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Abstract: Carbohydrates are a structurally-diverse group of natural products which play an important
role in numerous biological processes, including immune regulation, infection, and cancer metastasis.
Many diseases have been correlated with changes in the composition of cell-surface glycans,
highlighting their potential as a therapeutic target. Unfortunately, native carbohydrates suffer
from inherently weak binding affinities and poor pharmacokinetic properties. To enhance their
usefulness as drug candidates, ‘glycomimetics’ have been developed: more drug-like compounds
which mimic the structure and function of native carbohydrates. Approaches to improve binding
affinities (e.g., deoxygenation, pre-organization) and pharmacokinetic properties (e.g., limiting
metabolic degradation, improving permeability) have been highlighted in this review, accompanied
by relevant examples. By utilizing these strategies, high-affinity ligands with optimized properties
can be rationally designed and used to address therapies for novel carbohydrate-binding targets.
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1. Introduction

As one of the most abundant natural products, carbohydrates play many integral roles throughout
our environment, for example as a metabolic energy source, a structural component of cell walls,
and cellular recognition. They are present as various biological conjugates, including glycoproteins,
proteoglycans, and glycolipids, and typically form a thick layer at the cell surface of approximately
10–100 Å which is referred to as the ‘glycocalyx’ [1,2]. This expression at the extracellular surface
makes them ideally suited for interactions with neighboring cells and biomolecules.

In mammals, oligosaccharides are comprised of unique combinations of a defined group of
monosaccharide residues which exhibit impressive structural complexity [3]. In contrast to amino
acids and nucleotides which are typically assembled in a linear fashion, carbohydrates can form
both linear and branched structures with contiguous stereocenters, affording a diverse array of
structures. In addition to varying stereochemistry and regiochemistry of their glycosidic linkages,
the monosaccharides forming these complex structures can also vary in their ring size (e.g., furanose,
pyranose) and are often further modified (e.g., acetylation, sulfation, methylation) (Figure 1).
The syntheses of oligosaccharides in vivo are accomplished by carbohydrate-processing enzymes:
(i) glycosylases, which hydrolyze terminal residues; (ii) glycosyltransferases, which add residues to
an existing structure; and (iii) other glycan-processing enzymes, such as sulfotransferases, which
structurally fine tune individual functional groups.
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Figure 1. Structural variation in glycans arises from differences in: (a) anomeric stereochemistry; (b) 
regiochemistry of linkages; (c) ring size; and (d) further covalent modifications. 

Carbohydrate structures attached to proteins are commonly classified as either O-linked (e.g., to 
serine or threonine amino acid side chains) or N-linked (e.g., to asparagine side chains). The 
biosyntheses of these two groups occur via two distinct mechanisms. O-Linked glycans are 
synthesized in a much more straightforward fashion: a monosaccharide is first transferred to the 
Ser/Thr sidechain and then other glycosyltransferases subsequently add to the structure, making it 
increasingly complex. In contrast, the formation of N-linked glycans involves the initial assembly of 
a complex oligosaccharide onto a phospholipid scaffold (dolichyl pyrophosphate), which then gets 
transferred within the endoplasmic reticulum to a protein asparagine residue; the glycan is then 
further elaborated through a combination of glycosidases which can partially deconstruct the original 
glycan construct, and glycosyltransferases which add additional sugar residues. Further 
functionalization of the glycan can then occur via the addition of acetate, sulfate, phosphate, or other 
groups to various positions of the oligosaccharide. 

Proteins which bind to carbohydrate ligands can be broadly classified into enzymatic proteins 
(e.g., glycosidases, glycosyltransferases), lectins (non-enzymatic, signaling proteins), or glycosamino- 
glycan-binding proteins. Lectins play a prominent role in host recognition processes, and are 
primarily located at the cell surface but can also be found as soluble proteins. Lectins can be further 
classified into various sub-groups, such as the C-type lectins (e.g., selectins) which require Ca2+ ions 
for protein binding and play an integral role in intercellular adhesion and pathogen recognition, or 
I-type lectins (e.g., Siglecs) which are part of the immunoglobulin superfamily and are important for 
immune regulation. The affinities of carbohydrate-protein interactions are characteristically very 
weak, with dissociation constants (Kd) in the range of micromolar to millimolar, which has typically 
been attributed to several factors. Firstly, they lack hydrophobic functional groups and are therefore 
unable to form hydrophobic interactions with the protein surface; hydrophobic interactions are 
typically a feature of high affinity interactions. Secondly, their affinity often relies on hydrogen-
bonding (H-bonding) interactions with the protein surface and they have a difficult time competing 
with H-bonding from bulk solvent. Thirdly, since the relatively shallow, solvent-accessible protein 
binding site and polar surface area of the ligands both form extensive H-bonding networks with bulk 
solvent, this needs to be removed prior to ligand-protein association and results in large enthalpic 
penalties for desolvation. Finally, flexibility in their structures can result in high entropic penalties 
for protein binding. 

1.1. Carbohydrates in Disease 

Carbohydrates play an important role in a number of biological processes, such as cell adhesion, 
inflammatory migration, host-pathogen recognition, immune activation, and cancer metastasis [4–6]. 
Many diseases have been correlated with changes in the composition of cell-surface glycans, a direct 
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Carbohydrate structures attached to proteins are commonly classified as either O-linked
(e.g., to serine or threonine amino acid side chains) or N-linked (e.g., to asparagine side chains).
The biosyntheses of these two groups occur via two distinct mechanisms. O-Linked glycans are
synthesized in a much more straightforward fashion: a monosaccharide is first transferred to the
Ser/Thr sidechain and then other glycosyltransferases subsequently add to the structure, making it
increasingly complex. In contrast, the formation of N-linked glycans involves the initial assembly of
a complex oligosaccharide onto a phospholipid scaffold (dolichyl pyrophosphate), which then gets
transferred within the endoplasmic reticulum to a protein asparagine residue; the glycan is then further
elaborated through a combination of glycosidases which can partially deconstruct the original glycan
construct, and glycosyltransferases which add additional sugar residues. Further functionalization of
the glycan can then occur via the addition of acetate, sulfate, phosphate, or other groups to various
positions of the oligosaccharide.

Proteins which bind to carbohydrate ligands can be broadly classified into enzymatic proteins
(e.g., glycosidases, glycosyltransferases), lectins (non-enzymatic, signaling proteins), or glycosamino-
glycan-binding proteins. Lectins play a prominent role in host recognition processes, and are primarily
located at the cell surface but can also be found as soluble proteins. Lectins can be further classified
into various sub-groups, such as the C-type lectins (e.g., selectins) which require Ca2+ ions for protein
binding and play an integral role in intercellular adhesion and pathogen recognition, or I-type lectins
(e.g., Siglecs) which are part of the immunoglobulin superfamily and are important for immune
regulation. The affinities of carbohydrate-protein interactions are characteristically very weak, with
dissociation constants (Kd) in the range of micromolar to millimolar, which has typically been attributed
to several factors. Firstly, they lack hydrophobic functional groups and are therefore unable to form
hydrophobic interactions with the protein surface; hydrophobic interactions are typically a feature
of high affinity interactions. Secondly, their affinity often relies on hydrogen-bonding (H-bonding)
interactions with the protein surface and they have a difficult time competing with H-bonding from
bulk solvent. Thirdly, since the relatively shallow, solvent-accessible protein binding site and polar
surface area of the ligands both form extensive H-bonding networks with bulk solvent, this needs to
be removed prior to ligand-protein association and results in large enthalpic penalties for desolvation.
Finally, flexibility in their structures can result in high entropic penalties for protein binding.
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1.1. Carbohydrates in Disease

Carbohydrates play an important role in a number of biological processes, such as cell adhesion,
inflammatory migration, host-pathogen recognition, immune activation, and cancer metastasis [4–6].
Many diseases have been correlated with changes in the composition of cell-surface glycans, a direct
result of the differential expression of glycosidases and glycosyltransferases in the diseased state.
These altered protein expression levels cause a unique surface glycan composition (for example,
hypersialylated or truncated structures) which potentially generates novel targets for disease therapies.
Aberrant carbohydrate expression has been linked to various diseases such as cancer, infection (viral,
bacterial, and parasitic), and immune dysregulation, among others. Modified glycan expression is not
necessarily associated with disease, as it also occurs during different stages of tissue development,
cellular differentiation, or inflammatory response.

In addition to aberrant carbohydrate expression, ‘normal’ glycans also play an important role
in disease progression as they are often a target of invading pathogens and their associated toxins.
For example, influenza uses haemagglutinin, one of its viral coat proteins, to bind cell-surface sialic
acids on human cells, an essential process for facilitating entry of the virus into host cells [7]. Many
bacterial toxins also target surface carbohydrates, such as the toxins from botulism, cholera, tetanus,
and diphtheria, as well as plant toxins such as abrin and ricin [8].

1.2. Native Carbohydrates as Pharmaceutical Agents

Due to their extensive structural diversity, carbohydrates are excellent as recognition molecules
and are a desirable target for drug development, but unfortunately suffer from a number of drawbacks
when being considered as therapeutic ligands [9–11].

Since carbohydrates engage proteins through only low energy interactions (H-bonding, metal
chelation, salt bridges, and weak hydrophobic interactions), the Kd values of lectins are typically in the
high micromolar to millimolar range except for a few examples (e.g., cholera toxin binds its GM1 ligand
with approximately 1 µM affinity, and arabinose-binding protein binds arabinose with approximately
100 µM affinity) [12–14]. The weak interactions formed through protein binding are often unable to
compensate for the steep enthalpic penalties required for desolvation of the polar substrate and shallow
protein binding site, and therefore, lectins often also rely on multivalent interactions to improve
binding affinities.

Native carbohydrate ligands have limited use as orally-administered therapies, since they are
unable to passively cross the intestinal enterocyte layer. This passive permeation typically requires
molecules of a low molecular mass, with limited polar surface area, and low numbers of H-bond donors
and acceptors (in line with the Lipinski and Veber rules) [15,16]; the hydrophilicity of poly-hydroxylated
carbohydrates (potentially with additional carboxylates, sulfates, etc.) prohibits this passive permeation.

Due to the ease at which bulk solvent can displace native ligands within the shallow binding sites,
the koff rates of lectin interactions are characteristically very high, contributing to very short residence
times (often in the range of seconds) which contributes to their unsuitability as drug candidates. Once
in the bloodstream, carbohydrates very quickly undergo renal excretion and clearance from the body,
contributing to their extremely poor pharmacokinetic properties.

1.3. Development of Glycomimetic Drug Candidates

Glycomimetics are ‘drug-like’ compounds which mimic the structure and function of native
carbohydrates, and have been thoroughly studied in the development of therapeutic candidates for
both lectins and enzymatic carbohydrate-processing proteins [11,17]. Well-designed glycomimetics
can impart enhanced affinities, increased bioavailabilities, and longer serum half-lives. Glycomimetic
compounds can be designed to take advantage of additional interactions which are not present in the
native counterpart, offering enhancements in both affinity and selectivity.
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Several strategies have been used to overcome the poor drug-like character of carbohydrates,
which are described within this review and accompanied by relevant examples. Strategies such
as reducing ligand polarity, increasing affinity through the optimization of entropic and enthalpic
binding components, ligand pre-organization, and improving pharmacokinetic parameters have all
been examined.

In order to rationally design glycomimetics, as much information as possible about the
ligand-protein binding event should be collected [11]. To date, the most informative and utilized
approaches rely on X-ray crystal structures, nuclear magnetic resonance (NMR) experimentation, and
molecular modeling. Crystal structures provide information about the mode of ligand binding, and can
convey which functional groups are essential for binding and which should be tolerant to modification.
In cases where a crystal structure is not available, computational homology models can be developed to
obtain further information. Saturation transfer difference (STD) NMR and transfer Nuclear Overhauser
Effect (NOE) NMR have both been used to obtain key information on ligand binding. STD NMR
provides insights into which functional groups are in direct contact with the protein, while transfer
NOE NMR experiments provide important information on the precise binding conformation that the
ligand adopts while bound to the protein, which can be used for ligand pre-organization strategies
to reduce entropic binding penalties. By combining information from multiple approaches one can
establish which functional groups are most important for target binding, thereby suggesting which
groups can be further tuned and modified, for example through bioisostere replacement, derivatization,
or deoxygenation. Protein crystal structures can also be used to identify amino acid residues in the
vicinity of the binding site which can be targeted for forming additional interactions, such as aromatic
residues or hydrophobic pockets.

In silico approaches, useful for generating homology models, have also been developed to predict
via molecular dynamics simulations which are the most relevant functional groups for ligand-protein
binding; a recent publication by Sood et al. successfully ranked ligand functional groups as either
‘critical’, ‘enhances binding’, or ‘not important’, which could then be used to generate a pharmacophore
and design appropriate glycomimetics [18]. Subsequent improvements in computational methods will
prove very beneficial for aiding in glycomimetic design.

Apart from direct interactions between the ligand and protein surface, it is also important to
consider the impact of structural waters on ligand binding. For highly constrained water molecules,
often characterized by their presence in both liganded and unliganded crystal structures, they can
typically be regarded as an extension of the binding site and therefore, interactions with these highly
ordered waters can afford favorable enthalpic gains [19,20]. In contrast, H-bonding of the ligand to
more mobile water molecules in the binding site can create significant entropic penalties by restricting
the movement of the water molecule in the bound state. Several computational methods are in
development to help with more accurately predicting structural water molecules and the strength
of their interactions. Highly conserved water molecules have been important for considerations in
developing glycomimetics against several carbohydrate-binding proteins, for example FimH and
l-arabinose binding protein [19,21].

The development of glycomimetics has already proven successful in several cases, with multiple
candidates reaching the clinic. These successes mostly target the enzymatic carbohydrate-processing
proteins and have typically been based on transition state mimetics. Arguably the most widely known
example, oseltamivir (Tamiflu®) is a glycomimetic inhibitor of influenza neuraminidase and is used in
the treatment of influenza infection (Figure 2) [22,23]. Zanamivir (Relenza®) is another established
neuraminidase inhibitor for influenza treatment [24]; both oseltamivir and zanamivir inhibit the
cleavage of terminal sialic acid (Neu5Ac) residues on host cells, which is an essential process for viral
propagation and thereby limits disease progression. Miglustat is an inhibitor of glucosylceramide
synthase which has been used in the treatment of type I Gaucher disease to prevent the harmful
accumulation of glucosylceramide [25]. Another successful family of therapeutic glycomimetics is
the α-glucosidase inhibitors (miglitol, voglibose, acarbose) which have been used in the treatment



Pharmaceuticals 2019, 12, 55 5 of 26

of diabetes and lysosomal storage disorders [26–28]. These glycomimetics are again transition state
mimics, and as the target protein α-glucosidase is present in the brush border of the small intestine,
passive permeation of the drug through the gastrointestinal membrane is not required for drug activity.
As can be seen for miglustat, miglitol, and other transition state glycomimetics which directly inhibit
enzymatic processes, ionizable groups are an important chemical feature for mimicking the charged
oxocarbenium transition state.Pharmaceuticals 2019, 12, x 5 of 26 
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Figure 2. Examples of glycomimetic inhibitors that have successfully reached the market. 
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For diseases with an unmet clinical option, carbohydrates provide a promising target. In a time of
increasing concern over antibiotic resistance, the emergence of anti-adhesive therapies offers a
promising alternative [29,30]. Carbohydrates play an imperative role in the adherence of many
pathogens to host cells, contributing to both infectivity and pathogen-avoidance of host clearance.
Glycomimetic inhibitors, intelligently designed to have enhanced affinities over host cell-surface
ligands, can be developed to prevent the adhesion of pathogens to host cells thereby facilitating
clearance from the host; as adhesion does not affect overall survival of the pathogen, this approach
is also at a considerably lower risk for developing resistance mechanisms. Since it is possible for
bacterial and viral pathogens to express multiple types of adhesin proteins simultaneously, co-therapy
including antibiotics and other anti-adhesives may ultimately be necessary for treatment success using
this approach [31].

Interestingly, glycomimetics have also been used as antigens in carbohydrate-conjugate
vaccines [32–37]. The non-native, glycomimetic structures have been observed to enhance
immunogenicity, and if designed properly can elicit the production of antibodies that are cross-reactive
with native glycans. Approaches to obtain glycomimetics with bioisosteric functional groups and
glycosidic linkages have both been used in efforts toward vaccine development.

2. Glycomimetic Design – Strategies to Improve Binding Affinities

2.1. Deoxygenation

Several examples of glycomimetics have illustrated that a reduction in ligand polar surface area
can enhance binding affinities by both generating new hydrophobic contacts with the protein, as well as
reducing the enthalpic cost of ligand desolvation. Therefore, the removal of polar functional groups
uninvolved in protein binding, most commonly the hydroxy moieties, has been well demonstrated to
enhance binding affinities.
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The thermodynamics of ligand-protein binding can be quantified by calculating the Gibbs free
energy of an interaction, ∆G (Equation (1)), from its individual enthalpic (∆H) and entropic (T∆S)
terms, where a negative free energy is essential for productive binding events:

∆G = ∆H − T∆S (1)

To better understand the high enthalpic cost of desolvation, one can compare the thermodynamic
quantities calculated by Cabani et al. [19,38]. The enthalpic penalty of desolvating a single hydroxy
group, ∆H = 35 kJ/mol, is only partially offset by the favorable entropy term that results from the release
of structured water molecules into bulk solvent, ∆S = 10 kJ/mol. This results in a net free energy of
+25 kJ/mol, which cannot be compensated for by the energy gain afforded by a single H-bond (approx.
∆G = −18 kJ/mol). Although vicinal hydroxy groups experience a somewhat reduced desolvation
penalty in comparison to individual hydroxy moieties (approx. ∆G = 34 kJ/mol for two vicinal hydroxy
groups), the high enthalpic penalty of desolvation is still unfavorable for a binding event. This suggests
that a minimum of two H-bonds should form between a ligand hydroxy group and the protein in order
for the free energy of binding to be considered favorable. As exemplified in the literature, the removal
of hydroxy groups forming only a single H-bond with the protein binding site typically enhances
binding affinity. In order to optimize affinities in the design of glycomimetic ligands, the aim should
be to form a larger number of high-quality H-bonds between each of the ligand’s polar groups and the
protein surface.

Although the desolvation penalty is often very high for carbohydrate-binding proteins, resulting
in part from shallow and solvent-exposed binding sites, proteins with deeper binding pockets are
inherently more hydrophobic, less solvated, and therefore often display enhanced affinities. In these
hydrophobic binding cavities, the H-bonds between ligand and protein are considerably stronger
(approx. 10-fold), experience less competition from bulk solvent, and also have improved residence
times (reduced koff rates) [19,39–42]. In these particular cases, where a lower desolvation penalty exists
in combination with a higher enthalpic gain per H-bond, the requirement for generating such extensive
H-bonding networks is reduced.

Alternative strategies have been used to reduce ligand solvation and thereby minimize the
desolvation penalty: although not exemplified with a glycomimetic, Gao et al. nicely illustrated
that the addition of a hydrophobic group in a non-binding, non-relevant position of a ligand was
successful in disrupting water structure around the ligand and, therefore, reduced the enthalpic cost of
desolvation [43]. Even though this portion of the molecule displayed no interactions with the protein
surface, it was successful in enhancing the free energy of binding.

Deoxygenation can also provide other beneficial effects. By reducing overall polarity of the
molecule, this can increase the electron density on the pyranose ring and thereby enhance nucleophilicity
of its remaining hydroxy groups. This enhanced nucleophilicity can strengthen interactions involving
complexation of metal ions or salt bridges. Alternatively, deoxygenation of 6-OH groups removes
a rotational degree of freedom yet still leaves the C-6 methyl group intact for influencing 4C1/1C4

pyranose conformational preference, which can further reduce the entropic costs associated with
ligand binding.

Replacement of a hydroxy group with a fluorine atom has been used to experimentally probe the
necessity of individual hydroxy moieties for H-bonding. This same strategy of OH→ F substitution
can also be applied in computational modelling. The fluorine atom is useful as a bioisosteric mimic of
the hydroxy group, yet is also more hydrophobic and therefore, can retain important characteristics of
the hydroxy moiety yet reduce polar surface area of the ligand [44]. Several studies have revealed
that upon fluorine substitution, recognition of the mimetic by its native receptor is still possible; for
example, in studying the transport of d-glucose across the endothelial membrane of red blood cells,
2-deoxy-2-fluoroglucose and 3-deoxy-3-fluoroglucose afforded very similar transport rates as compared
to the native ligand [45]. In another study, fluorinated mimetics of MUC1-based glycopeptides were
observed to be cross-reactive with serum antibodies from mice that had been vaccinated with native
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antigen (compound 7; Figure 3) [46]. This widespread recognition of fluorinated glyco-analogues
has been a contributing factor to the success of 18F-2-deoxy-2-fluoro-d-glucose (8) as a radiotracer for
diagnosing neoplasia through positron emission tomography (PET scans) [47,48].Pharmaceuticals 2019, 12, x 7 of 26 
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2.2. Biomimetic Replacement of Functional Groups

Biomimetic functional groups, i.e., those with comparable electronic and steric properties,
can sometimes be used to replace existing functional groups to improve properties of a drug candidate.
Bioisosteric replacement is a common practice in medicinal chemistry, with many families of bioisosteres
having been reported and evaluated (Table 1). Given the specific requirements for a functional group
in a particular binding event (e.g., steric restrictions, H-bond donor/acceptor properties), different
bioisosteres can be considered as suitable replacements in different situations.

Table 1. Examples of bioisosteric groups.
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Bioisosteric replacement can afford enhanced affinities in a number of ways; for example, in the 
previously described OH → F substitutions [45,46,49], the fluorine atom can still facilitate polar 
interactions with the protein surface yet reduces overall hydrophilicity of the ligand. The fluorine 
atom can also be used as a suitable replacement for hydrogen, owing to its small size and relative 
hydrophobicity; replacement of the axial C-3 proton of sialic acid (Neu5Ac), to afford the 
glycomimetic 10 was successful in generating an inhibitor of sialyltransferase (Figure 4) [50,51]. 
Substitution with the fluorine atom afforded a ligand which was sterically compatible with the 
binding site, yet the unique electronic properties of fluorine generated a much more electrophilic 
anomeric carbon (C-2), improving antagonist ability. To overcome the negligible oral availability 
associated with such a polar substrate, the drug candidate was peracetylated; treatment in mice 
successfully impaired the progression of murine melanoma by inhibiting the attachment of metastatic 
cancer cells to the extracellular matrix and was also observed to slow down tumor growth in vivo. 
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in the previously described OH→ F substitutions [45,46,49], the fluorine atom can still facilitate polar
interactions with the protein surface yet reduces overall hydrophilicity of the ligand. The fluorine
atom can also be used as a suitable replacement for hydrogen, owing to its small size and relative
hydrophobicity; replacement of the axial C-3 proton of sialic acid (Neu5Ac), to afford the glycomimetic
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fluorine atom afforded a ligand which was sterically compatible with the binding site, yet the unique
electronic properties of fluorine generated a much more electrophilic anomeric carbon (C-2), improving
antagonist ability. To overcome the negligible oral availability associated with such a polar substrate,
the drug candidate was peracetylated; treatment in mice successfully impaired the progression of
murine melanoma by inhibiting the attachment of metastatic cancer cells to the extracellular matrix
and was also observed to slow down tumor growth in vivo.Pharmaceuticals 2019, 12, x 8 of 26 
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In alternative biomimetic approaches, hydroxy groups binding to an active-site metal ion can
be replaced with improved metal ligands, assuming that this modification is well tolerated by the
binding site. Non-covalent interactions between sulfur and π-systems are typically stronger than
those with oxygen atoms, suggesting a suitable route for further enhancing binding enthalpies. Aside
from enhancing the enthalpic and entropic contributions of binding, bioisosteric replacement can
also be useful for the removal of groups prone to metabolic degradation, or those that facilitate rapid
excretion; these effects on the pharmacokinetic properties of a drug candidate will be discussed in
more detail later.

2.3. Targeting Neighboring Regions of the Binding Site

For lectins with a well-structured binding pocket (which facilitates reduced entropic penalties
upon generating additional interactions), it can be beneficial to look for new, enthalpically-favorable
binding opportunities. The most promising approaches have targeted nearby aromatic or aliphatic
residues and hydrophobic pockets, since ligand modification with hydrophobic groups has the added
advantage of reducing the overall polar surface area of the ligand. Although, in general, hydrophobicity
is preferred, additional interactions with neighboring ionic groups can also be realized, either through
salt bridges or cation-π interactions. The overall approach for developing high-affinity glycomimetics
is to optimize the individual entropic and enthalpic binding contributions; the majority of efforts in
developing carbohydrate derivatives have focused on targeting surrounding protein sites that can
both positively enhance binding contributions and also improve ligand selectivity against a particular
target, with some examples highlighted below.

A large body of work has been focused on developing FimH antagonists, as an anti-adhesive
approach to treating urinary tract infections (UTIs). UTIs are one of the most common causes of
infection in developed countries, typically caused by uropathogenic Escherichia coli bacteria [52,53].
Antibiotic resistance has been of increasing concern for treating these infections, and therefore, the
possibility of anti-adhesive treatment offers a promising alternative. Type 1-fimbriae on E. coli facilitate
bacterial adherence to the bladder epithelium and enable the pathogen to avoid clearance during
micturition; the FimH protein is located at the tip of the fimbriae, and binds to the highly mannosylated
glycoprotein uroplakin 1a present at the epithelial surface [54,55]. Examination of the FimH crystal
structure was very beneficial for glycomimetic development, as it provided pertinent information on
the ligand binding mode and also suggested further modifications to improve ligand affinity [55].
It was observed that the 2-, 3-, 4-, and 6-OH groups of the d-mannose residue form an important
H-bond network in the buried ligand cavity with amino acid side chains Asp54, Gln133, Asn135, and
Asp140, and backbone atoms from Phe1 and Asp47. Not unexpectedly, attempts to modify these
positions have generally proven unsuccessful. Alternatively, the region surrounding the binding site
entrance contains two tyrosine residues and one isoleucine residue (Tyr48, Ile52, and Tyr137), often
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referred to as the ‘tyrosine gate’, which can form hydrophobic contacts with glycomimetics and have
been a major target for improving the affinities of FimH antagonists. First developed were aryl and
n-alkyl mannosides, which displayed increased affinities due to interactions with a hydrophobic rim
surrounding the deep binding pocket and the aforementioned tyrosine gate. The groups of Janetka and
Hultgren improved affinities by using 4′-biaryl mannosides with a meta substituent that could act as an
H-bond acceptor (11 and 12), in which the aromatic extension formed an optimal π-π interaction with
Tyr48 and a new H-bonding electrostatic interaction with Arg98/Glu50, resulting in nanomolar binding
affinities (Figure 5) [56]. Contributions from many groups in the development of α-mannosides and
oligomannosides have improved FimH antagonists even further [57–62].
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Figure 5. Biaryl mannosides have been successfully developed as nanomolar antagonists of the bacterial
protein FimH [56,60].

The targeting of neighboring residues has also been used in the development of antagonists
for FimH-like adhesin (FmlH) [31]. FmlH is a pilus adhesin which binds galactosides and
N-acetyl-galactosaminosides presented on bladder and kidney tissue, facilitating the adhesion of E. coli
to these surfaces. In efforts to inhibit this interaction, aryl galactosides and N-acetyl-galactosaminosides
were designed which facilitated several key protein interactions: a π-π interaction with Tyr46, a salt
bridge between the carboxylate and Arg142, and a H2O-mediated H-bond between the N-acetyl group
and Lys132. The best inhibitor (14) displayed a Ki of approximately 90 nM and upon administration
in a mouse model was able to reduce the bacterial load in both the kidney and bladder (Figure 6).
Co-treatment with a FimH antagonist further improved bacterial elimination.
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with FmlH and FimH antagonists in a mouse model of urinary tract infection significantly facilitated
bacterial clearance [31].

In addition to the aforementioned glucosylceramide synthase inhibitor miglustat, iminosugars have
also been developed as protein chaperones with picomolar affinities for the treatment of Gaucher disease,
the most prevalent lysosomal storage disease (LSD) [63]. LSDs ultimately result from a glycosidase
deficiency, as glycosidases are important for the break-down of lysosomal glycosphingolipids. In LSDs
such as Gaucher disease and Fabry disease, genetic mutations result in the misfolding of proteins,
which are then targeted for degradation in the endoplasmic reticulum instead of being trafficked to the
lysosome, resulting in significantly reduced lysosomal concentrations of protein. In pharmacological
chaperone therapy, sub-inhibitory concentrations of a protein ligand can be used to stabilize the
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protein conformation, enabling successful trafficking of the protein to the lysosome; if designed
appropriately, upon reaching the lysosome the protein should bind with higher affinity to its native
ligand (also present in larger excess), thereby still retaining its native activity. In order to be effective as
molecular chaperones, these glycomimetics should both be selective for their target, as well as reach
the endoplasmic reticulum. This approach has previously been demonstrated for the glycomimetic
1-deoxygalactonojirimycin (Migalastat®; Figure 7), an inhibitor of α-galactosidase in vitro, which
has been successfully used as a pharmacological chaperone in the treatment of Fabry disease [64,65].
Alternatively, glycomimetic inhibitors based on 1-deoxynojirimycin (DNJ) have been developed by
Mena-Barragán et al. and García-Moreno et al. in the development of a therapy against Gaucher
disease (Figure 7), which results from a β-glucocerebrosidase deficiency [63,66]. Modification of
DNJ to form sp2-iminosugars significantly enhanced targeting to the endoplasmic reticulum, and
even more fortunately the ligands were found to have enhanced binding at neutral pH over acidic
pH, which suggests that their affinity will decrease after entering the lysosome which should aid in
protein dissociation and reduce competition with its native substrates. The iminosugars were found to
successfully act as molecular chaperones for proteins expressed in mutated G188S/G183W fibroblasts
(a disease-associated genetic mutation); for example, structure 20 afforded a more than 70% increase in
protein activity at only 20 pM concentration, and a 300% improvement at a 2 nM concentration.
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Figure 7. Iminosugars have been used as pharmacological chaperones, in efforts to treat lysosomal
storage diseases [63,66].

Several other successful examples of ligand modification have been used to enhance the affinities
of glycomimetics for their protein target. For example, Siglec-7 inhibitors have been synthesized
which contain C-9 aromatic modifications (also targeting a ‘hydrophobic gate’ observed in the crystal
structure) and/or triazole-containing hydrophobic groups at C-2 of Neu5Ac, in an effort to develop
inhibitors which could prevent immune evasion by cancer cells (Figure 8) [67,68]. Similar in structure,
Siglec-2 (also known as CD22) Neu5Ac glycomimetics containing a C-9 N-aromatic moiety, C-4 N-acyl
derivative, and C-2 n-alkyl group have been used as inhibitors and towards drug conjugates to
specifically target uptake into specific subsets of immune cells via Siglec-2-binding clathrin-mediated
endocytosis (Figure 9) [69–71]. Pseudomonas aeruginosa lectin B (LecB) inhibitors have been developed
in an effort to tackle biofilm formation: low molecular weight, nanomolar affinity ligands with good
kinetic and thermodynamic properties were developed by targeting a hydrophobic patch on the
protein [72]. Additionally, much work has been focused on DC-SIGN antagonists as anti-adhesives,
by targeting a hydrophobic groove on the protein [73].
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A novel approach which also targets neighboring residues of a lectin binding site has been the
development of a covalent lectin inhibitor against LecA of Pseudomonas aeruginosa [74]. Both LecA and
LecB virulence factors have been associated with biofilm formation; although high affinity inhibitors
against LecB have been developed, LecA has proven a more challenging target. In order to overcome
the large koff associated with LecA-ligand interactions, thereby enhancing affinity, a covalent inhibitor
was developed which targets a nearby cysteine (Cys62) residue (Figure 10). This use of a covalent
inhibitor attempts to circumvent the inherently weak affinities which arise from the short lifetimes of
lectin-ligand complexes by permanently appending the ligand to the protein.
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2.4. Conformational Pre-organization

Improvements in binding affinity through pre-organization have been successful in a number of
glycomimetics [75,76]. Pre-organization reduces the entropic penalties associated with binding and
additionally tends to reduce polar surface area since internal polar groups interact amongst each other,
effectively shielding them from bulk solvent. Molecules have inherent entropy when free in solution,
related to both translation and rotation (including internal rotation at single bonds). Entropic costs
are associated with the binding of ligands, since a restriction of motion occurs through both a loss of
rotational and translational entropy (for both ligand and protein); the greater the rigidity of the formed
complex, the higher the entropic penalty of binding [77,78].

As mentioned previously, productive binding can only occur with a negative free energy; this
requires that the unfavorable entropic costs from restriction of the binding site be offset by favorable
intermolecular interactions of ligand binding, considering both enthalpic contributions (e.g., H-bonding,
van der Waals, etc.) and entropic contributions (e.g., release of water molecules from the binding
site). Flexible receptors which require an ‘induced fit’ binding mode suffer from even greater entropic
binding penalties, since the protein loses much of its conformational flexibility, therefore requiring
even greater enthalpic compensatory interactions to enable productive binding events.

Pre-organization has been shown to play an important role in the development of glycomimetic
inhibitors. In the amino-glycosides, distortion of the pyranose ring has been used in efforts to mimic the
flattened shape of the enzymatic transition state. This conformational distortion can be accomplished
using a variety of approaches, such as the introduction of an sp2-hybridized center, modification of the
ring size, or by generating bicylic or bridged systems [13].

The importance of conformational pre-organization has also been observed in the generation
of LecB inhibitors. Glycan screening indicated that the Lewis A (Lea) trisaccharide,
β-d-Gal-(1→3)-[α-l-Fuc-(1→4)]-d-GlcNAc, bound LecB with a Kd of 220 nM [79]. Attempts to simplify the
structure eliminated the d-galactose moiety entirely to afford the disaccharide α-l-Fuc-(1→4)-d-GlcNAc,
but unfortunately isothermal titration calorimetry (ITC) experiments indicated a significantly reduced
binding affinity resulting from an increased entropic penalty [80]. To further simplify the construct
and reduce flexibility, α-l-fucosides were modified with heterocyclic aglycone substituents to afford
substrates which, in some cases, could bind with affinities similar to those of Lea [81].
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Another successful example of pre-organization was illustrated in the development of an E-selectin
antagonist. The native ligand of E-selectin, sialyl Lewis X (sLex), binds with six solvent-exposed
H-bonds and a salt bridge [11,82,83]. In efforts to improve the affinity of sLex, a glycomimetic antagonist
was developed which could be pre-organized into the binding-site conformation, minimizing the
entropic penalties associated with binding. Based on the crystal structure, it was observed that the
N-acetyl-d-galactosamine moiety does not form direct contacts with the protein, but instead only
acts as a linker between the other residues; therefore, it was replaced by a non-carbohydrate moiety
that linked the d-galactose and l-fucose residues in a correct spatial orientation [84]. By strategically
placing substituents on the linker, the structure could be even more rigidified to further improve
pre-organization and thereby also antagonist affinity [85]. With later iterations, the Neu5Ac moiety was
replaced by (S)-cyclohexyl lactic acid which even further rigidified the glycomimetic conformation [84].

The importance of pre-organization has also been demonstrated in the development of FimH
antagonists, upon comparing septanose versus pyranose glycomimetic scaffolds (Figure 11) [86]. In an
examination of binding to the conformationally rigid FimH lectin domain, the highly flexible septanose
derivative resulted in a 10-fold affinity loss. NMR, X-ray crystal structure, and molecular modeling all
indicated that the related septanose and pyranose derivatives formed a superimposable network of
H-bonds, yet the septanose displayed lower affinities; ITC confirmed that this loss of affinity resulted
from an entropic penalty arising from flexibility of the septanose core.
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2.5. Multivalency

Numerous glycomimetics have incorporated multivalency in order to better mimic the multivalent
presentation of native ligands [81,87–91]. Multivalency can improve binding affinities in several ways:
(i) chelation; (ii) statistical rebinding effects; or (iii) clustering of soluble binding partners [92,93].
The design of multivalent scaffolds must be carefully considered in order to incorporate proper spacing
and flexibility, enabling a correct fit of the ligand into the binding site, yet concomitantly minimizing
the entropic costs of binding. In general, flexible scaffolds are often more forgiving if poorly designed,
but suffer from much greater entropic penalties upon binding. A recent study from the Hartmann and
Lindhorst groups has also nicely demonstrated that tuning scaffold hydrophobicity can also play a
significant role in the affinity of multivalent constructs [94].

In an elegant study, DC-SIGN glycomimetic antagonists were conjugated to oligovalent molecular
rods and used to study multivalency effects of binding, affording nanomolar antagonists (Figure 12) [93,95].
The constructs contained a rigidified core based on phenylene-ethynylene units (previously used in
the generation of P. aeruginosa LecA inhibitors), and were designed to be an ideal length (approx. 4 nm)
for chelation to bridge carbohydrate recognition domains on neighboring DC-SIGN subunits. The
length of the rigid core could be controlled, with the rigidity effectively reducing entropic binding
penalties, while the ends of the rods contained trivalent constructs which had been assembled using
short, more flexible linkers. The incorporated trivalent groups were intended to address favorable
statistical rebinding, with the flexible linkers aimed at facilitating a better fit of ligand into the binding
site (at a minor entropic cost). This intelligent design (with appropriate control compounds) was able
to probe the different effects of ligand, rigid rod, and proximity effects individually.
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Various other multivalent constructs have been generated in the development of
carbohydrate-based pharmaceuticals, often with a lead monovalent glycomimetic being incorporated
into a polyvalent construct at a later stage of project development. Multivalent constructs have targeted
fucose-binding pathogenic soluble receptors, in efforts to improve the outcome of patients with cystic
fibrosis, or alternatively to generate simplified mimetics of sLex that can mimic its native structure yet
are easier to access synthetically [87].

3. Glycomimetic Design—Strategies to Improve Pharmacokinetic Properties

It has been well established that native carbohydrates display inherently poor pharmacokinetic
properties [11,17]. They are sensitive to hydrolysis both in the gut and by endogenous proteins, they
are not orally available, are rapidly excreted upon entering the bloodstream, and have very short
receptor residence times. Many strategies have been used to improve these properties, with some
overlap from the approaches used for affinity enhancement, and have been briefly outlined below.
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3.1. Preventing Glycosidic Hydrolysis

Several approaches have been used in an effort to slow down the metabolic degradation of
oligosaccharides, which are prone to hydrolysis both in the acidic environment of the gastrointestinal
tract, as well as through endogenous enzymes (digestive, plasma, and cellular glycosidases). A major
focus has been on generating O-glycoside mimetics, most commonly by replacing the bridging glycosidic
oxygen atom with a more stable carbon atom, or alternatively by adding electron-withdrawing
groups to the pyranose core to destabilize the oxocarbenium intermediate required for degradation.
The metabolic stability of glycomimetics can be evaluated by examining the rate of degradation with
serum or liver microsomes.

C-Glycosides can be used to improve the hydrolytic stability of oligosaccharides, but can also
introduce new challenges due to an enhanced conformational flexibility, primarily resulting from
a loss of the exo-anomeric effect [96]. Although the exo-anomeric effect cannot control the aglycone
conformation in C-glycosides, in a number of examples steric bulk has been used to better restrict the
aglycone unit in a gauche conformation, similar to that observed in O-glycosides [97–99]. There is
indeed greater conformational flexibility observed, but it is evidently not as detrimental to binding as
would be expected. Modification of the linked carbon atom with one or two fluorine atoms has also been
used to enhance the electronegativity of the bridging unit and further limit its conformational flexibility,
yet retain the benefit of the metabolically stable C-glycoside [100–102]. C-Glycosides have been used
in the glycomimetic design of numerous inhibitors, including sLex [96], GM4 ganglioside [103],
galactopyranosides [104,105], mannopyranosides [105–107], fucopyranosides [105,108,109], and
pseudoglycopeptides [106], among others.

In addition to the C-glycosides, other atoms or groups have been used to substitute the glycosidic
linkage, aiming for an ideal balance between hydrolytic stability and conformational pre-organization.
These include various N-linked glycosides, as well as selenium, sulfur, and even dithioacetal analogues
(Figure 13) [32,110–114].
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The biaryl mannoside antagonists of FimH for UTI therapy discussed previously were observed
to suffer from very low bioavailability and rapid degradation in vivo, presumably due to metabolic
instability of the O-glycosidic linkage in the acidic milieu of the stomach and intestinal tract, as well as
to enzymatic mannosidases [115]. In order to improve pharmacokinetic parameters, C-glycoside
derivatives were synthesized which indeed displayed enhanced stability and, in some cases, even
improved inhibition (Figure 14); this improvement resulted in better efficacy in mouse models of
both acute and chronic urinary tract infection. Replacement of the glycosidic linkage was also
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used for FimH antagonists developed as a potential therapy for patients affected with Crohn’s
disease, in an effort to reduce the bacterial load of adherent-invasive E. coli in the ileal mucosa [116].
Thiazolylaminomannosides were synthesized with an anomeric N-linked aryl moiety that could form a
favorable interaction with Tyr48 as well as improve hydrolytic stability and solubility of the compound
(Figure 15). Unfortunately, the high affinity N-linked glycans were observed to anomerize from the
active α-mannoside to the inactive β-mannoside in the acidic environment of the stomach [117,118].
To circumvent this anomerization, the amino group was replaced by various linkages (-OCH2-, -SCH2-,
-CH2S-, -CH2CH2-, -OCH2CH2-, -CH2NH-), which had been slightly extended compared to the first
generation in order to improve π-π stacking with Tyr48; this strategy afforded optimized substrate
49 [117,119].Pharmaceuticals 2019, 12, x 16 of 26 
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Fluorination is well established to be an effective method for modulating the pKa and pKb

properties of neighboring functional groups, thereby influencing the net charge of a molecule at
physiological pH, the strength of ionic interactions, etc. In addition, it has been shown to enhance
lipophilicity, and is often used in medicinal chemistry to block sites of undesired metabolism [100,120].
Although not widely used, potentially owing to its synthetic challenges, the fluorination of pyranose
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structures has been used to destabilize the oxocarbenium intermediate required for glycoside hydrolysis,
thereby reducing the rate of metabolic degradation of glycomimetics.

3.2. Improving Oral Bioavailability

Native carbohydrates are not orally available due to their high hydrophilicity which prevents
passive permeation across the intestinal membrane, but this can be improved by modifying
carbohydrates to reduce their polar surface area. This can be achieved by using some of the
techniques already discussed, such as deoxygenation of hydroxy groups or the addition of hydrophobic
substituents. Appending a moiety which is known to undergo active transport into the bloodstream
can also facilitate improved oral bioavailability. For example, specific amino acid sequences known to
target peptide transporters (e.g., PEPT1, PEPT2) have been used; valacyclovir (Valtrex®), an antiviral
drug targeting herpes simplex, contains the active component acyclovir (Zovirax®) conjugated to a
valine which affords a five-fold increase in oral bioavailability [121,122].

Interestingly, pre-organization can also improve oral bioavailability, as it reduces the polar surface
area and thereby substrates can more effectively permeate the membrane. This concept was nicely
demonstrated in a study of peptides, where rigidified cyclic peptides were confirmed to have less
exposed polar surface area when compared to more flexible cyclic peptides [123]. The rigidified
peptides, with their buried polar groups, had better membrane permeability and metabolic stability.

An alternative to improving oral bioavailability is to use the prodrug approach [124]. By modifying
a polar substrate with a hydrophobic moiety (e.g., through ester formation), the hydrophilicity becomes
temporarily reduced enabling passive permeation through the membrane. Upon entry into the
bloodstream, ubiquitous endogenous esterases can cleave the pro-moiety, unmasking the active
component. With the condition that the esters are not cleaved prematurely by gastrointestinal esterases,
this approach has been very important for improving the absorption of glycomimetic compounds,
such as oseltamivir (Tamiflu®; Figure 16) [22,23,125]. Alternatively, for glycomimetics which have
been modified with aromatic substituents to engage new protein interactions, they are often membrane
permeable but suffer instead from poor aqueous solubility. In these instances, the prodrug approach
can also be used to append a polar moiety which temporarily improves solubility. For example,
phosphorylated prodrugs have been used in the development of FimH antagonists; this has proven a
useful strategy for phosphorylated derivatives which undergo slower hydrolysis, as rapid hydrolysis
can cause undesirable precipitation of the substrate (Figure 16) [24,126].
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3.3. Improving Residence Times and Plasma Half-lives

The residence times of lectins with their physiological ligands is typically in the range of a few
seconds. In order for carbohydrate-based molecules to be suitable as therapeutics, it is necessary to
extend both the residence time and circulation times (from minutes to hours) [127]. Several strategies
have been utilized to improve the plasma half-lives of glycomimetics and to reduce their rate of
clearance from the bloodstream. For example, the FimH antagonist 51 displayed high affinity but poor
therapeutic potential as it was rapidly eliminated by the kidneys and had low reabsorption by renal
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tubules [128]. These poor pharmacokinetic properties were attributed to the carboxylate moiety which
had been introduced for enhancing π-π interactions between FimH and the biaryl aglycone. To improve
therapeutic usefulness, bioisosteres of the carboxylate were generated to afford FimH antagonists
with optimized pharmacokinetic profiles (Figure 17). In comparison to the original substrate, some
bioisosteres with greater hydrophobicity (reduced desolvation penalty) and conformational rigidity
(reduced entropic cost of binding) even displayed enhanced affinities.Pharmaceuticals 2019, 12, x 18 of 26 
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Another approach involves removing functional groups from glycomimetics which enable active
transport or are prone to metabolic degradation. For example, organic anion and cation transporters
(OATs and OCTs, respectively) in the liver and kidneys can actively excrete certain glycoconjugates, and
are often responsible for their very short half-lives [129]. OAT1 to OAT5 can recognize various anions
connected to a hydrophobic ring. It has been demonstrated that the active oseltamivir metabolite is
recognized by OAT transporters, and co-therapy with an OAT1 competitive inhibitor (probenecid)
considerably improved serum half-life [130]. By elucidating which functional groups are responsible
for active transport and/or metabolic degradation, these groups can be replaced by similar bioisosteres
and/or modified by fluorination, an approach commonly used to block sites of cytochrome oxidation
and other metabolic processes.

An alternative approach to increasing serum half-life is to append a moiety which is known to
bind serum proteins, thereby increasing circulation time in the bloodstream. Plasma half-lives can be
significantly extended when the carbohydrate ligand interacts with blood plasma components; for
example, the heparins naturally bind to plasma proteins and display improved half-lives which make
them more suitable for therapeutic use as anti-coagulants [131,132].

A somewhat drastic approach to glycomimetics is to completely replace the carbohydrate with a
non-carbohydrate-based scaffold, and then to build in the essential functional groups while retaining
their same spatial orientation as compared to the binding mode of the native ligand. Additional
hydrophobic or charged moieties can also be appended to the scaffold to facilitate secondary interactions.
A number of different scaffolds have been utilized in this approach to mimic either pyranoses or their
enzymatic transition states, ranging from peptides to four-membered rings (such as oxetanes, azetidines,
thietanes, and cyclobutanes; recently reviewed by Hazelard and Compain) [13,133–138]. Although
potentially more difficult to design rationally, these scaffolds can offer additional advantages in terms
of stability and more constrained structures (reducing entropic binding penalties). To identify novel
scaffolds, the screening of molecule libraries has been utilized to identify potential new substrates which
mimic the original glycan; these often rely on the generation of an antibody against the native glycan,
with the antibody then used for screening to identify lead structures which can be further evaluated as
competitive inhibitors. Although arguably less elegant, this strategy has been successful in identifying
a mimic of Lex which could elicit improvements in neuronal survival and neurite outgrowth [139],
or mimetics of heparins which have been used to protect endothelial colony forming progenitor cells
in diabetic patients [140], potentially leading to a solution for improved vascular endothelial repair
and wound healing for foot ulcers. This approach has also been used in a glycomimetic-containing
carbohydrate-based vaccine, where cross-reactive antibodies identified potential peptides through
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library screening, which were then more immunogenic, cross-reactive with the native substrate, and
more easily obtainable through synthesis [141–143].

3.4. Other Considerations

Although methods to improve pharmacokinetic parameters have just been discussed, some of the
approaches described may not be desirable for particular therapeutic targets. For example, in some
glycomimetics, oral bioavailability is not required: the α-glucosidase inhibitors used to treat diabetes
target proteins in the brush border of the small intestine, and therefore do not need to be passively
transported across the intestinal membrane. This is also the case for neuraminidase inhibitors such as
zanamivir (Relenza®) which can be used to target viral infections in the pharyngeal mucosa.

Similarly, for some glycomimetic therapeutics it could be desirable to have shorter serum half-lives;
for example, the FimH antagonists discussed previously rely on renal excretion to reach their desired
protein targets in the urinary tract. Although a faster renal clearance is desirable in the treatment of
urinary tract infections, glycomimetics that are cleared too quickly would require too frequent dosing;
therefore, some hydrophobicity is still desirable to facilitate renal tubular reabsorption and somewhat
prolong circulation times.

4. Conclusions

Although historically carbohydrate-based therapeutics have not been overly successful in the
drug development pipeline, there have been numerous successful approaches recently developed
which can be used to circumvent the weak affinities and poor pharmacokinetic properties typically
attributed to glycans. Given their extensive structural diversity and involvement in a broad range
of diseases, carbohydrates and their associated glycomimetics have recently come back into focus
as a very promising therapeutic option. By identifying an appropriate target and applying several
of the strategies discussed in the context of this review, high affinity glycomimetics with favorable
pharmacokinetic profiles can be developed, and eventually carried forward into the clinic.
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