
Thyroid cancer originating from follicular 
epithelial cells accounts for approximately 
1% of all new case of cancer each year and 
its incidence has increased significantly over 
the last two decades (Hodgson et al., 2004; 
Davies and Welch, 2006). Papillary thyroid 
carcinoma (PTC) accounts for approxi-
mately 85% of all cases, and it is respon-
sible for the overall increase in incidence 
of thyroid cancer. Mortality in PTC is low 
and the majority of patients can be consid-
ered cured after thyroidectomy followed by 
ablation of thyroid remnant by 131-iodine 
(Cooper et al., 2009).

Molecular studies performed in the last 
decades, have elucidated in part the molecu-
lar mechanisms underlying thyroid cancer 
initiation and progression. Specific genetic 
alterations are associated to this thyroid 
tumor histotype: RET/PTC and TRK rear-
rangements and BRAF and RAS mutations.

The first genetic alteration discovered in 
PTC and also the most specific was the RET/
PTC rearrangement (Fusco et al., 1987). 
RET/PTC is a chimeric gene generated by 
the fusion of the tyrosine kinase domain 
of the rearranged during transfection gene 
(RET) to the 5′terminal region of genes that 
are constitutively expressed in thyroid fol-
licular cells (Pierotti et al., 1992; Santoro 
et al., 1992, 2006; Nikiforov, 2002). The 
chimeric proteins generated dimerize in a 
ligand-independent manner and result in 
a cytoplasmatic constitutively active tyros-
ine kinase. The higher frequency of PTC 
observed in the population exposed to the 
Chernobyl accident supports a role for the 
external radiations in the chromosome 
rearrangements observed in this tumor 
(Nikiforov, 2006). It has been proposed 
that the spatial proximity of translocation-
prone gene loci may favor gene rearrange-
ments. Indeed, proximity between RET 
and H4, and NTRK1 and TPR has been 

reported in interphase thyroid nuclei. Thus, 
in this simplified model, radiations induce 
chromosome rearrangements and genera-
tion of RET/PTC or TRK oncogenes that 
will be initiator of thyroid carcinogenesis. 
The role of RET/PTC in thyroid carcino-
genesis is supported by experimental evi-
dences generated in cells in culture and in 
animal models. PCCl3, a differentiated rat 
thyroid cell line, stably transfected with a 
RET/PTC3 expressing plasmid undergoes 
morphological alterations and is no longer 
TSH dependent for growth (Santoro et al., 
1993). Thyroid-specific expression of the 
RET/PTC1 or RET/PTC3 in transgenic 
mice induces thyroid tumors with fea-
tures resembling those of human PTC. 
These tumors are characterized by nuclear 
grooves and ground glass cells, continuous 
slow growth rate, and loss of iodide uptake 
(Jhiang et al., 1996; Santoro et al., 1996). 
However, some evidence suggest that RET/
PTC alone is not sufficient to develop thy-
roid carcinoma, and other molecular events 
are needed. Thyroid cancer occurs only after 
a long latency period and only in a fraction 
of RET/PTC transgenic animals. At begin-
ning, the majority of studies excluded the 
occurrence of RET/PTC in benign thyroid 
nodules. In following studies, RET rear-
rangements have been demonstrated in 
nodules diagnosed as benign at histology. 
Ishizaka et al. (1991) have been the first to 
detected RET/PTC in 21% of follicular ade-
nomas. The use of highly sensitive detection 
methods contributed to definitively dem-
onstrate that RET rearrangements occurs 
in a significant fraction of both radiation-
induced and sporadic benign nodules 
(Bounacer et al., 1997; Cinti et al., 2000; 
Guerra et al., 2011; Marotta et al., 2011a; 
Sapio et al., 2011). Its presence in benign 
nodules, raised some queries about the 
role of RET/PTC in thyroid carcinogenesis. 

Doubts on the primary role of RET/PTC in 
thyroid carcinogenesis are also supported 
by the evidence that some irradiated PTC 
are composed of a mixture of cells with and 
without RET rearrangements. In sporadic 
microcarcinomas and post-Chernobyl PTC 
interphase fluorescence in situ hybridiza-
tion (FISH) analysis demonstrated that 
RET/PTC rearrangements can occur only 
in a fraction of the cells, indicating that PTC 
can be composed of a mixture of cells with 
and without RET rearrangements (Corvi 
et al., 2001; Unger et al., 2004). These evi-
dences are in favor of a secondary role of 
RET/PTC which would not be the initiating 
event in thyroid carcinogenesis.

BRAF is a protein-serine/threonine 
kinases that participate in the mitogen-
activated protein kinase (MAPK) cascade 
(Wellbrock et al., 2004). By modulating the 
MAPK cascade, BRAF plays a pivotal role in 
many aspects of cell biology in nearly every 
cell type. More than 65 different mis-sense 
BRAF mutations have been detected in 
human cancer so far (Davies et al., 2002). 
The BRAFV600E mutation, resulting from the 
BRAFT1799A transversion, is nearly the only 
mutation of this kinase found in thyroid 
cancer and the most common genetic muta-
tion in PTC, being detected in about 50% 
of cases (Kimura et al., 2003; Xing, 2005; 
Marotta et al., 2011b). This mutation occur-
ring within the activation segment, disrupts 
the hydrophobic interaction between the 
glycine-rich loop of the N-terminal region 
and the activation segment of the kinase 
domain, and transforms BRAF in a consti-
tutively activated kinase (Davies, et al., 2002; 
Brummer et al., 2006; Moretti et al., 2009). 
In the thyroid, this oncogene is restricted to 
papillary-patterned cancer and it does not 
occur in Hashimoto’s thyroiditis, benign 
colloid nodules, thyroid adenomas, or 
other types of thyroid tumor (Xing, 2007). 
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Its restricted occurrence makes BRAFV600E 
of clinical diagnostic utility (Xing, 2007; 
Zatelli et al., 2009). Its carcinogenetic 
potential has been demonstrated in several 
different cell types and in animal models. 
Thyroid-specific expression of BRAFV600E 
obtained in transgenic mice by the bovine 
thyroglobulin promoter provided us with 
important information on the tumorigenic 
potential of this oncogene. By 12–22 weeks 
age, transgenic mice revealed a large goiter, 
well differentiated thyroid cancer foci, and 
poorly differentiated foci in some animals, 
depending on the level of expression of the 
BRAFV600E mRNA. These tumors displayed 
a phenotype similar to that one of sponta-
neous human PTC, supporting a key role 
for this oncogene in the tumor initiation of 
this type of cancer and in the progression 
to poorly differentiated carcinomas (Knauf 
et al., 2005). In a more recent animal model, 
expression of BRAFV600E was obtained in 
adult mice in already developed thyroid 
glands. After 1 month of induced expression 
of the oncogene, mice developed an hyper-
cellular thyroid, up to 10 times larger in size 
than controls, whilst nodules of tumor cells 
displaying a characteristic papillary struc-
ture were readily apparent 6 months after 
BRAFV600E expression (Charles et al., 2011). 
These experimental animal models demon-
strate that BRAFV600E can promote the trans-
formation process of the thyroid follicular 
cell, however they do not demonstrate that 
this oncogene is the initiating event in spon-
taneous human PTC. Very recently a more 
detailed analysis of BRAFV600E expression by 
means of a quantitative assay, demonstrated 
the heterogeneous intratumoral nature of 
spontaneous PTC. The analysis of the per-
centage of mutant BRAF demonstrated that 
clonal BRAFV600E is a rare occurrence in PTC, 
while more frequently this cancer consists 
of a mixture of tumor cells with wild-type 
and mutant BRAF. This result demonstrates 
that BRAF mutation in PTC is a secondary 
subclonal event (Guerra et al., 2012a).

Thus, the original idea that a normal thy-
roid cell, under the effect of ionizing radia-
tions or other mutagenic factors, acquires 
the RET/PTC rearrangement or BRAFV600E 
mutation and consequently is transformed 
by these oncogenes in what we call a PTC 
cell, should be revised. Although heteroge-
neity is the rule in cancer, the identification 
of the genetic initiating event is important, 
not only to understand the molecular 

mechanisms of tumorigenesis, but also for 
practical purposes. A high percentage of 
BRAFV600E alleles is associated with a higher 
frequency of recurrence (Guerra et al., 
2012b). This makes a quantitative assess-
ment necessary to use BRAFV600E in clinical 
practice as a predictor of recurrence in PTC. 
Also targeted therapeutic interventions 
must take into account of this heterogene-
ity. The recent development of novel small-
molecule inhibitors targeting one or more 
of these oncogenes may provide selective 
advantages for the treatment of advanced 
thyroid cancer harboring these mutations 
(Salerno et al., 2010; Nucera et al., 2011). 
Many of these promising drugs are cur-
rently being evaluated in clinical trials and 
the presence of target-negative subpopula-
tions should be considered.

In conclusion, we have to revise our 
simplistic vision of thyroid carcinogenesis. 
Oncogenes known so far may play impor-
tant role in the fate of a PTC, conferring 
specific biological and clinical features, but 
the genetic event initiating thyroid cancer 
is still to be identified.
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