of memory B cells to differentiate

into plasma cells and produce high-affinity protective

antibodies against newly encountered antigens (95). It allows

healthy elderly individuals with chronic diseases to share

similar features of B cells impairment, such as loss of

protective immunity and poor response to vaccinations (96).

All this evidence is closely related to the previously described

relationship between advanced age and chronic systemic

inflammation. However, there was a lack of direct evidence

on the relationship between aging-induced B cells dysfunction

and osteoporosis, so further research is needed.
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5 Diabetic osteoporosis

Diabetic osteoporosis is a type of osteoporosis secondary to

diabetes mellitus. Clinical data showed that the prevalence rate

of osteoporosis among T2DM patients in China was 37.8%,

which is 4 to 5fold that of a non-diabetic patient (97). Diabetic

osteoporosis has been one of the most common complications of

diabetes, seriously affecting the patient’s quality of life. Current

research has pointed out that the impairments in glucose/insulin

metabolism, accumulation of advanced glycation end-products

(AGEs), insufficiency of the bone microvasculature and

alterations in muscle endocrine function may all be involved

in the development of diabetic osteoporosis (98). With the

deepening of research on the immunopathological mechanism

of diabetes, the alteration of immune cells has been considered

an important factor in developing diabetic osteoporosis in recent

years. Here we reviewed the role of various types of immune cells

in developing diabetic osteoporosis (Figure 4).
5.1 Innate immune cells and
diabetic osteoporosis

5.1.1 Macrophages
Animal research found that hyperglycemia increased M1

macrophage polarization and osteoclast differentiation (23), and

the in vitro experiments supported this result. A high glucose

environment promotes the polarization of M1 macrophages and

inhibits the polarization of M2 macrophages in vitro (23).

Accordingly, the phenotypic switch from M2 to M1

macrophage populations increases bone resorption. Moreover,

our previous results demonstrated that the enhancement of M2
FIGURE 3

Senile osteoporosis is a low-bone turnover disease. Aging makes the immune cells senescent. On the one hand, the senescent immune cells
promote the differentiation of mesenchymal cells into adipocytes and inhibit the differentiation of mesenchymal cells into osteoblasts; further,
the altered immune cells promote osteoclastogenesis. Note: Various types of immune cell image materials are from https://smart.servier.com.
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macrophage polarization relieved the symptoms of osteoporosis

by promoting the osteogenic difference of MSC (99). These

results indirectly suggested the important role of macrophage

phenotypic switch in developing diabetic osteoporosis. Through

further mechanistic studies, Zhang B et al. found that

overproducing reactive oxygen species (ROS) causes the

polarization of macrophages toward M1 macrophages in a

high glucose environment (23). ROS is an important mediator

for the activating pro-inflammatory signaling pathways such as

mitogen-activated protein kinases (MAPK), signal transducer

and activator of transcription 1 (STAT1), signal transducer and

activator of transcription 6 (STAT6) and noncanonical nuclear

factor-kappaB (NF-kB) signaling which interfere with

macrophage differentiation (100). Moreover, excessive glucose

can alter energy metabolisms, such as increased glycolysis and

mitochondrial dysfunction, producing ROS (101). Additionally,

through vivo and in vitro analyses, Hu J et al. found that

hyperglycemia-mediated epigenetic changes affect macrophage

polarization, such as long noncoding RNA (102). Hence, those

investigations will provide new targets for treating diabetic

osteoporosis in an immune manner.

5.1.2 Neutrophils and DCs
Previous research found that hyperglycemia increases the

number of circulating neutrophils (103). However, the later

studies found that the function of neutrophils is impaired in high

glucose conditions, and their phagocytic and killing functions are

inhibited to a certain extent (104, 105). These results reflected that

hyperglycemia induces massively impaired neutrophils in

peripheral blood, resulting in chronic inflammation. In addition,

it has been shown that hyperglycaemia can impair the
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differentiation of DCs, causing a decrease in the number of DCs

(106). However, there was limited evidence on the role of

neutrophils and DCs in developing diabetic osteoporosis, which

needs further exploration.
5.2 Adaptive immune cells and
diabetic osteoporosis

5.2.1 T cells
It has been shown that the CD4+ number differs in patients

with diabetes combined with osteoporosis compared to patients

with diabetes alone, inflecting the altered T cell subsets may be

involved in developing diabetic osteoporosis. A recent review

suggested that hyperglycemia induces the expansion of pro-

inflammatory CD4+ T cells, such as Th1 and Th17 cells, and

decreases the number of Treg cells (107). Accordingly, these

active pro-inflammatory T cells promote bone resorption and

anti-inflammatory T cells and have a bone-protective role,

suggesting that hyperglycemia-mediated alteration of T cells

plays a vital role in developing diabetic osteoporosis. However,

the effect of high glucose on the CD8+ T-cells function is

controversial and needs further exploration (108, 109).

5.2.2 B cells
As an essential antigen-presenting cell, B cells were reported

to promote inflammation in type 2 diabetes (T2DM) by

regulating the T-cell function (110). Interestingly, in the

analysis of cytokines from patient samples by Ip B et al., B

cells supported Th17 inflammation in T2DM but not in the

control group (111). These results indicated that B cells play a
FIGURE 4

Dibetic osteoporosis is also a low-bone turnover disease. Hyperglycemia leads to the alteration of immune cells in numbers and function,
promoting osteoclastogenesis and inhibiting osteogenic differentiation, partially resulting to the development of diabetic osteoporosis. Note:
Various types of immune cell image material are from https://smart.servier.com.
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vital role in systemic inflammation of type 2 diabetes mellitus,

providing a new insight for exploring the pathogenesis of

diabetic osteoporosis. However, the previous study by

Sakowicz-Burkiewicz M et al. showed that hyperglycemia

could impair the function of B cells such as reducing

immunoglobulin production, leading to the dysfunction of

humoral immune responses (112). Unfortunately, the role of B

cells in the pathogenesis of diabetic osteoporosis is relatively

unclear and requires more detailed study.
6 Discussion

In this review, we highlighted the role of immune cells in the

development of different types of osteoporosis. These results

suggested that immune cells play various roles under the action

of different pathogenic factors, such as estrogen deficiency,

immunosenescence and diabetes. In addition, the immune cells

were involved in developing drug-induced osteoporosis, such as

glucocorticoid-induced osteoporosis and chemotherapy drug-

induced osteoporosis. A recent study demonstrated that

glucocorticoid-induced osteoporosis could not be induced in T

cell-deficient mice. However, it could be re-established by

transferring the splenic T cells from wide-type mice, inflecting the

essential role of T cells in the development of glucocorticoid-

induced osteoporosis (113). Further, some studies found that

glucocorticoids promoted the accumulation of T cells in the bone

marrow and these bone marrow T cells expressed high steady-state

levels of RANKL, resulting osteoporosis (113). Moreover,

cyclophosphamide, a chemotherapy drug, was reported to cause

immunosuppression and osteoporosis. Improving the functional
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status of immune cells alleviates the symptoms of osteoporosis in

the immunosuppress ive mouse model induced by

cyclophosphamide (114), suggesting the function of immune cells

may be an important factor in cyclophosphamide-

induced osteoporosis.

This review mainly discusses how immune cells affect the

process of bone remodeling under different pathological

conditions, which provides new insight into osteoporosis.

However, in addition to differentiating into osteoblast line cells,

bone marrow-derived mesenchymal stem cells (BMSCs) were

shown to have an immunoregulatory function by modulating

immune responses via cell contact-dependent or paracrine

mechanisms (115). Regarding non-specific immunity, BMSCs can

induce a shift in macrophages from an M1 to M2 phenotype (116),

and the interaction between BMSCs and macrophages contributes

to the restriction of inflammation (117). Although BMSCs can not

affect the proliferation of NK cells, they reduce the IFN-g
production of NK cells (118). It was also reported that BMSCs

inhibit the maturation and function of DCs, further suppressing the

activation and proliferation of T cells (119). Regarding specific

immunity, studies have shown that BMSCs can inhibit the

proliferation of CD4+ and CD8+ T cells which mechanisms may

include direct cell-cell contact, the release of soluble factors, and

induction of Treg cells (120). Thus, the balance of Th1/Th2 and

Th17/Treg cell phenotypes is altered. In the past, the regulatory

effect of BMSCs on B cells was unclear. However, a recent study

showed that BMSCs inhibit the proliferation and function of B cells

(121, 122). Combined with the functional alteration of immune cells

on bone remodeling described above, the immunoregulation of

BMSCs is involved in the process of bone remodeling. Meanwhile,

the disordered immunoregulation of BMSCs was considered to play
FIGURE 5

BMSCs have immunoregulatory function by affecting the immune cells. BMSCs can favor the balance of M1/M2 toward M2 macrophages, the
balance of Th17/Treg toward Treg cells. BMSCs can also inhibit the maturation and function of DCs, further suppressing the activation and
proliferation of T cells. BMSCs have an inhibitory role in the secretion of IFN-g from NK cells. Moreover, BMSCs inhibit the proliferation and
function of B cells. Note: Various types of immune cell image material are from https://smart.servier.com.
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an important role in the pathogenesis of osteoporosis (123). This

provides us with a new idea for treating of osteoporosis (Figure 5).

To sum up, understanding the relationship between immune

cells and the bone remodeling process is required to evaluate the

pathological mechanism of osteoporosis. From this, identifying

the immune checkpoints may provide an excellent opportunity

to develop valuable immunotherapies for osteoporosis patients.

However, we only focused on a few types of immune cells in this

review, and more immune cells need further attention. In

addition, the function of the immune system requires the

participation of various cells, and different immune cells

cannot function in isolation. It is hoped that future studies will

pay more attention to the interaction of different types of

immune cells in osteoporosis pathogenesis, which will shed

much light on the role of immune cells in the development

of osteoporosis.
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