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Abstract

FGF-21 is a key regulator of metabolism and potential drug candidate for the treatment of
type Il diabetes and other metabolic disorders. However, the half-life of active, circulating,
human FGF-21 has recently been shown to be limited in mice and monkeys by a proteolytic
cleavage between P171 and S172. Here, we show that fibroblast activation protein is the
enzyme responsible for this proteolysis by demonstrating that purified FAP cleaves human
FGF-21 at this site in vitro, and that an FAP-specific inhibitor, ARI-3099, blocks the activity
in mouse, monkey and human plasma and prolongs the half-life of circulating human FGF-
21 in mice. Mouse FGF-21, however, lacks the FAP cleavage site and is not cleaved by
FAP. These findings indicate FAP may function in the regulation of metabolism and that
FAP inhibitors may prove useful in the treatment of diabetes and metabolic disorders in
humans, but pre-clinical proof of concept studies in rodents will be problematic.

Introduction

Fibroblast Growth Factor 21 (FGF-21, QINSAL1), a member of the FGF super-family of pro-
teins, plays a role in the regulation of glucose and lipid metabolism [1-3]. Knockout of the
FGF-21 gene in mice leads to a mild increase in weight gain and reduced glucose tolerance [4].
Whereas mice engineered to over express FGF-21 are lean, and have improved glucose toler-
ance [5].

Consistent with the genetic studies, pharmacological administration of FGF-21 improves
both glucose tolerance and insulin sensitivity in ob/ob and diet-induced obese mice, reduces
triglycerides, LDL and total cholesterol in db/db mice, and improves glucose and lipid homeo-
stasis in diabetic rhesus monkeys without inducing hypoglycemia [6-10]. The anti-diabetic
activities observed in animal models also appear to apply to humans, as the FGF-21 analog
LY2405319 improves the lipoprotein profile and lowers glucose in obese patients with type II
diabetes [11].

FGF-21 exerts its effects on metabolism by acting as a hormone capable of signaling multi-
ple cell types [12,13]. FGF-21 is primarily expressed by the liver, where it can act in an auto-
crine fashion to activate FGF signaling and reduce hepatic glucose output [14]. In addition,
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FGEF-21 strongly stimulates glucose uptake in adipocytes by binding fibroblast growth factor
receptors (FGFRs) and beta-klotho (bKlotho) on the cell surface [15]. Receptor activation leads
to translocation of glucose transporter 1 (GLUT1) and cellular glucose uptake [16]. FGF-21
also appears to target the pancreas, where it preserves and improves beta cell function [17].
Other effects of FGF-21 include enhanced fatty acid oxidation, reduced hepatic triglyceride
synthesis through inhibition of sterol regulatory element-binding protein 1 (SREBP-1) and
increased metabolic rate [18-20].

The ability of FGF-21 to positively impact glucose and lipid homeostasis in the context of
metabolic syndrome has led to investigation of FGF-21 as a therapeutic molecule for type 2 dia-
betes. However, injection of recombinant FGF-21 may be of limited clinical value due to a half-
life of only 1-2 hours in animal models [1]. Reportedly contributing to this limited half-life is a
proteolytic event by an unknown enzyme between P171 and S172 of human FGF-21 when
injected into mice and monkeys [21]. Previous work has demonstrated that FGF-21 truncated
at this site exhibits a 400-fold reduction in the ability to activate FGF signaling in adipocytes
[22]. This suggests that proteolysis of human FGF-21 at this site may be functionally
consequential.

Primary sequence analysis of human FGF-21 indicated the presence of a glycine in P2 and a
proline in the P1 position, which is a consensus site for the endopeptidase activity of the extra-
cellular post-proline cleaving enzyme fibroblast activation protein (FAP) [23-25]. In fact, FAP
has recently been implicated in the regulation of metabolism due to the diabetes and obesity-
resistant phenotype of the FAP knockout mouse [26]. While the mouse form of FGF-21 lacks
this FAP cut site, the mouse phenotype nonetheless suggests that FAP may function in the reg-
ulation of metabolically active peptides and proteins and that cleavage of FGF-21 by FAP in
humans may be biologically significant. Therefore, we investigated FGF-21 as a substrate of
FAP.

Materials and Methods
In vitro FGF-21 digests

Recombinant human FGF-21 (Peprotech) or recombinant mouse FGF-21 (ProSpec Protein
Specialists) was reconstituted in FAP assay buffer (50 mM Tris, 140 mM NaCl, pH 7.5). Reac-
tions were carried out at a final concentration of 20 uM FGF-21, 200 nM recombinant human
FAP (R&D systems) or PREP (R&D systems) and 16 uM ARI-3099. For SDS-PAGE analysis,
samples were immediately added to 2x gel loading buffer (0.6 ml 1M Tris pH 6.8, 2.5 ml 50%
glycerol, 2 ml 10% SDS, 1 ml 1% bromophenol blue, 3.4 ml H20 and 0.25 ml f-mercaptoetha-
nol/ 5.5 ml aliquot). 3 g of protein was then loaded onto a reducing 20% SDS-PAGE gel. Gels
were stained with Gelcode Blue Stain Reagent (Thermo Scientific). Alternatively, for LC/MS,
aliquots of the reaction were taken and quenched with 10% v/v .01 M HCL and run on 1100
series LC/MSD (Agilent and HP). LC solvents were H,O+.01% TFA (solvent A) and acetoni-
trile+.08% TFA (solvent B). LC was set to 2% solvent B 0-2 minutes followed by 40-88% sol-
vent B gradient from 2-30 minutes (Column: Zorbax C-18, 2.2 x 50 mm, 3.5 pM). Percent
cleavage of FGF-21 was quantified by extracted ion chromatogram integration of peaks corre-
sponding to the +10, +11 and +12 ions of both cleaved and intact FGF-21. The half-life was cal-
culated using one phase decay function on GraphPad Prism software.

Intact FGF-21 ELISA validation

Recombinant human FGF-21 was reconstituted in FAP assay buffer. FGF-21 at 20 uM was
incubated with or without 500 nM recombinant human FAP. Reactions were incubated at
37°C for 5 hours and then serially diluted in FAP assay bulffer. Levels of intact human FGF-21
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from these reactions were assessed by Human Intact Fibroblast Growth Factor ELISA (Eagle
Biosciences, according to the manufacturer’s instructions). FGF-21 digested by FAP was not
recognized by this ELISA.

Plasma FGF-21 digests

Pooled human or cynomolgus monkey plasma (Innovative Research) or pooled mouse plasma
from C57BL/6] mice (Jackson Laboratory) was incubated with recombinant human FGF-21 in
FAP assay buffer with or without ARI-3099. Final concentrations were 1 uM for FGF-21 and
16 uM for ARI-3099. Reactions were incubated at 37°C for 24 hours and levels of intact FGF-
21 were assessed by Human Intact Fibroblast Growth Factor ELISA.

Plasma FAP activity measurements

In triplicate, plasma samples were diluted in PBS to 1 mg/ml and 180 pl of diluted sample was
added to a 96 well plate followed by 20 pl of 500 pM ARI-3144 substrate solution. Data was col-
lected by a spectromax M2° fluorescent plate reader (Molecular Devices) over 30 minutes at
37°C (ex. 380, em. 460).

Pharmacodynamics of FAP inhibition with ARI-3099 in mouse

C57BL/6] mice were administered ARI-3099 at 80 mg/kg in a PBS vehicle via oral gavage.
Blood samples were collected by tail vein nick before and after compound administration at
the indicated time points and plasma was immediately isolated by centrifugation. FAP activity
was assessed using ARI-3144 as described above.

Clearance and degradation of human FGF-21 in mouse

80 mg/kg ARI-3099 or PBS vehicle was administered to C57BL/6] mice subcutaneously, fol-
lowed 1 hour later by L.P. injection of human FGF-21 at 0.5 mg/kg in PBS. Blood samples were
collected by tail vein nick and plasma was immediately isolated by centrifugation. Levels of
intact FGF-21 were assessed by Human Intact Fibroblast Growth Factor ELISA.

Ethics statement

All experiments were carried out in accordance with the protocol B2011-29 approved by the
Tufts University Institutional Animal Care and Use Committee (IACUC).

Results
FAP cleaves human FGF-21 after Pro-171

To test our hypothesis, we first determined if FAP could cleave recombinant human FGF-21 in
vitro. FGF-21 incubated with recombinant human FAP was analyzed by SDS-PAGE (Fig 1A).
Over the course of three hours, the FGF-21 band decreased and a new band appeared with an
apparent MW consistent with the predicted fragment of FGF-21 (1-171). LC/MS analysis con-
firmed the appearance the FGF-21 (1-171) and (172-181) fragments and the disappearance of
intact FGF-21 with a half-life of approximately 38 minutes (Fig 1B). These were the only two
detectable fragments resulting from FAP cleavage. Additionally, proteolysis of FGF-21 by FAP
was completely inhibited by the FAP-specific competitive inhibitor ARI-3099 (Fig 1C) [27].
Prolyl endopeptidase (PREP), though closely related to FAP and also capable of post-prolyl
endopeptidase activity, failed to cleave FGF-21 even after 24 hours of incubation (Fig 1D) [24].
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Fig 1. Human FGF-21 is digested by FAP but not PREP. (A) Human FGF-21 is cleaved by FAP. Recombinant human FGF-21 was digested by
recombinant human FAP and visualized by Coomassie staining of SDS-Page gel. (B) Time course of FGF-21 digestion by FAP quantified by LC/MS
extracted ion integration of peaks corresponding to intact (1-181) and cleaved (1-171) forms of FGF-21 (n = 3 per time point per group). Values are

mean + SEM with one phase decay curve fit superimposed. (C) FAP cleavage of FGF-21 is prevented by ARI-3099. ARI-3099 was pre-incubated with
recombinant FAP for 30 minutes prior to addition of FGF-21. Reaction products were visualized by Coomassie staining of SDS-Page gel. (D) Recombinant
PREP does not cleave FGF-21. Recombinant human PREP was added to recombinant FGF-21 and visualized by Coomassie staining of SDS-Page gel.

doi:10.1371/journal.pone.0151269.g001
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In contrast, mouse FGF-21 (Q9JJN1), which has a glutamic acid instead of glycine at the P2
site, is not cleaved by FAP (S1 Fig). Furthermore, mutation of the P2 residue in human FGF-21
from G to E is reported to abolish proteolysis at this site [21]. Both of these findings are consis-
tent with FAP mediating the observed cleavage because FAP is known to require glycine at P2
for endoproteolytic cleavage activity before a proline at P1 [23-25].

Human FGF-21 is cleaved by FAP in plasma

A soluble FAP is known to be present in blood plasma with levels being higher in mice than in
humans [28]. To assess the effects of plasma derived FAP on FGF-21 degradation, recombinant
human FGF-21 was added to mouse, cynomolgus monkey and human plasma. Levels of intact
FGF-21 were assessed by sandwich ELISA, with antibodies directed to the N and C-termini of
FGF-21. The C-terminal antibody targets residues removed by FAP cleavage and FAP-cleaved
FGF-21 is not recognized by this ELISA (S2 Fig).

Human FGF-21 incubated in mouse and monkey plasma was degraded over time confirm-
ing earlier reports (Fig 2A) [21]. Human plasma was also found to degrade FGF-21, albeit to a
lesser degree. Loss of intact FGF-21 was greatest in mouse plasma, followed by monkey, and
least in human plasma, correlating well with the relative amounts of FAP activity in plasma
from each species as assessed by the FAP-specific fluorescent substrate ARI-3144 (Fig 2B) [28].
Addition of the FAP-specific inhibitor ARI-3099 prevented FGF-21 degradation, proving that
FAP is the enzyme in the plasma from each species mediating the cleavage.

Inhibition of FAP extends the half-life of intact human FGF-21 in mouse

We next examined FGF-21 administration in conjunction with FAP inhibition in mice. Renal
filtration is reported to be the primary mode of FGF-21 clearance [1,29]. However, proteolysis
is reported to contribute to the elimination of human FGF-21, at least at pharmacological
doses [21]. To determine whether the contribution from proteolysis is mediated by FAP, we
administered mice ARI-3099 followed by recombinant human FGF-21. At the chosen dose of
80 mg/kg, ARI-3099 potently suppresses plasma FAP activity as measured by ARI-3144 (Fig
3A). Pre-treatment with this dose of ARI-3099 increased the amount of intact FGF-21 detected
in the plasma and extended its estimated half-life from 48 to 79 min (Fig 3B). These results sug-
gest that FAP-mediated cleavage contributes to shortening the half-life of human FGF-21 in
vivo in mice.

Discussion

Our data clearly demonstrate the ability of FAP to cleave human FGF-21 between P171 and
S$172. This cleavage site is consistent with the reported requirements for FAP endopeptidase
cleavage with glycine in P2 position and proline in P1. Though this site is also a consensus
sequence for PREP endopeptidase activity, recombinant PREP is unable to cleave FGF-21. This
is likely due to PREP’s preference for small peptide substrates with fewer than 30 amino acids.
FGF-21, at nearly 20kDa, may be too large to be a PREP substrate. In contrast, FAP has the
ability to cleave larger proteins [23]. FGF-21 also has another GP motif at residues 132-133
that could be subject to recognition and cleavage by FAP [24]. However, the predicted structure
of FGF-21 is a single globular domain flanked by disordered N and C termini. This Gly-Pro
motif lies within the globular domain of FGF-21 and is therefore not likely to be accessible for
proteolysis.

The N-terminus of human FGF-21 also contains both penultimate and preantepenultimate
proline residues that may also be susceptible to the dipeptidyl peptidase activity of FAP or
related proteases. Indeed, other work has suggested these residues may be subject to proteolysis
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Fig 2. Effect of FAP inhibition on FGF-21 digestion in plasma. (A) FAP cleaves human FGF-21 in mouse, monkey and human plasma. Recombinant
FGF-21 was added to plasma to a final concentration of 1 uM in the presence or absence of 16 yM ARI-3099 followed by assessment of intact FGF-21 by
sandwich ELISA (n = 3 per group). Values are mean + SEM. *P < .05 ***P < .001 by ANOVA. (B) FAP activity of mouse, monkey and human plasma as
assessed by the FAP-specific fluorescent substrate ARI-3144.

doi:10.1371/journal.pone.0151269.9002

by amino-peptidases or dipeptidyl-peptidases [30]. However, the N-terminal methionine of
the recombinant FGF-21 utilized in this work and most others prevents evaluating these sites
for susceptibility to dipeptidyl peptidase cleavage. Even if proteolysis occurs at these sites in
vivo, receptor signaling capability does not appear to be impaired by removal of N-terminal
residues 1-4 of FGF-21 suggesting truncation at these sites, may be functionally inconsequen-
tial [31].

Unlike these other sites, FAP cleavage of human FGF-21 is likely to result in a significant
loss of function because the C-terminus of FGF-21 is critical for its ability to activate downstream
signaling pathways. The C-terminal region of FGF-21 binds the co-receptor bKlotho while the
N-terminal region binds FGFRs on the cell surface [22]. FGF-21 lacking the 10 C-terminal resi-
dues, which is produced upon FAP cleavage, exhibits impaired binding to bKlotho and this trun-
cated FGF-21 is 400-fold less potent in a reporter assay designed to reflect the degree of
extracellular signal-regulated kinase (ERK) phosphorylation in cultured adipocytes [31].

While this article was being prepared, two separate groups reported the ability of FAP to
cleave 10 amino acids off the C-terminus of human FGF-21 [32,33]. Additionally, these studies
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Fig 3. Inhibition of FAP prolongs the half-life of human FGF-21 in mice. (A) ARI-3099 was administered to mice at 80 mg/kg via oral gavage. FAP activity
in plasma samples was determined using the FAP-specific fluorescent substrate ARI-3144 (n = 3 per group). Values are mean + SEM. (B) Mice were pre-
treated with vehicle or 80 mg/kg ARI-3099 followed by injection of 0.5 mg/kg human FGF-21 (n = 4 per group). Plasma samples were assessed for intact
FGF-21 concentrations by sandwich ELISA. Values are mean + SEM. *P < .05 by t-test.

doi:10.1371/journal.pone.0151269.9003

utilized a form of FGF-21 without an N-terminal methionine. Using this recombinant FGF-21,
these groups were able to confirm the ability of FAP to cleave after the proline-2 and proline-4
N-terminal residues.

While FAP cleavage of human FGF-21 produces a truncated protein that is impaired in its
signaling capabilities, the biological significance of this proteolysis in vivo remains to be deter-
mined. Our data, both in plasma and mice, strengthens a previous assertion that FAP proteoly-
sis limits the half-life of pharmacological doses of human FGF-21 [21]. However, due to
limitations of our sandwich ELISA assay, we cannot specifically detect levels of FAP-cleaved
FGF-21. Therefore, it is possible, albeit unlikely that our FAP-specific inhibitor affects clear-
ance of FGF-21 as opposed to proteolysis when injected into mice.

Also of particular interest is the degree to which FAP proteolysis may alter FGF-21 signaling
at pharmacological or physiological concentrations, which includes the ability of FGF-21 to
alter ERK phosphorylation in adipose tissue and drive glucose uptake. However, mouse FGF-
21 lacks the FAP cut site and varying FAP activity levels and rates of kidney clearance in pre-
clinical models may provide a poor proxy for assessing the signaling consequences of FAP
cleavage of native FGF-21 in humans. Furthermore, although our data demonstrated minimal,
albeit statistically significant, cleavage of FGF-21 in human plasma, this result was obtained at
far higher concentrations of FGF-21 (1 uM) than would be observed physiologically. Therefore,
this result not entirely representative of the degree to which FAP cleavage of FGF-21 might be
observed in humans, especially when one also considers the contribution of the membrane
bound enzyme. The recently published results from Dunshee et. al demonstrate that pharma-
cological inhibition of FAP increases endogenous levels of intact FGF-21 in cynomolgus
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monkeys, further suggesting that the interaction of FAP and FGF-21 is likely to be relevant in
vivo [33].

The present results indicate that FGF-21 may be a biologically relevant substrate for FAP in
humans, but not in mice and therefore, that FAP inhibitors may prove useful in the treatment
of diabetes and metabolic disorders in humans by increasing the lifetime of FGF-21. Unfortu-
nately, the fact that mouse FGF-21 is not susceptible to the FAP-mediated cleavage makes pre-
clinical proof of concept studies as well as other preclinical studies regarding the effects of
pharmacological blockade of FAP-mediated processing of FGF-21 problematic. However, that
the observation that FAP knockout mice are resistant to diet-induced obesity and the metabolic
abnormalities associated with obesity indicates that other FAP substrates may be involved in
regulating metabolism in mice and remain to be discovered [26]. Therefore, FAP inhibitors
could prove even more useful in treating diabetes and metabolic disorders than may be
expected from extending the lifetime of FGF-21 alone. Further work aimed at identifying the
biological substrates and function of FAP is needed and likely to be consequential.

Supporting Information

S1 Fig. Mouse FGF-21 is not cleaved by FAP. Recombinant mouse FGF-21 was digested by
recombinant human FAP and visualized by Coomassie staining of SDS-Page gel.
(TIFF)

S2 Fig. Intact FGF-21 sandwich ELISA does not recognize FAP-cleaved FGF-21. 20 pM
recombinant human FGF-21 was incubated with or without 500 nM recombinant human FAP
at 37°C for 5 hours. Reactions were then diluted into the range of the standard curve and
assayed for intact FGF-21 using the intact FGF-21 sandwich ELISA.

(TIFF)
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