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THE BIGGER PICTURE One in three people will be diagnosed with a type of cancer in their lifetime.37 In
2019, $141.3 billion USD was spent on oncology medicines globally. This number was projected to reach
$394.2 billion USD by 2027.38 The development of cancer therapeutics is expensive, costing approximately
$648 million USD per drug in 2017,39 partially due to the necessary screening of tens of thousands of chem-
icals, which can be prohibitively costly. Thus far, many clinical trials have failed because they were not able
to start with the best possible molecule. Therefore, a more affordable method for the efficient evaluation of
drug efficacy and the screening of cancer therapeutics is urgently needed to advance the field of cancer
treatment.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
As ameasure of cytotoxic potency, half-maximal inhibitory concentration (IC50) is the concentration at which
a drug exerts half of itsmaximal inhibitory effect against target cells. It can be determined by variousmethods
that require applying additional reagents or lysing the cells. Here, we describe a label-free Sobel-edge-based
method, which we name SIC50, for the evaluation of IC50. SIC50 classifies preprocessed phase-contrast im-
ages with a state-of-the-art vision transformer and allows for the continuous assessment of IC50 in a faster
and more cost-efficient manner. We have validated this method using four drugs and 1,536-well plates and
also built a web application. We anticipate that this method will assist in the high-throughput screening
of chemical libraries (e.g., small-molecule drugs, small interfering RNA [siRNA], and microRNA and drug
discovery).
This is an open access article under the CC BY-N
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Figure 1. Comparison of SIC50 and the cell-based viability assays commonly used for anti-cancer compound screening

(A) The workflow for an MTT assay. MTT (0.2–0.5 mg/mL) is reduced to its insoluble formazan by nicotinamide adenine dinucleotide phosphate (NADP)-

dependent oxidoreductase in metabolically active cells. The absorbance of MTT formazan is measured at 570 nm.

(legend continued on next page)
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INTRODUCTION

Current methods for cell-based screening of anti-cancer

compounds require reagents and several steps to evaluate

drug potency. For example, developed in 1983, the

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tet-razolium bro-

mide (MTT) assay has been widely adopted to determine the ef-

ficacy of drugs (Figure 1A).1 The positively charged, yellow MTT

molecules penetrate viable cells and become reduced to purple

formazan crystals by mitochondrial dehydrogenase.2,3 The crys-

tals are then dissolved in dimethyl sulfoxide (DMSO; 100 mL/well)

or sodium dodecyl sulfate (SDS; 10%w/v in 0.01 M hydrochloric

acid, 100 mL/well) to become a colored solution with an absor-

bance maximum near 570 nm, which is quantified by a spectro-

photometer. The absorbance is proportional to the number of

live cells. The darker the solution, the greater the number of

viable cells. Thus, this colorimetric assay measures metabolic

activity as an indicator of cell viability.4–6 Cell counting kit-9

(CCK-8) is another commonly used assay. It is based on the

reduction of water-soluble tetrazolium 8 (WST-8) to 1-methoxy

phenaziniummethylsulfate (PMS) by nicotinamide adenine dinu-

cleotide (NAD)- or nicotinamide adenine dinucleotide phosphate

(NADP)-dependent dihydrogenases in a cell. Compared with

MTT, CCK-8 is more sensitive and does not require dissolving

solutions.7 In an adenosine triphosphate (ATP) assay, cells are

lysed to release the ATP, which activates luciferin and yields a lu-

ciferyl-adenylate and pyrophosphate. The luciferyl-adenylate re-

acts with oxygen to generate carbon dioxide and oxyluciferin in

an electronically excited state, which releases bioluminescence

(550–570 nm) when returned to the ground state. Proportional to

the ATP levels and the number of viable cells, the luminescent

signal can be quantified to evaluate the inhibitory concentration

50% (IC50) of a cancer drug, the concentration at which half of

the cancer cells are killed. Lastly, the IC50 of a drug can also

be determined by counting the nuclei stained with Hoechst

dye. However, Hoechst staining inhibits the growth of cells.

Deep learning has been used to analyze histological images,8,9

study the differentiation of induced pluripotent stem cells,10–14

and perform binary classifications (live or dead,15 drug treated

or untreated16) on cancer cells. As a self-attention-based deep

neural network, a transformer was developed in 201717 for tasks

in the field of natural language processing and employed in com-

puter vision applications since 202018 thanks to its strong repre-

sentation capabilities and less need for vision-specific induc-

tive bias.

A vision transformer can be built by splitting images into

patches, embedding positions, and adding a learnable ‘‘classifi-
(B) Cell counting kit-8 (CCK-8) assays rely on the reduction of water-soluble tetr

(C) In ATP assays, cells are lysed to release ATP. ATP helps activate luciferin and

oxidized and yield electronically excited oxyluciferin, which will return to the grou

(D) Hoechst inhibits the growth of cells. Images are obtained from B16-F10 cells

20min. In the Hoechst group, the cells were incubated with Hoechst for 24 h. Scal

and the Hoechst group suggest that the two groups are significantly different. n

(E) The architecture of the Conv2D used in this study.

(F) The procedures of SIC50. SIC50 determines the IC50 values of drugs by analyz

errors, saves time and reagent cost, will not be interfered by chemicals with absor

of IC50.

(G and H) The overview of a vision transformer. Images are split into patches, pos

embedding is added for classification.
cation token.’’ A transformer encoder typically consists of

multiheaded self-attention and multilayer perceptrons (MLPs)

containing two layers with Gaussian error linear unit (GELU)

non-linearity. Normalization is applied before every block of the

encoder to estimate the normalization statistics from the

summed inputs to the neurons within a hidden layer.

In a convolutional neural network (CNN), a non-linear activa-

tion function is applied to each layer, followed by a max pooling

layer to reduce the dimensionality of images and retain the most

prominent features. To prevent the neural networks from overfit-

ting, a dropout layer is added between the hidden layer and the

output layer. The neuron in fully connected layers applies a linear

transformation to the input vector through a weight matrix. A

non-linear transformation is then applied to the product through

a non-linear activation function, such as a sigmoid function for

the binary classification and a softmax function for the multino-

mial classification.

RESULTS

Computer-vision-based methods outperform
biochemical approaches
In this study, a vision transformer and CNNs (Conv2D) were

built to classify preprocessed phase-contrast images and pre-

dict the IC50 of drugs (Figure 1). Compared with the widely

used MTT assay (Figure 1A), our method has the following ad-

vantages: it (1) avoids operational errors and saves time asso-

ciated with adding the reagents; (2) reduces costs associated

with the labeling reagent (i.e., MTT), balancing buffer, filters,

and dissolving solutions; (3) does not require incubation

time; and (4) can be used to screen a broader range of chem-

icals because compounds with absorbance from 450 to

600 nm or with antioxidant properties will interfere with the

MTT or CCK-8 absorbance measurement,17,18 and (5) the cells

do not need to be in the log phase using our method. In MTT

assays, however, cells need to be in the log phase to ensure

the linearity between absorbances and cell numbers; (6) our

method is not cytotoxic, permitting multi-time point measure-

ments (Figure 1F).

To assess IC50with deep learning, melanoma cells are treated

with different drugs at various concentrations. Data are then

collected using a high-throughput automated imaging system

(i.e., ImageXpress Pico). Each drug has more than 2,000 images

for training and more than 200 images for testing (Tables 1 and

S1; Figure S1). For example, the training folder for paclitaxel

contains 4,320 images, which are evenly divided between the

treated and untreated groups.
azolium 8 (WST-8) to 1-methoxy phenazinium methylsulfate (PMS).

generate a luciferyl-adenylate and pyrophosphate. Luciferyl-adenylate will be

nd state and release yellow luminescent light.

. In the control group, the cells were stained with 5 mg/mL Hoechst 33342 for

e bars are 40 mm. Statistical analyses of the cell numbers from the control group

= 5, Mann-Whitney test, p = 0.008.

ing phase-contrast imagesmodifiedwith a Sobel operator. It avoids operational

bances between 450 and 600 nm, and allows for multi-time point assessments

ition embedded, and fed into a vision transformer encoder. An extra learnable
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Table 1. Number of images used for training and testing

Drug Train Test

Paclitaxel 4,320 480

Cephalotaxine 5,040 560

Fasudil 5,600 600

Irinotecan 4,680 520
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The testing folder has 480 images (half from the treated group

and half from the untreated group), accounting for 10%of the to-

tal paclitaxel dataset. Each image contains various numbers of
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Figure 2. Optimized Sobel operator improves classification accuracy

(A) The B16-F10 cells were treated with 200 mM paclitaxel for 24 h. CNNs canno

(accuracy = 50.5%). The RGB values of the background are large and relatively

(B) Gaussian high-pass (GHP) does not significantly improve the prediction accu

Scale bars are 15 mm.

(C) Sobel filter reduces the grayscale values of the background, increases the signal-

(D) An optimized Sobel (OSobel) operator further improved the prediction accura

(E) The classification accuracies of CNNs using cells treated with different conce

(F) The classification accuracies of CNNs using cells treated with different conce
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cells with different densities and morphological features (Fig-

ure 2A). The raw image is a 2007 x 2007 16-TIFF file andwas con-

verted to an 8-bit PNG and split into 100 patches. The images are

augmented by a 40� rotation and a horizontal flip. The pixel

values (0–255) of the images are divided by 255 to rescale

the data.

After data preprocessing, binary classification is conducted

using untreated cells as the control. We notice that the classifica-

tion accuracies are low before preprocessing the images (Fig-

ure 2A) or modifying the images with a high-pass algorithm (Fig-

ure 2B). The accuracy is significantly improved when the images
Classification
accuracy: 

99.8%
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close to that of cells. Scale bars are 15 mm.

racy (51.2%). The difference between the background and the signal is small.

to-noise ratio, and improves prediction accuracy to 98.2%. Scale bars are 15mm.

cy to 99.8%. R, red; G, green; B, blue. Scale bars are 15 mm.

ntrations of cephalotaxine. The red curve is the same as the one in Figure 3C.

ntrations of fasudil. The red curve is the same as the one in Figure 3D.
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Figure 3. Determination of IC50s of drugs by SIC50

(A) Binary classifications are performed using the untreated cells as a control.

(B–E) The cell viability (blue curves) and classification accuracies (red curves) in cells treated with drugs at various concentrations respectively, including

paclitaxel (B) at 91.4, 30.5, 10.2, 3.4, 1.1, 0.38, 0.13, 0.04, and 0.014 nM, cephalotaxine (C) and fasudil (D) at 200, 66.7, 22.2, 7.4, 2.5, 0.82, 0.27, 0.09, and 0.03 mM,

and irinotecan (E) at 138.9, 46.3, 15.4, 5.1, 1.7, 0.57, and 0.19 mM.

Table 2. IC50 values determined by Hoechst staining and Conv2

and a vision transformer

IC50s Hoechst (HIC50) SIC50 Difference

Paclitaxel (nM) 31.50 60.91 1.93

Cephalotaxine (mM) 32.94 44.45 1.35

Fasudil (mM) 60.27 133.35 2.21

Irinotecan (mM) 6.03 10.25 1.70
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are processed with a Sobel operator (Figure 2C) and an opti-

mized Sobel (OSobel) operator (Figure 2D), likely due to the oper-

ator reducing the grayscale values of the background and

increasing the signal-to-noise ratio (Figures 2A and 2D). Regard-

less of the preprocessing methods, the accuracies are equally

poor at low concentrations for treated cells (Figures 2E and

2F). However, when the cells are treated with drugs (e.g., ceph-

alotazine and fasudil) at high concentrations, the classification

accuracies using images preprocessed with an OSobel algo-

rithm are higher than that of Gaussian high-pass and unpro-

cessed images (Figures 2E and 2F). Thus, OSobel is employed

in the experiments thereafter.

Determination of IC50 with deep learning
We observe that the accuracy of the binary classification can be

used to predict the IC50 of a drug (Figure 3A). As a reference, the

cell viability and IC50 of drugs are first determined using Hoechst

staining and are represented as blue dots. Binary classifications

are performed using untreated cells and the cells treated with

drugs at various concentrations. The classification accuracies at

different concentrations are labeled as red squares. The accu-

racies of binary classification are close to 50% when the cells

are treated with drugs at low concentrations, suggesting that the

drugs do not result in detectable changes in cellular morphology.

Whendrawing lines connectingevery pair of adjacent red squares,

the linewith the highest slope contains values close to the IC50s of

drugs (Figures 3B–3F). Although the average value of these two
adjacent concentrations (SIC50) can be different from the IC50s

estimated usingHoechst staining by 2-fold (HIC50; Table 2),map-

ping the IC50 from a large range of concentrations (0.03–200 mM,

6,666-fold) to a 2-fold variation can be helpful and sufficient for

many purposes. In addition, 1.5- or 1.25-fold dilutions could be

adopted to further improve the prediction accuracy of SIC50.

Although the classification accuracies using a vision transformer

are close to that of Conv2D (Figures 3B–3E), we expect that the

vision transformerwould performbetterwhenpretrained at a large

scale and transferred to tasks with fewer images.18

To compare the performance of the deep-learning models,

two experiments are conducted. First, a small number of images

(n = 100) are used to train both models. We observe that the

vision transformer is faster and more accurate than Conv2D (Ta-

ble 3). The accuracy of Conv2D is improved and becomes com-

parable to the accuracy of the vision transformer when a slightly

larger dataset (n = 250) is used for training. However, it is still
Patterns 4, 100686, February 10, 2023 5



Table 3. Test results using a small dataset

Model Time (min) Accuracy TP TN FP FN Sensitivity Precision Specificity Neg pred

Conv2D 9:38 0.87 207 (74%) 278 (99%) 2 (1%) 73 (26%) 0.74 0.99 0.99 0.79

Transformer 3:17 0.91 276 (99%) 232 (83%) 48 (17%) 4 (1%) 0.99 0.85 0.83 0.98

TP, true positive; TN, true negative; FP, false positive, FN, false negative, Neg pred, negative predictive.
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significantly slower than the vision transformer (Table 4). In the

task of IC50 prediction, speed (i.e., the time needed to obtain

the accuracy curve shown in Figures 3B–3E) is more important

than exact accuracy because the goal is to identify the concen-

trations at which classification accuracy exponentially increases.

For this reason, the vision transformer is better than Conv2D in

IC50 prediction and is employed in our web application.

DISCUSSION

To develop new therapeutics, companies and research labora-

tories have been attempting to leverage the power of artificial in-

telligence for the analysis of different data including genomic in-

formation (e.g., Deep Genomics, Verge Genomics, etc.); clinical

datasets (Data4Cure, Molecular Health, etc.); small molecular

structures (Insilico Medicine, neoX Biotech, etc.); adeno-associ-

ated virus sequences (Dyno)19,20; and cellular images (Recursion

Pharma., Noul, etc.).

Deep learning has been employed for cellular analyses

including cell segmentation, tracking, and classification21; moni-

toring the morphological dynamics of reprogrammed stem

cells11; analyzing histopathology images for cancer diagnoses

and prognoses22; and identifying clinical biomarkers to predict

response to chimeric antigen receptor T cell (CAR-T) immuno-

therapy.23 Pattarone et al. trained CNN models to classify living

and dead breast cancer cells (JIMT-1) treated with doxorubicin

at one concentration (0.01 M).15 ResNET24,25 can be trained to

classify cellular images. It contained 17 convolution layers that

employ 3*3 filters and a stride of 2 and 1 fully connected layer,

followed by a softmax layer. The first five layers had 64 kernels.

Layers 6–9, layers 10–13, and layers 14–17 have 128, 256, and

512 kernels, respectively. In addition, SqueezeNet26 can be uti-

lized for cell analysis. It begins with a convolution layer, followed

by 8 firemodels, and endswith a convolution layer and a softmax

layer. The fire model consists of a 1*1 convolution filter named

the squeeze layer and a mix of 1*1 and 3*3 filters called the

expand layer. Support vector machine (SVM) classifiers were

used to distinguish drug-treated MCF-7 cells from untreated

cells with an accuracy of 92%. Single-cell images were captured

by an optofluidic time-stretch microscope after being treated

with paclitaxel for 12 and 24 h. These models were used for bi-

nary classification of cancer cells (live or dead,15 drug treated

or untreated16), and the cells were treated with the drug at only

one concentration.15 The classification accuracies did not

change significantly when the cells were treated for 48 h, prob-
Table 4. Test results using a larger dataset

Model Time (min) Accuracy TP TN FP

Conv2D 15:45 0.97 273 (98%) 272 (97%) 8 (3

Transformer 5:59 0.96 276 (99%) 263 (94%) 17 (

6 Patterns 4, 100686, February 10, 2023
ably due to differences in preprocessing methods.16 Thus, the

accuracies were not used for the assessment of IC50.

The SIC50 models were tested using drugs with different

mechanisms of action. For example, paclitaxel stabilizes

microtubules, increases microtubule polymerization, decreases

microtubule depolymerization, prevents mitosis, and blocks

cell-cycle progression.27 Cephalotaxin inhibits the growth

of cancer cells by activating the mitochondrial apoptosis

pathway.28 Fasudil is a calcium channel blocker and inhibits

the Rho-kinase signaling pathway.29,30 Irinotecan is a prodrug

of 7-ethyl-10-hydroxycamptothecin (SN-38), which forms com-

plexes with topoisomerase 1B and DNA and causes DNA

misalignment and cell death.31 Therefore, we anticipate this

method can be used for screening different categories of drugs.

Conclusions
Validated in four drugs, we anticipate that our method will

empower drug discovery and research in pharmacology by facil-

itating the high-throughput screening of chemical libraries using

1,536-well plates and imaging platforms such as the Cytation 5,

helping evaluate the potency of other small-molecule drugs,

small interfering RNA (siRNA), and microRNA and assessing

the cytotoxicity of delivery vehicles for drugs and genes such

as lipid nanoparticles,32 polymers, and adeno-associated vi-

ruses.33–36 In addition, we envision that ourmethod can bemodi-

fied to facilitate biomedical research related to changes in

cellular morphology, e.g., cancer cell metastasis, stem cell dif-

ferentiation, neural plasticity, and so on.

EXPERIMENTAL PROCEDURES

Resource availability
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Materials availability
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Data and code availability

The codes and images have been deposited at Zenodo (https://doi.org/10.

5281/zenodo.7509014) and are publicly available as of the date of publication.

Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request. The link to the web application

is biochemml.com/image/.

Methods

Architecture of Conv2D

The Conv2D is constructed using the TensorFlow framework. The network

consists of 4 convolutional layers with the rectified linear unit (ReLU). The first
FN Sensitivity Precision Specificity Neg pred

%) 7 (2%) 0.98 0.97 0.97 0.98

6%) 4 (1%) 0.99 1.00 0.94 0.81

mailto:kslam@ucdavis.edu
https://doi.org/10.5281/zenodo.7509014
https://doi.org/10.5281/zenodo.7509014
http://biochemml.com/image/
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two convolutional layers have 64 kernels, while the third and fourth convolu-

tional layers have 128 kernels. At each convolutional layer, the convolution is

performed by sliding the filter over the input data to extract the hidden features

from the data. Each convolutional layer is followed by a 2*2 max pooling layer

to reduce the feature dimension by keeping only the most relevant features.

The output from the last pooling layer is then flattened and presented to a

dropout layer with a rate of 0.5 to avoid overfitting. The last 2 layers in the

Conv2D are fully connected layers with 512 and 2 neurons, respectively, fol-

lowed by a to obtain the final classification result. The parameters of the

network are trained on over 50 epochs randomly using the training data

(90% for training and 10% for testing). The accuracy of the classifier is then

computed by evaluating the fitted model using the test data.

Architecture of a vision transformer

Images are resized to 72 3 72 and split into 6 3 6 patches to build a trans-

former encoder together with position embeddings and a learnable ‘‘classifica-

tion token.’’ Layer normalization is implemented before every block of the

transformer encoder containing multiheaded self-attention and MLPs. Each

MLP consists of two layers with GELU non-linearity. We use a learning rate

of 0.001 and aweight decay of 0.0001, a batch size of 200, 100 epochs, 4 trans-

former layers, a dropout rate of 0.1, and MLP head units of [2,048, 1,024].

Cell culture and drug treatment

A vial containing 1 mL cancer cells (B16-F10) is restored in liquid nitrogen and

thawed in a water bath at 37�C, followed by mixing with 9 mL of Dulbecco’s

modified Eagle medium (DMEM) complete cell culture medium (90% DMEM,

10% FBS, and 1% penicillin/streptomycin) and centrifuged at 800 3 g for

4 min. After discarding the supernatant, the cell pellet is resuspended in

10 mL culture medium, seeded in a T75 flask, and placed in an incubator at

37�C and 5% CO2. Twelve hours later, B16-F10 cells are seeded in plates

(96-well plates at a density of 6,000 cells/well, 384 well plates at a density of

1,800 cells/well, and1,536-well plates at adensity of 240 cells/well) in complete

growth media and cultured for 12 h in 37�C incubators. The initial cell density

can vary among different cell types depending on their proliferation rates.

The key is to avoid cell overcrowding 36 h later because cell over-confluency

can lead to inaccurate cell count using Hoechst and ImageJ as described

below. Before treating the cells with drugs, stock solutions are prepared by dis-

solving the drugs in DMSO, followed by a serial dilutionwith the cell cultureme-

dium. Different drugs may have different initial concentrations depending on

their solubility (e.g., 200 mM cephalotaxine, 138.9 mM for irinotecan, etc.). For

the serial dilution, 1 vol of the previous solution is mixed with 2 vol culture me-

dium (i.e., 1:3 dilution). A smaller ratio can be used for better accuracy. The old

medium is removed before the drugs are subsequently added at various con-

centrations and incubated for an additional 24 h in the incubator at 37�C and

5% CO2. The drugs and materials are procured from different sources:

paclitaxel (LC Laboratories, cat. P-9600, CAS no. 33069-62-4); cephalotaxine

(Toronto Research Chemicals, cat. C261050, CAS no. 24316-19-6); irinotecan

(APExBIO, cat. B2293, CAS no. 136572-09-3); fasudil (Toronto Research

Chemicals, cat. R1036); cantharidin (Sigma Aldrich, cat. C7632, CAS no.

56-25-7); B16-F10 cells (ATCC, cat. CRL-6475); DMEM (Thermo Fisher Scien-

tific, cat. 11-995-073); fetal bovine serum (FBS; Thermo Fisher Scientific,

cat. 10-437-028); penicillin-streptomycin (PS; Thermo Fisher Scientific, cat.

15070063); T-75 flasks (Corning, product no. 430825); 96-well plates (Corning,

product no. 3595, and Thermo Fisher Scientific, cat. no. FB012931); 384-well

plates (Corning 3833); and 1,536-well plates (Corning 3712).

Determination of IC50 by Hoechst staining

The cells are incubated with culture media containing 1 mg/mL Hoechst 33342

(Thermo Fisher Scientific, cat. no. H3570), for 10 min. The IC50 is calculated

after counting the number of nuclei with CellProfiller and curve fitting with

GraphPad Prism 9. Approximately, the IC50 equals the x axis value of the in-

tersecting point of a blue curve in Figure 3 and the horizontal dashed line

crossing the y axis at 50%.

Image collection and preprocessing

Images are collected by a high-throughput imaging system (Molecular De-

vices, ImageXpress Pico) using a 43 objective (29.8% of well) and exported

as a 16-bit TIFF. For general information related to Pico, please refer to the

‘‘ImageXpress Pico Automated Cell Imaging System User Guide.’’ The images

are converted into 8-bit TIFF, then into 8-bit PNG by ImageJ, and processed

using different algorithms (code posted on GitHub). Afterward, each image

is split into 100 smaller images using PhotoScape X by opening the file under
‘‘viewer,’’ right-clicking the image, selecting ‘‘split,’’ and specifying the ‘‘col-

umns’’ and ‘‘rows.’’ The step can be completed using online applications or

Jupiter Notebook. Next, the data are augmented to generate more images

for training.
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