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Abstract: Florescence information monitoring is essential for strengthening orchard management
activities, such as flower thinning, fruit protection, and pest control. A lightweight object recognition
model using cascade fusion YOLOv4-CF is proposed, which recognizes multi-type objects in their
natural environments, such as citrus buds, citrus flowers, and gray mold. The proposed model has
an excellent representation capability with an improved cascade fusion network and a multi-scale
feature fusion block. Moreover, separable deep convolution blocks were employed to enhance
object feature information and reduce model computation. Further, channel shuffling was used
to address missing recognition in the dense distribution of object groups. Finally, an embedded
sensing system for recognizing citrus flowers was designed by quantitatively applying the proposed
YOLOv4-CF model to an FPGA platform. The mAP@.5 of citrus buds, citrus flowers, and gray mold
obtained on the server using the proposed YOLOv4-CF model was 95.03%, and the model size of
YOLOv4-CF + FPGA was 5.96 MB, which was 74.57% less than the YOLOv4-CF model. The FPGA
side had a frame rate of 30 FPS; thus, the embedded sensing system could meet the demands of
florescence information in real-time monitoring.

Keywords: florescence information monitoring; YOLOv4; cascade fusion; FPGA; embedded
sensing system

1. Introduction

Florescence information monitoring is the fundamental technical basis and key man-
agement chain for achieving a high-yield and high-quality orchard for strengthening
orchard management activities, such as flower thinning, fruit protection, pest control, and
yield prediction [1,2]. Researchers at home and abroad have recently proposed several
solutions for accurately recognizing fruit flowers in their natural habitat. Zhao et al. [3]
applied improved flower extraction feature pyramid networks to extract the local area
of tomato flowers using the YOLOv3 model to accurately classify tomato flowers at dif-
ferent flowering stages. Wu et al. [4] proposed an improved YOLOv4 model combining
channel pruning to recognize the varieties of apple flowers. Dorj et al. [5] adopted a color
detection algorithm to identify citrus flowers in their natural habitat by combining them
with a counting algorithm to achieve yield prediction on a server. Ambrozio et al. [6] and
Sun et al. [7] applied semantic segmentation networks in various scenarios to automati-
cally identify different fruit flowers, such as apples, pears, and peaches. Liu et al. [8] and
Cui et al. [9] employed the K-means clustering image segmentation technique to achieve
flower recognition of kiwifruit and strawberry, which have high requirements for exper-
imental scenes and lighting conditions. Zheng et al. [10] proposed an object-recognition
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technique, which was applied to eggplant flower recognition using hybrid dilated and
ordinary convolution. Further, Lin et al. [11] applied a deep faster R-CNN model to achieve
strawberry flower recognition for the detection requirement of dense small-scale objects in
a complex-structure background. Xiong et al. [12] applied a semantic segmentation model
to achieve flower recognition in litchi. Deng et al. [13] applied an instance segmentation
model to achieve citrus flower recognition.

Most related researchers are currently focused on improving the object recognition
effect of orchard crops with different florescence [14–16]. However, the orchard working
environment is complex and changeable. Citrus, for example, has different proportions of
buds and flowers in the flowering season and is easily infected with gray mold in a low
temperature and high humidity [17,18]. However, timely regulation is needed to avoid a
negative impact on fruit quality and orchard yield. As such, research on recognizing bud,
flower, and gray mold in a natural environment is in line with the application requirements
of citrus florescence information monitoring.

Based on this, YOLOv4-CF, which is a lightweight object recognition model for citrus
bud, flower, and gray mold, was proposed using the software and hardware codesign
pattern. After transforming, quantizing, and compiling, it was deployed to a field pro-
grammable gate array (FPGA) [19–21], which has a high parallel computing capability that
can accelerate convolution neural network operations. Based on cascade fusion YOLOv4-
CF + FPGA, an embedded system was designed and implemented for the real-time and
accurate identification of citrus flowers and gray mold. The system can facilitate flower
thinning to protect citrus and indirectly forecast the production of citrus orchards during
florescence. In addition, it provides an intelligent decision-making basis for disease pre-
vention and control, allowing citrus orchard managers to prevent diseases at the earliest
opportunity and improve citrus quality at the same time. The main contributions of this
study are as follows:

1. A lightweight object recognition model using cascade fusion YOLOv4-CF is proposed,
which recognizes multi-type objects in their natural environments, such as citrus buds,
citrus flowers, and gray mold.

2. A method for deploying convolutional neural networks to an FPGA embedded sens-
ing system is provided.

3. An embedded sensing system for recognizing citrus flowers is designed by quantita-
tively applying the proposed YOLOv4-CF model to an FPGA platform.

This study is outlined as follows: Section 2 shows the collection and processing of ex-
perimental data; Section 3 introduces the design of the YOLOV4-CF model for recognizing
citrus flowers and gray mold; Section 4 presents the YOLOV4-CF model migration and
deployment process of the FPGA embedded platform; Section 5 analyzes the experimental
results in detail; Section 6 concludes the study.

2. Experimental Data and Processing Methods

The data of citrus flowers and gray mold were collected in April 2021, and over
1000 fruit trees were collected from citrus orchards in Ziyuan County, Guilin, Guangxi, with
the main variety of flower being Red Beauty (Ehime-ken 28). The fruit trees were captured
from the four cardinal points (east, west, north, and south) using a Panasonic DMC-
G7 camera and a high-definition mobile phone under natural environmental conditions
(rainy and sunny days). Figure 1 shows that citrus bud, flower, and gray mold were
tagged manually using the labelImg (version 1.8.3) software. The mosaic method [22]
was employed to enhance the dataset in the training process of 1078 collected original
pictures of citrus flowers (including buds and flowers) and gray mold. Each time, four
pictures were randomly selected from the training data for flipping, Gaussian blurring, and
color gamut transformation, among others, to randomly scale the pictures. Figure 2 shows
that after randomly splicing into new pictures, they were sent to the training network for
feature extraction, which enhances the object recognition model’s discrimination ability of
similar features and improves the recognition accuracy. Table 1 shows a total of 1671 picture



Sensors 2022, 22, 1255 3 of 16

datasets after scaling, cropping, and flipping, which were divided into training sets and
test sets with a ratio of 8:2.
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Table 1. Datasets of citrus flowers and gray mold.

Tag Name Training Set Test Set Total

bud 1005 249 1254
citrus flower 1223 315 1538
gray mold 615 141 765

3. YOLOv4-CF Accurate Recognition Model

Citrus flower buds are difficult to accurately identify because they are densely dis-
tributed in their natural environment, and the characteristics of flowers in the early stage
of gray mold infection are similar to those of normal flowers, which may lead to missed or
false detection. Figure 3 shows a YOLOv4-CF (Cascade Fusion) lightweight object recog-
nition model. The model is based on YOLOv4-Tiny [22,23] combined with Xception [24]
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and ShuffleNetv2 [25]. The improved cascade fusion network, CFNet, was used to replace
CSPdarknet53-Tiny in YOLOv4-Tiny in the backbone feature extraction network. CFNet is
primarily formed by stacking two cascade fusion blocks (CFBlock), which enhances the
representation ability of the model without increasing the size by solving the problem of
over-fitting and improving the recognition accuracy of small object groups with a dense
distribution and similar features.
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This study proposes the following three strategies for the improved CFBlock module:
(1) a multi-scale block module designed to strengthen semantic information fusion at differ-
ent levels. (2) To reduce recognition model computation, the traditional convolution block
after the multi-scale feature fusion module is replaced by a depth separable convolution
block. (3) Channel shuffle operation [26] is added to the CFBlock module to reorganize
different features of the object to improve the interaction among features. Further, these
strategies are summarized as follows:

1. Multi-Scale Block

Figure 4 shows that a multi-scale feature fusion layer module is designed to improve
the information interaction among multiple levels in the recognition model and enhance
the model’s recognition accuracy for confusing objects.

The CBL module comprises three different modules with a 1 × 1 step size and
1 × 1, 3 × 3, and 5 × 5 convolution kernel sizes. Each CBL module comprises ordinary
convolution, batch normalization (BN), and LeakyReLu activation function. Continuous
feature transformation increases the expression dimension of features and facilitates the
fusion of semantic information at various levels. The concatenate operation was chosen to
connect the three CBL modules to preserve as much spatial information as possible. The
samples on the feature maps of different scales are displayed to the same size for fusion,
whereas the number of channels remained constant; it expands the dimension of the tensor
and reduces the loss of information by improving the adaptability of the whole network to
scale and making the output feature information richer.
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2. Depth Separable Convolution Block

To further minimize the size and computation of the recognition model and combine
the properties of the Mobilenet model [27,28], the traditional convolution block after
replacing the multi-scale feature fusion module with the depth separable convolution
layer helps reduce the parameter quantity compared with the conventional convolution
operation, which benefits the network’s light weight.

If the size of the input feature graph is Df × Df, number of channels is M, and
the size of the convolution kernel is Dk × Dk; the traditional convolution operation is
Df × Df × M × N × Dk × Dk, whereas the deep separable convolution operation is
Df × Df × M × Dk × Dk + Df × Df × M × N, and the ratio of the traditional convolution
operation is 1

N + 1
Dk × Dk

. Thus, the computational complexity of the depth separable
convolution is directly proportional to the output channel N and convolution kernel size
Dk × Dk. The YOLOv4-CF model uses a 3 × 3 convolution kernel with 64 and 128 output
channels, and the depth separable convolution has a computational complexity of 0.127
and 0.119 times that of typical convolution parameters, which significantly accelerates the
speed model’s reasoning.

3. Channel Shuffle

The enhanced CFBlock module proposed herein uses concat to connect the feature map
information features of various branches and adds channel shuffling operation to identify
information after concatenation and fusion, transmitting it down to solve the problem of
information non-circulation between upper and lower modules. Further, the information
interaction among features is improved during transmission to ensure that the information
fusion among channels is completed without increasing the amount of computation and
parameters, so the image features of each part can be effectively transmitted to the next
module to enhance the ability of model feature extraction.

4. FPGA Embedded Platform and Recognition Model Migration and Deployment

The FPGA embedded platform used herein is the Zynq UltraScale + MPSoC ZCU104
(Produced by Xilinx Company, Singapore) operation platform [29], and it includes FPGA
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and ARM processing systems, a 504 K system logic unit, a quad-core ARM Cortex A53 appli-
cation processor, a dual-core Cortex-R5 real-time processor, and a deep learning processor
unit (DPU), which supports different neural network structures through reconfigurable
hardware architecture.

Figure 5 shows the workflow chart of the YOLOv4-CF + FPGA object recognition
embedded system. To achieve a real-time processing system of video capture data, a USB,
Micro SD, DDR, DisplayPort, and UART interface for debugging should be connected. The
ARM processing system (PS) and FPGA programmable logic (PL) are the two components
of ZCU104, both of which communicate through the AXI bus. The processing system is
primarily responsible for acquiring, storing, reading, scaling format converting, and dis-
playing the processing results of the object image; it uses DPU to accelerate the processing
of the YOLOv4-CF neural network object recognition model in FPGA.
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Figure 6 shows the main steps of the YOLOv4-CF + FPGA object recognition model
migration and deployment process, which comprise three parts: model format conversion
in a TensorFlow environment on the server, the compilation and quantification of a model
in a Vitis AI environment, and programming processing of the ZCU104 platform on the
embedded FPGA side. In the first part, the Xilinx Vitis AI tool is affected by the technical
update iteration speed and version limitation [30] because it does not support the direct
quantification of Keras weight files created in the TensorFlow environment. Thus, this
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study transforms the weight of the Keras model and network architecture file into a binary
protobuf file. Model freezing, node pruning, and other procedures are performed to remove
the network nodes that do not affect the output tensor during the transformation process.
In the second part, the structure of FPGA determines whether it can perform a fast floating-
point operation; thus, this study converts the 32-bit floating-point number of the trained
citrus flower recognition model into an 8-bit integer fixed-point number. Further, the citrus
flower training set is used as the calibration dataset. The recognition model is quantized
at a fixed point using the Vitis AI quantizer tool, which is combined with the converted
protobuf file. Based on the FPGA embedded platform model, this study uses the B4096
convolution structure to deploy the algorithm model and accelerates the use of the Xilinx
AI compiler to build the quantized model. The depth neural network compiler (DNNC)
outputs the elf file and DPU kernel information required by the DPU. Finally, the cross-
compile tool is used to process the elf file generated by the Vitis AI tool to build a Linux
dynamic link library file to be transplanted into the ZCU104 embedded platform. The
PetaLinux tool is used to build the embedded Linux operating system in the last part. To
process the image at ARM for the Python program, OpenCV library, DPU library functions,
and API are used; DPU is employed to achieve the real-time recognition of citrus flowers.
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5. Results and Analysis

To evaluate the performance of the embedded system for the accurate recognition
of citrus flowers and gray mold, combined with various improvement strategies of the
YOLOv4-CF model, object recognition performance tests are performed based on various
test platforms, such as the server, PC, and FPGA. Table 2 shows the configuration environ-
ment of each test end. As shown in Equations (1)–(4), this study uses the mean average
precision (mAP@.5) and F1 measure as the evaluation indexes of the YOLOv4-CF model
for multi-object detection precision. Further, FPS is employed as the evaluation index of
the YOLOv4-CF + FPGA model detection speed.

P =
TP

TP + FP
× 100% (1)
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R =
TP

TP + FN
× 100% (2)

F1 =
2PR

P + R
× 100% (3)

mAP =

1∫
0

P(R)dR × 100%. (4)

where P represents the precision rate, R the recall rate, TP the number of true positive sam-
ples, FP the number of false-positive samples, and FN the number of false-negative samples.

Table 2. Configuration of different test equipment.

No. Platform System Configuration Operating Environment

1 Server Windows 10
Intel Core i7-9700 @ 3.00 GHz Eight-core
CPU, 16 GB RAM, Nvidia GeForce RTX
2060(6 GB) GPU

The test framework is TensorFlow 2.2.0,
Keras 2.3.1, using CUDA 10.1 parallel
computing framework with CUDNN 7.6.5
deep neural network acceleration library2 PC Windows 10

Intel Core i7-8500U @ 1.80 GHz Four-core
CPU, 16 GB RAM, Nvidia GeForce MX
450(4 GB) GPU

3 FPGA Linux Xilinx Zynq UltraScale + MPSoC EV
(ZCU104) SoC

Compile environment uses OpenCV and
Xilinx AI runtimes

5.1. Analysis of the YOLOv4-CF Model Training Results

This study performs 50 epochs training on the YOLOv4-CF and YOLOv4-Tiny models
based on the same dataset and training parameters and then employs the model results
of the previous training as the pretraining model for the transfer training to evaluate the
training performance of the model. The training to verification set is 8:2; the training
process has a reverse gradient, whereas the verification process does not. Further, the
YOLOv4 standard loss function is used as the model training performance index, as shown
in Equation (5). Figure 7 shows the loss curves of each model after migration training.
Moreover, location_loss uses CIoU loss as location loss.

Loss = location_loss + confidence_loss + class_loss (5)
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Figure 7 shows the training loss value of the YOLOv4-CF and YOLOv4-Tiny models
fitted quickly in the first 10 iterations, with the loss value dropping rapidly and then
decreasing slowly. In the early stage of training, the YOLOv4-CF model’s validation set
loss is higher than that of the YOLOv4-Tiny model; the overall fluctuation range is larger,
but the convergence speed is faster. The training set loss value of the YOLOv4-CF model
is lower than the YOLOv4-Tiny model with a better fitting degree, indicating that the
YOLOv4-CF model has a superior convergence effect. Finally, the training set’s loss value
is stable between 6.0 and 7.0, with only a slight oscillation, indicating that model fitting
is over.

5.2. Performance Analysis of the Improved Strategy of the YOLOv4-CF Model

To further analyze the performance of various improvement strategies, based on the
same training sets and test environments, this study effectively tests the performances of
various improved strategy combinations of the YOLOv4-Tiny and YOLOv4-CF models.
The three residual modules CSPBlock in the original YOLOv4-Tiny network are pruned into
two. This study further modifies its structure and designs a multi-scale block to form the
YOLOv4-CF (I) model. Based on this, the ordinary convolution after the multi-scale block
is replaced by depth separable convolution to form the YOLOv4-CF (II) model. Finally,
the channel mixing operation is added to form the YOLOv4-CF model. Figure 8 shows
the residual module CSPBlock in YOLOv4-Tiny and the improved cascade fusion module
CSPBlock in YOLOv4-CF. To simultaneously improve the model recognition effect based
on the relatively fixed aspect ratio of citrus bud, flower, and gray mold in the dataset, a
K-means clustering algorithm [31] is employed to optimize the object clustering center and
obtain the following six groups of anchor boxes that meet the object size: (18, 22), (25, 34),
(35, 42), (43, 58), (68, 78), and (116, 136). Further, this study uses 320 × 320 as the training
set input size. Two models are initially trained using 50 epochs, and then the model results
from the previous training are used as the pretraining model for migration training. Table 3
shows the test results of different models in the test set.
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Table 3. Test results of different models.

Traning Model mAP@.5%
AP/%

F1%
Model

Size/MBBud Flower Gray Mold

Initial
training

YOLOv4-Tiny 91.33 90.10 94.75 89.16 82.67 22.79

YOLOv4-CF(I) 92.94 91.33 94.56 92.94 84.67 23.31

YOLOv4-CF(II) 93.91 91.76 95.32 94.65 86.33 23.44

YOLOv4-CF 94.42 92.17 95.67 95.42 86.33 23.44

Transfer
training

YOLOv4-Tiny 93.61 92.17 95.28 93.39 86.00 22.79

YOLOv4-CF(I) 93.61 92.20 95.22 93.42 86.67 23.31

YOLOv4-CF(II) 94.36 92.05 95.57 95.46 88.00 23.44

YOLOv4-CF 95.03 92.89 96.22 95.97 89.00 23.44

Table 3 shows that three improved strategies such as multi-scale block, depth separable
convolution block, and channel shuffling operation contribute to improving the recognition
precision of the YOLOv4-CF model. Although the precision of flower in YOLOv4-CF(I)
model is slightly lower than that of YOLOv4-Tiny in the test results of the initial training,
the average precision of citrus bud and gray mold is 91.33% and 92.94%, which were
increased by 1.23% and 3.78%, respectively. The precision of gray mold has also been
greatly improved, and the F1 value was increased by 2%, which indicates that the cascade
fusion model with the multi-scale block strategy has better representation ability, and the
features of citrus bud and gray mold can be better extracted by the improved model. The
deep separable convolution is added to the YOLOv4-CF(II) model. The average precision
mAP@.5 value is increased by 2.58% compared to YOLOv4-Tiny, and the recognition
precision of the citrus flower, citrus bud, and gray mold is improved, solving the problem
of the decreasing recognition precision of citrus flowers. Gray mold’s recognition precision
is 94.65%, which is 5.49% higher than that of the original YOLOv4-Tiny model, and 1.71%
higher than that of the YOLOv4-CF(I) model with an increased parameter of only 0.1 MB,
indicating that adding deep separable convolution can ensure that the recognition precision
of the model can be significantly improved while the model parameters are constant. The
YOLOv4-CF model, which is based on the YOLOv4-CF (II) model, adds channel mixing
operation, and its average precision mAP@.5 value reaches 95.42%, which is 3.09% higher
than that of the YOLOv4-Tiny model. Further, the AP values of the three recognition objects
and the F1 values of the model are improved. Compared with the YOLOv4-CF(II) model,
the F1 value and model parameters remained constant, but mAP@.5 increased by 0.51%. In
summary, the model with the channel mixing operation has higher feature fusion ability
and significant advantages over the initial YOLOv4-Tiny model.

After using transfer learning in the test results of the second training while keeping
the parameters constant, the recognition precision of all models is improved compared
with that of the first training. Further, the various indexes of the YOLOv4-CF model after
initial training are higher than those of the YOLOv4-Tiny model after transfer learning,
indicating that the optimized YOLOv4-CF model has higher recognition precision. The
results of the transfer learning training demonstrate that the precision mAP@.5 value of the
YOLOv4-CF model is 95.03%, and the F1 value is 89.00%, which is 1.42% higher than that
of the YOLOv4-Tiny model, and the recognition precision of the citrus flower, citrus bud,
and gray mold is improved by 0.94%, 0.72, and 2.07%, respectively. As the identification
precision of gray mold significantly improved, the F1 value increased by 3%, and the
parameter quantity increased by only 0.7 MB. The recognition model uses the stamens
of citrus flowers as the recognition object because its color and shape features are more
evident than the other two types of recognition objects; thus, the recognition precision is
the highest, and the AP is 96.22%. However, citrus buds are thick with small volumes, and
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their color is similar to that of blooming citrus petals, which are easily misidentified or
missed by the model. Thus, its precision is the lowest, with an AP of 92.89% among the
three types of recognition objects.

In addition, we added ten accuracy comparison tests, each of which randomly selected
200 pictures from the citrus flower dataset as the test set. The trained YOLOv4-CF and
YOLOv4-Tiny models were evaluated under the same operating environment, and ten sets
of data were obtained for paired sample T-test. According to the test result, the significant
difference p = 0.000032 is less than 0.001, indicating that YOLOv4-CF and YOLOv4-Tiny
models have significant differences.

To further prove the performance of the YOLOv4-CF model, the feature extraction
network of YOLOv4-Tiny was replaced with different lightweight convolutional neural
networks for comparative experiments. The experiment used the same training and test sets
for model training and accuracy testing in TensorFlow(GPU). Speed tests were performed
on the same picture with input sizes of 460 × 680. The convolutional neural networks
compared were MobileNet-V3, GhostNet, DensNet121, CSPdarknet53_tiny, and CFNet.
Furthermore, CSPdarknet53_tiny is the feature extraction network of YOLOv4-Tiny and
the CFNet is the feature extraction network of YOLOv4-CF. The experimental results are
shown in Table 4.

Table 4. Performance of different methods.

Method mAP (%) Test Time (ms) Model Size (M)

MobileNet-v3 [32] 85.76 23.93 18.43
GhostNet [33] 88.63 27.42 11.50

DensNet121 [34] 92.74 42.12 39.11
CSPDarkNet53_Tiny [22] 94.42 18.83 22.79

CFNet (ours) 95.03 17.93 23.44

From the empirical observations, it can be noted that CFNet has many distinct benefits
over other feature extraction networks. The mAP and speed of testing a picture are 95.03%
and 17.93 ms, respectively, which are better than other models. Moreover, when GhostNet
is used as the feature extraction network, the model size is the smallest. However, its picture
test speed is 27.42 ms, which is 9.49 ms slower than CFNet. The mAP is 92.74% when the
model’s feature extraction network is DensNet121. However, the model size and the speed
are the largest and slowest, which does not meet the requirements of edge platforms. In
addition, when the feature extraction network of the model is CSPDarkNet53-Tiny, the
metrics are the closest to the results of CFNet, but the test speed is slower than that of
CFNet. This proves that the model complexity of CFNet is lower, and it is more in line with
the requirements of embedded platform transplantation. In summary, CFNet as a feature
extraction network has the best comprehensive performance and the most robust feature
extraction ability.

Figure 9 shows the YOLOv4-CF model and YOLOv4-Tiny model used to test citrus
flowers in the natural environment. The recognition frames of citrus bud, citrus flower, and
gray mold are set as green, blue, and red, respectively. The test results of citrus flowers
with sparse and intensive objects show that multiple types of objects that YOLOv4-CF
correctly recognize almost all the targets in the figure, whereas YOLOv4-Tiny has more
omitted detections and false detections. The comparison results show that YOLOv4-CF has
higher accuracy and a better recognition effect on gray mold.
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5.3. Resulting Analysis of the YOLOv4-CF + FPGA Model

As described in Chapter 4, the ZCU104 computing platform is used as the migration
deployment test platform, with a size of 150 mm × 180 mm × 50 mm, which weighs
approximately 500 g with rich computing resources that meet the application requirements
of citrus flower object real-time recognition embedded systems. The YOLOv4-CF model is
quantized and developed on the PC and transplanted into the ZCU104 platform to form the
YOLOv4-CF + FPGA model. Further, this study uses a 640 × 480 dataset that successively
tests the performance of the recognition model on the server (CPU and GPU) and FPGA.
Table 4 shows the test results.

Table 5 shows that GPU has the best recognition precision of gray mold on citrus
flowers with up to 96.20%, and the average recognition precision on the server is 94.11%.
The average recognition precision on the embedded platform is 92.83%, the recognition
model’s precision loss after quantitative transplantation is 1.28%, and the recognition speed
is 58.74 ms, which is slower than the GPU accelerated recognition speed, but faster than the
CPU recognition speed. The size of the recognition model is 5.96 MB, with a reduction of
74.57%. The quantization tool needs to perform fixed-point quantization on the weights and
activation values of the entire model. As a result of this procedure, the model’s detection
accuracy will be reduced to achieve faster computation speeds and a greater compression
ratio. Figure 10 shows the recognition results of citrus flowers in various scenes using the
YOLOv4-CF + FPGA model. To distinguish between the server recognition results, the
recognition boxes of citrus bud, citrus flowers, and gray mold are set to red, blue, and green,
respectively. In summary, the citrus flower accurate recognition system can effectively
enhance object recognition precision and recognition speed through small model precision
loss and tackle the portability and real-time issues of citrus orchard information monitoring.
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Table 5. Recognition results of different platform test sets.

Platform
Precision/% Average

Precision
/%

Model Size
/MB

Recognition Speed/ms
Bud Flower Gray Mold

Server 91.47 94.65 96.20 94.11 23.44 69.22 (CPU) 33.28 (GPU)
FPGA 89.22 93.54 95.73 92.83 5.96 58.74
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Figure 10. YOLOv4-CF + FPGA model recognition results of citrus flowers.

To verify the real-time recognition efficiency of the citrus flower accurate recognition
system, this study compares and tests the recognition effects of server, PC, and FPGA on a
video stream. The video stream resolution is 640 × 480, and the power metering socket
is used to monitor the power consumption of various test platforms. Table 5 shows the
test results. Figure 11 shows the FPGA video stream test scheme to restore the actual
application scenario of the embedded recognition system simultaneously. The camera is
connected to ZCU104 through a USB interface and records the PC’s screen video stream in
real time; the display is connected to ZCU104 through the DP interface, which displays the
recognition results processed by ZCU104 in real time.
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Table 6 shows that the server RTX 2060GPU camera has the fastest real-time recognition
speed of 29 FPS, but the total power consumption is 96 W, which is five times more than the
FPGA embedded platform; the consumption efficiency of the FPGA embedded platform is
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20 W. Compared with the MX150 GPU on the notebook computer and core i7-9700 CPU on
the server, the power consumption is reduced by 46 and 55 W, respectively. The recognition
speed of the FPGA embedded platform is 17 FPS, which is only slower than the server
RTX 2060 GPU. It has a noticeable advantage in speed and power consumption compared
with other platforms. To further test the real-time speed of the FPGA embedded platform
camera, different input sizes are compared. The results show that the input size is 640 × 480,
recognition speed is 17 FPS. However, if the input image size is 320 × 240, recognition
speed can clock 32 FPS, approximately twice as fast as the 640 × 480 input size. In summary,
different input image sizes are suitable for real-time scenes with different requirements.

Table 6. Real-time recognition efficiency of different platforms.

Platform Configuration Speed/FPS Power/W

Server
CPU/core i7-9700(3.0 GHz Eight-core) 15 75

GPU/RTX 2060(6 GB) 29 96

PC
CPU/core i7-8550U(1.8 GHz Quad-core) 10 38

GPU/MX150(4 GB) 16 56
FPGA ZCU104 17 20

6. Conclusions

A citrus flower recognition method based on an improved YOLOv4-CF lightweight
neural network was proposed herein, and the cascade fusion network, CFNet, was in-
troduced to replace the original backbone network. The experimental results showed
that, in the natural environment, the mAP@.5 and F1 values of the server YOLOv4-CF
model achieved 95.03% and 89.00%, respectively; this is an increase of 0.94% and 1.41%,
respectively, compared with the YOLOv4-Tiny model, which provides reliable data support
for orchard flowering information monitoring.

This study uses model deployment to design a citrus flower accurate recognition sys-
tem based on an FPGA embedded platform. The size of the system model after quantitative
compilation is 5.96 MB, which is only 25.47% of the original model; the recognition preci-
sion is 92.83%, and the power consumption is 20 W, which is only 20.8% of the GPU power
consumption. Recognition speed is approximately 30 FPS if the input size is 320 × 240. It
has the characteristics of low energy consumption and easy portability, which meets the
requirements of real-time recognition of citrus flowers.

Further work is needed to improve the proposed method. For example, FPGA comput-
ing resources were not fully used, and the system’s real-time performance can be improved.
In the next research project, the author will expand the dataset and enhance the field
experiments in citrus orchards. Further, the PL should be connected to the MIPI camera
at the embedded FPGA to replace the USB camera; this is to improve the stability and the
system’s real-time performance by fully using the computing advantages of FPGA.

Author Contributions: Conceptualization, S.L. and Z.L.; methodology, S.L. and Y.Z.; software, Y.Z.;
validation, S.L., Y.Z. and R.L.; formal analysis, R.L.; data curation, S.L. and Y.Z.; writing—original
draft preparation, S.L. and Y.Z.; writing—review and editing, Z.L.; visualization, R.F. and Q.L.;
supervision, Z.L.; funding acquisition, Z.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Guangdong Laboratory for Lingnan Modern Agriculture
Project (NT2021009); National Key R&D Program Projects (2020YFD1000100); Guangdong Natural
Science Foundation (2021A1515010923); Pazhou Lab Project(PZL2021KF0016); National Natural
Science Foundation of China (31971797 and 61601189); Special projects for key fields of colleges and
universities in Guangdong Province (2020ZDZX3061); China Agriculture Research System of MOF
and MARA (CARS-26).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2022, 22, 1255 15 of 16

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank anonymous reviewers for their criticism and
suggestions. We would also like to thank Chuanwu Chen for technical support and Qiuchang Yu for
research data support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, Z.X.; Zhu, P.Y.; Gurr, G.M.; Zheng, X.S.; Read, D.M.Y.; Heong, K.L.; Yang, Y.J.; Xu, H.X. Mechanisms for flowering plants to

benefit arthropod natural enemies of insect pests: Prospects for enhanced use in agriculture. Insect Sci. 2014, 21, 1–12. [CrossRef]
[PubMed]

2. Herz, A.; Cahenzli, F.; Penvern, S.; Pfiffner, L.; Tasin, M.; Sigsgaard, L. Managing floral resources in apple orchards for pest
control: Ideas, experiences and future directions. Insects 2019, 10, 247. [CrossRef]

3. Zhao, C.; Wen, C.; Lin, S.; Guo, W.; Long, C. Tomato florescence recognition and detection method based on cascaded neural
network. Trans. Chin. Soc. Agric. Eng. 2020, 36, 143–152.

4. Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate
detection of apple flowers in natural environments. Comput. Electron. Agric. 2020, 178, 105742. [CrossRef]

5. Dorj, U.-O.; Lee, M.; Lee, K.-K.; Jeong, G. A novel technique for tangerine yield prediction using flower detection algorithm. Int. J.
Pattern Recogn. 2013, 27, 1354007. [CrossRef]

6. Dias, P.A.; Tabb, A.; Medeiros, H. Multispecies fruit flower detection using a refined semantic segmentation network. IEEE Robot.
Autom. Let. 2018, 3, 3003–3010. [CrossRef]

7. Sun, K.; Wang, X.; Liu, S.; Liu, C. Apple, peach, and pear flower detection using semantic segmentation network and shape
constraint level set. Comput. Electron. Agric. 2021, 185, 106150. [CrossRef]

8. Liu, H.; Chen, L.; Mu, L.; Gao, Z.; Cui, Y. A Recognition Method of Kiwifruit Flowers Based on K-means Clustering. J. Agric.
Mech. Res. 2020, 42, 22–26.

9. Cui, M.; Chen, S.; Li, M. Research on strawberry flower recognition algorithm based on image processing. Dig. Technol. Appl.
2019, 37, 109–111.

10. Zheng, K.; Fang, C.; Yuan, S.; Chuang, F.; Li, G. Application research of Mask R-CNN model in the identification of eggplant
flower blooming period. Comput. Eng. Appl. 2021, 15, 1–11.

11. Lin, P.; Lee, W.S.; Chen, Y.M.; Peres, N.; Fraisse, C. A deep-level region-based visual representation architecture for detecting
strawberry flowers in an outdoor field. Precis. Agric. 2020, 21, 387–402. [CrossRef]

12. Xiong, J.; Liu, B.; Zhong, Z.; Chen, S.; Zheng, Z. Litchi flower and leaf segmentation and recognition based on deep semantic
segmentation. Trans. Chin. Soc. Agric. Mach. 2021, 52, 252–258.

13. Deng, Y.; Wu, H.; Zhu, H. Recognition and counting of citrus flowers based on instance segmentation. Trans. Chin. Soc. Agric.
Eng. 2020, 36, 200–207.

14. Wang, Z.; Underwood, J.; Walsh, K.B. Machine vision assessment of mango orchard flowering. Comput. Electr. Agric. 2018, 151,
501–511. [CrossRef]

15. Wang, C.; Zhou, J.; Xu, C.-Y.; Bai, X. In a deep object detection method for pineapple fruit and flower recognition in cluttered
background. In Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, Zhongshan, China,
19–23 October 2020; pp. 218–227.

16. Palacios, F.; Bueno, G.; Salido, J.; Diago, M.P.; Hernández, I.; Tardaguila, J. Automated grapevine flower detection and quantifica-
tion method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field
conditions. Comput. Electr. Agric. 2020, 178, 105796. [CrossRef]

17. Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol.
2007, 8, 561–580. [CrossRef] [PubMed]

18. Zhu, L.; Wang, X.; Huang, F.; Hou, X.; Xiao, Z.; Pu, Z.; Huang, Z.; Li, H. Investigation of surface defect of Citrus fruits caused by
Botrytis-Molded petals. J. Fruit Sci. 2012, 29, 1074–1077+1158.

19. Que, L.; Zhang, T.; Guo, H.; Jia, C.; Gong, Y.; Chang, L.; Zhou, J. A lightweight pedestrian detection engine with two-stage
low-complexity detection network and adaptive region focusing technique. Sensors 2021, 21, 5851. [CrossRef]

20. Pérez, I.; Figueroa, M. A heterogeneous hardware accelerator for image classification in embedded systems. Sensors 2021, 21, 2637.
[CrossRef]

21. Luo, Y.; Chen, Y. FPGA-Based Acceleration on Additive Manufacturing Defects Inspection. Sensors 2021, 21, 2123. [CrossRef]
[PubMed]

22. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
23. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
24. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

http://doi.org/10.1111/1744-7917.12000
http://www.ncbi.nlm.nih.gov/pubmed/23955976
http://doi.org/10.3390/insects10080247
http://doi.org/10.1016/j.compag.2020.105742
http://doi.org/10.1142/S0218001413540074
http://doi.org/10.1109/LRA.2018.2849498
http://doi.org/10.1016/j.compag.2021.106150
http://doi.org/10.1007/s11119-019-09673-7
http://doi.org/10.1016/j.compag.2018.06.040
http://doi.org/10.1016/j.compag.2020.105796
http://doi.org/10.1111/j.1364-3703.2007.00417.x
http://www.ncbi.nlm.nih.gov/pubmed/20507522
http://doi.org/10.3390/s21175851
http://doi.org/10.3390/s21082637
http://doi.org/10.3390/s21062123
http://www.ncbi.nlm.nih.gov/pubmed/33803530


Sensors 2022, 22, 1255 16 of 16

25. Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Berlin, Germany, 2018;
pp. 116–131.

26. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–21 June 2018;
pp. 6848–6856.

27. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

28. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Inverted residuals and linear bottlenecks: Mobile networks for
classification, Detection and Segmentation. arXiv 2018, arXiv:1801.04381.

29. Zhu, J.; Wang, L.; Liu, H.; Tian, S.; Deng, Q.; Li, J. An efficient task assignment framework to accelerate DPU-based convolutional
neural network inference on FPGAs. IEEE Access 2020, 8, 83224–83237. [CrossRef]

30. Vandendriessche, J.; Wouters, N.; da Silva, B.; Lamrini, M.; Chkouri, M.Y.; Touhafi, A. Environmental sound recognition on
embedded systems: From FPGAs to TPUs. Electronics 2021, 10, 2622. [CrossRef]

31. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

32. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589.

33. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V. Search-
ing for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea,
27 October–2 November 2019; pp. 1314–1324.

34. Huang, G.; Liu, Z.; Maaten, L.V.N.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

http://doi.org/10.1109/ACCESS.2020.2988311
http://doi.org/10.3390/electronics10212622

	Introduction 
	Experimental Data and Processing Methods 
	YOLOv4-CF Accurate Recognition Model 
	FPGA Embedded Platform and Recognition Model Migration and Deployment 
	Results and Analysis 
	Analysis of the YOLOv4-CF Model Training Results 
	Performance Analysis of the Improved Strategy of the YOLOv4-CF Model 
	Resulting Analysis of the YOLOv4-CF + FPGA Model 

	Conclusions 
	References

