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Abstract: Messenger RNA (mRNA) is being developed by researchers as a novel drug for the treat-
ment or prevention of many diseases. However, to enable mRNA to fully exploit its effects in vivo,
researchers need to develop safer and more effective mRNA delivery systems that improve mRNA
stability and enhance the ability of cells to take up and release mRNA. To date, lipid nanoparticles
are promising nanodrug carriers for tumor therapy, which can significantly improve the immunother-
apeutic effects of conventional drugs by modulating mRNA delivery, and have attracted widespread
interest in the biomedical field. This review focuses on the delivery of mRNA by lipid nanoparticles
for cancer treatment. We summarize some common tumor immunotherapy and mRNA delivery
strategies, describe the clinical advantages of lipid nanoparticles for mRNA delivery, and provide an
outlook on the current challenges and future developments of this technology.
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1. Introduction

Cancer is currently a crucial cause of death among patients and an expanding number
of people around the world are dying from cancer [1,2]. It causes a very severe threat
to human health, and most cancer patients are at an advanced stage when diagnosed,
often producing a poor prognosis. Therefore, research on cancer treatment has become a
focus of attention. For cancer treatment, traditional treatments include surgery, radiother-
apy, and chemotherapy, but cancer treatments are not effective and can have significant
side effects. Immunotherapy, which has emerged in recent years, is considered to be a
promising approach to overcome cancer. It artificially activates the immune system by
regulating and controlling the working mechanisms of the immune system, rather than
targeting the tumor itself, in order to clear malignant tumor cells. Available therapies
are cancer vaccines [3–5], adoptive cell therapy (ACT) [6–9], immune checkpoint blockade
(ICB) [10–14], and cytokines [15]. Cancer immunotherapy is well established and current
immune agents include vaccines, T cell activators, dendritic cell (DC) stimulators, and
immune checkpoint inhibitors [16], whose therapeutic principle is mainly T cell-regulated
antitumor immunity, but the effector function of T cells is not autonomous, and effective
immune responses may be negatively regulated by tumor regulatory T cells (Tregs) influ-
ence [17,18]. In addition, infiltrating lymphocytes have difficulty achieving cytotoxic effects
against core regions of solid tumors in the immunosuppressed tumor microenvironment
(TME), and immunotherapy for some tumor patients faces significant clinical challenges,
including resistance to agents, low immunogenicity, severe immune-related adverse events
(iRAEs), non-targeted systemic toxic effects, and high treatment costs [19].

Messenger RNA (mRNA) plays an important role in tumor immunotherapy by ef-
fectively delivering cytokines, costimulatory receptors, or therapeutic antibodies and is
well suited for cancer vaccines and neoantigen vaccination [20–22]. However, there are
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still some challenges with mRNA delivery systems in terms of targeted delivery and en-
dosomal escape, and therefore, safer and highly efficient mRNA delivery strategies have
a great impact on the immunotherapy efficacy in the evolving cancer immunotherapy.
Many materials have been developed that can be used for mRNA delivery, and notably,
lipid nanoparticles are excellent nanodrug carriers for mRNA delivery during cancer im-
munotherapy, which is a hot topic in tumor therapy at present [23]. A number of lipid
nanoparticle–mRNA formulations for the prevention or treatment of various diseases have
been investigated and are undergoing clinical studies. Different materials have different
delivery efficiencies for mRNA and exhibit different accumulation effects and cancer cell
uptake rates at tumor sites [24,25]. Therefore, lipid nanoparticles have been widely studied
by many researchers as ideal immune carriers for regulating mRNA delivery and have
entered clinical applications in tumor immunotherapy.

In this paper, we briefly introduce some typical lipid nanoparticles for mRNA delivery,
describe some of the difficulties encountered in this research process, and finally, we present
examples of excellent mRNA delivery systems for enhancing tumor immune effects in
clinical studies, and provide an outlook on the future prospects of lipid nanoparticles and
tumor immunotherapy.

2. The Emerging of Cancer Immunotherapy

Cancer immunotherapy is a method that uses immunological principles to enhance
immunity. It is able to inject immune cells and effector molecules into the host, which can
stimulate or enhance the antitumor immune effect and inhibit the growth of tumors. In 1986,
the U.S. Food and Drug Administration (FDA) agreed to the use of the immunotherapeutic
cytokine interferon-α (IFN-α) for the therapy of hairy cell leukemia, and several clinical
trials ranging from cytokines to interleukin-2 (IL-2) have demonstrated some efficacy and a
high level of toxicity [26,27]. Many studies have shown that immunotherapy is effective for
certain cancers, demonstrating promising applications for a variety of immunotherapies to
improve treatment outcomes, and the FDA has approved immunotherapy for the therapy of
non-small cell lung cancer, kidney cancer, bladder cancer, liver cancer, head and neck cancer,
cervical cancer, and melanoma [28]. In 2013, Science ranked tumor immunotherapy in the
top 10 scientific breakthroughs, and immunotherapy is expected to be the next generation
of tumor treatment after surgery, chemotherapy, and radiotherapy [29]. In previous studies,
cancer immunotherapy targeted immunosurveillance mechanisms and did not directly
target tumor cells. These steps include tumor-associated antigen release, antigen-presenting
cell presentation, T cell initiation and activation, T cell migration and infiltration, T cell
discovery and clearance on the tumor, and the action of certain costimulatory factors
(Figure 1) [30–33]. Based on these mechanisms, cancer immunotherapies can be divided
into the following categories: cytokines, cancer vaccines, ICBs, and ACTs. In addition,
innovations in delivery systems have facilitated the study of personalized mRNA vaccines,
providing a favorable rationale for mRNA vaccines as a promising cancer immunotherapy
(Figure 2).
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Cytokines are a specific class of molecules secreted by immune cells that act by
binding with high affinity to target cell surface receptors, thereby regulating cellular
functions [34–36]. Cytokines include lymphokines produced by lymphocytes and mononu-
clear factors produced by mononuclear macrophages. Currently known cytokines include
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interleukin (IL), interferon (IFN), tumor necrosis factor (TFN), etc. Research on the corre-
sponding receptors, biological functions and clinical applications of these cytokines has
become an important area of clinical immunology. During the immune response, cytokines
play an important role in cell–cell interactions, cell growth, and differentiation, but can also
lead to pathological responses under abnormal conditions. It has been shown that cytokine
release syndrome (CRS) follows 5 days of BTN162b2 (an mRNA vaccine of coronavirus
disease 2019) vaccination in a long-term colorectal cancer patient receiving anti-PD-1 ther-
apy [37]. CRS is a systemic inflammatory response characterized by elevated inflammatory
markers, thrombocytopenia, and excessive release of cytokines (i.e., INF-γ, IL-6, IL-10, and
IL-2R are elevated) [38–40]. Oncolytic virus (OV) therapy is a novel form of cancer treatment
developed in recent years that enables the selective removal of cancer cells using natural or
engineered viruses [41], with viral genomic modifications to enhance antitumor activity
and attenuate pathogenicity [42]. OV is frequently modified to express unique cytokines
that enhance immune cell aggregation and activation, or to cause tumor cells to produce
costimulatory molecules that enhance the costimulatory effect of T cells by facilitating the
expression of T cell activation signals [43]. OV is a less toxic option compared to other
cancer immunotherapy strategies, but still has some limitations, for example, OV-regulated
antitumor responses are likely to have an impact in immunocompromised patients [41]. In
addition, IFN-α is effective in hematological malignant diseases such as hairy cell leukemia,
but is less effective in solid tumors. TNF is currently being attempted for local application
in rectal cancer due to serious systemic side effects and efficacy checks, but the exact efficacy
needs to be further evaluated. Therefore, the development of appropriate and effective
new therapies for clinical use is a major issue for future cancer treatment.

Cancer vaccines, which use tumor cell-associated antigens to activate the immune
system, can recognize proteins on specific cancer cells, thus killing cancer cells without
harming normal cells, and showing good preventive and therapeutic effects to stop cancer
cell growth. Cancer vaccines not only generate novel antigen-specific T cell responses,
but also amplify existing responses, thereby focusing the host’s immune response on
tumor cells [44,45]. Unlike chemotherapy and radiotherapy, which directly kill tumor
cells and rapidly divide normal cells in the body, cancer vaccines usually do not have
serious side effects and can induce an immune response in “cold” tumors that are not
immunogenic themselves, thus potentially transforming them into “hot” tumors. With the
continued development of preventive vaccines such as hepatitis B virus (HBV) and human
papillomavirus (HPV), HPV vaccines have shown some potential for cancer prevention,
dramatically reducing HPV prevalence and precancerous lesions and saving millions of
lives [46–61]. The goals of therapeutic cancer vaccines are to induce tumor clearance, es-
tablish durable antitumor memory, and reduce adverse reactions [62]. Early therapeutic
vaccination strategies focused on self-antigens that are aberrantly expressed or overex-
pressed in tumors, called tumor-associated antigens (TAAs)—but TAA-specific T cells are
affected by central and/or peripheral tolerance—lack tumor specificity and have poor
immunogenicity [63]. However, therapeutic vaccines have been slow to develop and face
many challenges [64–76]. To break this tolerance, cancer vaccines must load a large number
of tumor antigens onto DCs. Among them, the specific recognition of tumor-associated car-
bohydrate antigens (TACAs) has promising applications in tumor immunotherapy. Cancer
vaccines achieve favorable therapeutic effects by inducing antigen-specific CD8+ cytolytic T
cells (CTLs) and antigen-specific CD4+ T cells, which are mainly determined by the capture
and presentation of antigens by DCs [77–80]. It has been shown that N-hydroxyneuraminic
acid (Neu5Gc), a dietary carbohydrate, generates new antigens upon sustained accumula-
tion on human tumor cells. In a mouse model, passive immunotherapy with anti-Neu5Gc
antibodies suppressed the increase in size of Neu5Gc-positive tumors. Using engineered
α-blood knockout porcine erythrocytes expressing Neu5Gc-TACA bionanoparticles in their
natural environment, researchers developed a therapeutic mechanism for an active cancer
vaccine against Neu5Gc-positive tumors and, after optimizing adjuvant and immunization
procedures, applied these bionanoparticles to inoculated “human-like” Neu5Gc-deficient
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mice and found that this evoked a robust and durable anti-Neu5Gc immune effect and
suppressed the growth of tumor volume [81]. The results of many clinical trials have shown
that cancer vaccines are an effective and precise antitumor immunotherapy with relatively
little harm to the body, but tumor-induced immunosuppression and immune resistance re-
main a major challenge, and safer and more effective cancer vaccines need to be developed
to treat cancer by overcoming tumor resistance and improve clinical outcomes [82–84].

ICB is a method for triggering antitumor immune responses that blocks cancer cell-
activated immunosuppression and has demonstrated significant efficacy in the treatment of
many types of tumors [85–90]. Human cancers carry multiple somatic mutated genes and
epigenetic variant genes that produce substances often recognized by the immune system as
antigens. PD-1 is an expressed inhibitory receptor produced by antigen-stimulated T cells
that regulates and controls T cell proliferation, cytokine release, and cytotoxicity. PD-L1
receptors act on tumor cells and bone marrow-derived suppressor cells [91]. As an adaptive
checkpoint, PD-L1 recognition of the PD-1 receptor significantly reduces T cell activation,
inhibits antitumor effects, and fails to kill tumor cells normally. Inhibition of the PD-L1/PD-
1 pathway restores the antitumor immune response, thereby enhancing the host immune
system’s aggressiveness against tumor cells [92]. CD47 is an innate immune checkpoint
that interacts with receptor signaling regulatory protein α (SIRPα), thereby inhibiting
phagocytosis by macrophages, and inhibition of the CD47/SIRPα signaling pathway
may also limit tumor growth [92,93]. It has been shown that inhibition of proprotein
convertase subtilisin/kexin type 9 (PCSK9), an important protein in the regulation of
cholesterol metabolism, can enhance the effects of immune checkpoint therapy. Deletion
of the PCSK9 gene in tumor cells enhances the effectiveness of immunotherapy against
PD-1 and prevents the growth in tumor size. In addition, inhibition of PCSK9 by gene
deletion or other methods promotes the action of major histocompatibility protein class I
(MHC I) proteins on cancer cells and enhances tumor infiltration of T cells [94,95]. However,
single ICB has disadvantages such as less effective response and potentially higher side
effects, insufficient reversal of TIM, and complete clearance of tumor cells [96–99]. Due
to the limited efficacy of ICB against hepatocellular carcinoma (HCC) and other cancers,
researchers have developed a targeted mRNA nanoparticle platform designed to induce
the expression of p53 (tumor suppressor gene) in HCC models. Combining p53 mRNA
with anti-PD-1 therapy effectively inhibits the growth of tumor volume [100].

ACT is an important method for immune cell therapy of infiltrative tumors, using
the antitumor characteristics of lymphocytes to remove primary and metastatic tumor
cells [101–117]. Autologous (patient’s own) or allogeneic (donor’s) tumor-infiltrating
lymphocytes (TILs) are activated in vitro, expanded to a certain number, and reinfused into
the patient [118–121]. In recent years, the use of artificial T cells constructed from chimeric
antigen receptors (CARs) and T cell receptors (TCRs) for various aspects of cancer therapy
has progressed considerably. It was found that combining the DC growth factor FMS-like
tyrosine kinase 3 ligand (Flt3L) secreted by T cells with the immune agonist poly (I:C) and
anti-4-1BB, Flt3L-secreting T cells were found to increase the number of DCs within the
tumor and significantly enhance T cell activity. Importantly, in tumor models, combined
treatment with T cell receptor and chimeric antigen receptor T cells significantly inhibited
tumor growth and induced the spread of antigenic epitopes beyond the already metastatic
T cells [122]. It has been shown that retroviral gene transfer of IL-12 into T cells has shown
serious side effects. To overcome this toxicity, transient genetic engineering with mRNA
encoding IL-12 and CD137 ligands inhibited the growth of tumor volume and improved
the therapeutic efficacy of ACT [123]. In addition, it has been demonstrated that CARs and
TCRs move transiently by electroporation of in vitro transcribed mRNAs optimized for
gene expression [124,125]. In vitro gene transfer of synthetic mRNAs with electroporation
devices is clinically feasible [126]. ACT is a more complex immunotherapeutic approach
than others, and the “off-target” toxic effects of antigens on normal tissues remain a problem,
so more intensive research is needed to improve this situation [127].
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mRNA-based vaccines are being investigated as a means of encoding antigenic pro-
teins and providing adjuvant functionality. The high potency of mRNA and the unprece-
dented speed of its development and manufacture have made mRNA vaccines promising
therapeutic approaches that have shown great clinical potential and saved millions of
lives [128]. In contrast to immune checkpoint blockade therapies targeting PD-1, PD-L1,
or CTLA-4, mRNA vaccines are able to attack “non-self” cancer cells by inducing T and
B cells. During the treatment of various hematological malignancies, the activity of ma-
lignant B cells is depleted and may impair the humoral (B cell) response induced by the
mRNA vaccine [129]. For example, studies in mice with multiple sclerosis have shown that
immunization with mRNAs encoding self-antigens and delivered as non-inflammatory
liposomal carriers can suppress autoimmunity by activating antigen-specific regulatory T
cells [130]. Successful application of mRNA vaccines against SARS-CoV-2 demonstrated
good tolerability, but their instability and inefficient delivery limit the antitumor effect
(Figure 3) [131–135]. In addition, an mRNA-based multitumor epitope approach is able
to stimulate effective antitumor immunity against tumor antigens in melanoma patients.
However, the application of mRNA vaccines is inhibited by the inability to bind effectively
to immune adjuvants. Lipid nanoparticles enable agents to exhibit specific accumulation
effects and uptake by cancer cells at tumor sites, and are excellent nanodrug carriers for
cancer immunotherapy processes. Therefore, mRNA vaccines with lipid nanoparticles as
carriers can achieve long-lasting anticancer effects, and the development of therapeutic
mRNA vaccines will drive oncology research forward.
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Figure 3. Antigenic response after intravenous administration of SARS-CoV-2 mRNA vaccine.
(A) Flow cytometry counts of RBD-specific GC B cells. (B) Frequency and absolute number of cells
after 7 days of immunization. (C) Kinetics of the absolute number of cells. (D) Curves of absolute cell
numbers versus time [135]. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

3. Development of Lipids for mRNA Delivery

In the past few years, mRNA has made considerable progress in cancer immunother-
apy, but the instability and high immunogenicity of mRNA in vivo have hindered the
translation into clinical practice [136–138]. To address this challenge, mRNA modification
and delivery techniques have been studied in greater depth and it has been found that
lipids play a significant role in mRNA delivery, both in conferring protection from mRNA
degradation and in improving cellular transfection [138,139]. Lipids contain three structural
regions, the polar headgroup, the hydrophobic tail region, and the linker between the two
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structural regions. Many studies have shown that cationic lipids, ionizable lipids, and other
lipids are increasingly being used for mRNA delivery with favorable results [140–142].

3.1. Cationic Lipids

Cationic lipids generally consist of positively charged polar groups and hydropho-
bic tails, and are capable of self-assembling into higher order aggregates in aqueous
solution. Cationic lipids are an ideal vector for good targeting, low side effects, good
stability, and high transfection efficiency. Cationic lipids can interact with negatively
charged lipids in biological membranes to form a membrane-disrupting non-bilayer struc-
ture that can allow nucleic acid polymers to enter the cell, thereby facilitating mRNA
delivery [143,144]. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-di-O-
octadecenyl-3-trimethylammonium-propane (DOTMA) are commonly used as cationic
lipids, which have poor stability, membrane fusion, and transfection efficiency when
forming liposomes alone. DOTAP and DOTMA have been used alone or in combination
with other materials to transfer mRNA to various cell types [145–147], and the fusion
and transfection efficiency were improved with the addition of the auxiliary lipids such
as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC). The mRNA and cationic lipids can form stable complexes, and the
amino groups of cationic lipids usually interact with the phosphate groups in nucleic acid
molecules, which can be encapsulated in lipid nanoparticles for tumor immunotherapy,
showing good immunogenicity [148–150]. For example, dimethyldioctadecylammonium
bromide (DDAB) is a cationic lipid that stimulates the immune response and becomes
stable when bound to mRNA, thus acting as an adjuvant for mRNA vaccines, and is capable
of improving the effectiveness of immunotherapy [151,152]. In addition, DOTAP-based
cationic nanoemulsions can be used to deliver antigenic mRNA against multiple types
of infections, and DOTAP–polymer hybrid nanoparticles can transfer mRNA for tumor
immunotherapy [153–155].

Although cationic lipid delivery systems appear promising, cationic lipids can be
neutralized by anionic serum proteins during mRNA delivery, reducing mRNA delivery
efficiency as well as therapeutic efficacy [156].

3.2. Ionizable Lipids

Ionizable lipids are amphiphilic structures with hydrophilic head groups that promote
self-assembly of hydrocarbon chains, as well as linkers between head groups and hydro-
carbon chains. Ionizable lipids play an important role in protecting RNA and facilitating
cytoplasmic translocation and are capable of protonation at low pH, making these lipids
positively charged and capable of improving stability and reducing systemic toxicity, but
are usually uncharged at physiological pH [157]. pH-sensitive ionizable lipids facilitate
mRNA delivery in vivo and often exhibit better biocompatibility [158]. In endosomes with
low pH, ionizable lipids can be protonated, which improves the fusion of these lipids with
the endosomal membrane and promotes endosomal escape as well as mRNA migration
to the cytoplasm. Therefore, the effect of ionizable lipids on mRNA delivery efficiency
depends on the pH at which they are protonated and the ability of ionizable lipids to form
non-bilayer structures. The introduction of ionizable lipids enhances the role of mRNA
in vivo, and the addition of ionizable lipids not only maintains mRNA delivery efficacy
but also achieves rapid metabolism, improves the tolerance of lipid nanoparticles, and
enhances the effectiveness of tumor immunotherapy (Figure 4) [159–165]. For example,
researchers have developed an ionizable lipid material to facilitate mRNA delivery in vivo
and to provide an effective immune-activated mRNA delivery vehicle to stimulate a strong
immune response and inhibit the growth of tumor volume [166]. Recently, a variety of
ionizable lipids have been created for different applications, greatly facilitating the further
development of mRNA delivery. It has been shown that unsaturated ionizable lipids
can enhance mRNA delivery, with linoleic acid-derived ionizable lipids (OF-02) showing
better liver mRNA delivery and more significant protein expression compared to their
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counterparts. However, the unsaturated bonds contained in ionizable lipids do not always
correspond to efficient delivery of mRNA in vivo, suggesting that design and screening are
a very important step [165]. To minimize side effects, the introduction of biodegradability in
ionizable lipids is a common strategy, and lipids are often degraded to non-toxic metabolites
at the end of intracellular delivery, which is particularly important for RNA therapies that
require repeated administration. Compared to non-degradable analogues, ester-containing
ionizable lipids tend to exhibit lower potency due to low delivery efficiency, therefore, a
balance between activity and degradability is needed to maximize benefits.
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acteristics, ionized lipids can be classified into five types: unsaturated, multitailed, polymerized,
biodegradable, and branching tails [165].

3.3. Other Types of Lipids

In addition to common lipid types, mRNA formulations often include other lipids such
as phospholipids, cholesterol, or polyethylene glycol lipids (PEG-lipids), which can im-
prove the properties of mRNA preparations such as biodistribution, stability, and delivery
efficiency [167]. 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) is a phosphatidyl-
choline with a unique geometry that allows for better stability of lipid nanoparticles and
enhances therapeutic efficacy by promoting the fusion of lipid nanoparticles with cellular
and endosomal membranes and enhancing cellular uptake and endosomal release. No-
tably, DSPC is also involved in the production of mRNA-1273 and BNT162b2 COVID-19
vaccines [168,169]. Cholesterol, known as a regulator of membrane fluidity, fills the gaps
between lipids within membranes and can improve the stability of lipid nanoparticles by
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controlling membrane integrity and rigidity [170], and derivatives of its molecular geomet-
ric configuration can more profoundly affect mRNA delivery efficiency and biodistribution.
For example, since the length of the hydrophobic tail, the flexibility of the sterol ring, and
the polarity of the hydroxyl group of cholesterol analogues affect the delivery efficiency,
cholesterol analogues containing C-24 alkyl phytosterols can improve the delivery effi-
ciency of mRNA drugs in vivo [171]. PEG-lipids consist of a PEG molecule conjugated to
alkyl chains that anchor themselves in the bilayer of lipid nanoparticles. PEG-lipids are
important in mRNA delivery, binding ligands to particles for targeted delivery, reducing
the permeation of serum proteins and clearance by reticuloendothelial cells, resulting
in more potent delivery of mRNA, more drug accumulation at tumor sites, and better
immunotherapeutic efficacy [172,173].

In conclusion, mRNA has promising applications as a genetic medicine that induces
transient protein expression, promotes a wide range of biological processes, and reduces
the risk of genomic integration [174]. However, the existing mRNA delivery systems do not
meet the demand and greatly hinder the clinical progress of mRNA therapies. Therefore,
a more in-depth study of lipids and the application of lipid nanoparticles in the mRNA
delivery process is needed.

4. Lipid Nanoparticles for mRNA Delivery in Cancer Immunotherapy

The unique advantages of nanomaterials have led to their widespread application
in cancer therapy [175,176]. Many gold nanoparticles, inorganic nanoparticles, and lipid
nanoparticles have been investigated to deliver therapeutic drugs to cancer cells through
passive targeting mechanisms or active targeting mechanisms. For example, phospho-
lipid nanoparticles (PL1) were found to be effective in delivering costimulatory receptor
mRNA (CD137 or OX40) to tumor-infiltrating T cells, and the use of PL1-OX40 mRNA
and anti-OX40 antibody was shown to have more significant antitumor activity than anti-
OX40 antibody alone in a variety of tumor models [3]. Therefore, lipid nanoparticles
are increasingly used in tumor immunotherapy, with significantly improved antitumor
effects and greatly reduced systemic side effects [177,178]. Several clinical studies are using
lipid nanoparticles for in vivo delivery of mRNA therapeutics, and fortunately, many lipid
nanoparticles have successfully entered the clinic for mRNA delivery. For example, the
coronavirus disease 2019 (COVID-19) vaccine uses lipid nanoparticles to deliver antigenic
mRNA. Subsequently, we will present several common examples of lipid nanoparticles
that enhance tumor immunotherapy by modulating mRNA delivery [179,180].

4.1. Liposomes

Liposomes are bilayers formed by spherical phospholipids and cholesterol as the main
components [181–186], with the advantages of high encapsulation rate, good targeting,
and low toxicity, which have promising applications in industrial production. Hydrophilic
small-molecule drugs can be enclosed in an internal aqueous core, while hydrophobic
agents are enclosed in a lipid bilayer [187], and the encapsulation of therapeutic drugs in
distinct liposome chambers allows for safe and targeted drug delivery and protects the
encapsulated cargo from being cleared by the immune system. Liposomes are one of the
approaches to enhance cancer immunotherapy by modulating mRNA delivery, which can
deliver hydrophilic and lipophilic therapeutic drugs while maintaining efficacy.

The combination of liposomal drugs with immunotherapeutic agents is a promising
immunotherapeutic approach in which the immunotherapeutic agent is enclosed inside
the liposome, improving the application of immunotherapeutic drugs as they are released.
Some liposomal agents such as Doxil®, LipoTaxen®, Onivyde®, and Taxol® have achieved
promising therapeutic results in clinical practice. As a commonly used mRNA delivery
system, encapsulating mRNA in liposomes protects mRNA from degradation by nucleases,
aids cellular uptake, and promotes endosomal escape [188]. Some studies have shown that
PD-L1 inhibitors are a common immunotherapeutic agent targeting cancer cells [189–198],
and the multifunctional liposomal nanocarriers siPD-L1@PM/DOX/LPs have excellent
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stability in serum and can effectively deliver siRNA into MCF-7 cells to reduce PD-L1
expression and enhance immunotherapeutic effects (Figure 5) [199]. Thus, immunother-
apy continues to develop and increasingly more immunotherapies will be explored in
depth. For example, immunoliposomes are a novel immunotherapeutic approach for
mRNA delivery [200], which generally couples antibodies to the surface of liposomes
and works together with chemotherapeutic drugs enclosed in liposomes to enhance the
immune function of the body, accelerate the immune response, and improve the chance
of liposome coupling to the target site. Long-circulating liposomes can increase flexibility
and hydrophilicity due to PEG modification, reduce the interaction between liposomal
lipid membranes and plasma proteins through phagocytosis by the monocyte–macrophage
system, prolong circulation time, and facilitate targeting of tissues or organs other than the
liver and spleen, while binding antibodies or ligands at the end of PEG can maintain the
recognition of the target.
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Figure 5. Antitumor effects in vivo ((a) saline; (b) siPD-L1@PM@LPs; (c) free DOX; and (d) siPD-
L1@PM/DOX@LPs). (A) Tumor growth curve. (B) Weight change during the experiment. (C) Pictures
of tumor tissues isolated after the completion of the experiment. (D) Tumor weight change curve
with time. (E) Tumor growth inhibition rate under different conditions. (F) H&E stain images of
major organs (scale bar: 50 µm). (G) Levels of cytokine IFN-γ in tumor tissues [199]. * p ≤ 0.05,
*** p ≤ 0.001.
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In recent years, novel liposomes for mRNA delivery have emerged, and liposomes
as drug carriers are an early class of novel targeted agents for clinical application, but few
have finally entered clinical trials, and further improvements in lipid type, binding bonds,
and binding rates of chemotherapeutic drugs and antibodies are needed before they can be
used in clinical translation of cancer therapy.

4.2. Nanodiscs

The efficacy of many cancer agents at the clinical stage is unsatisfactory, and var-
ious nanosystems have been investigated with great success in order to improve the
antitumor effect [201,202]. Nanodiscs are a synthetic model membrane system consist-
ing of phospholipid bilayers surrounded by proteins or polymers, which can be used as
novel nanomaterials for immunotherapy. Their structure is similar to that of discoidal
high-density lipoproteins and better mimics the natural environment than liposomes and
micelles. The process of intravenous drug delivery often requires the addition of solu-
bilizers to improve utilization, but it can easily lead to problems such as high injection
doses and toxic side effects. In nanodiscs, because they mimic the phospholipid bilayer
of biological membrane, the hydrophilic head of phospholipid molecules is exposed on
the outside, the long lipophilic chains are located inside the nanodisc structure, the loaded
drugs are wrapped in the middle of the internal long lipophilic chains, and many ex-
periments have proved that nanodisc materials have better loading ability for lipophilic
drugs [203]. For example, researchers developed personalized vaccine nanodiscs of HDL
for delivery of immunostimulants and antigens, and when the nanodiscs were used in
combination with PD-1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to treat
mice with advanced B16F10 melanoma tumors, the combined immunotherapy exerted a
powerful antitumor effect, eradicating established tumors in approximately 60% of the
animals (Figure 6) [204]. Nanodiscs as drug carriers have made great progress in applied
research due to their advantages of controlled drug release, targeting function, and high
drug loading rate. Nanodiscs customized with patient-specific tumor neoepitopes are a
promising platform and a new approach for tumor immunotherapy, but they are currently
limited to relevant tests in animal models and still need to be further explored before they
can be expected to better exploit the advantages of drug carriers in the clinical setting.
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Figure 6. Therapeutic effects of the combination of vaccine nanodiscs and immune checkpoint
blockers. (A) Images of tumor-bearing mice at the beginning of treatment (day 10) and during
treatment (day 22). (B) Mean tumor growth over time. (C) Animal survival over time. (D) Images of
ELISPOT wells. (E) The number of tumor antigen-specific IFN-γ+ spots [204]. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001.
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4.3. Lipid–Polymer Hybrid Nanoparticles

Lipid–polymer hybrid nanoparticles are a class of scalable and biodegradable nanocar-
riers that show significant potential for mRNA delivery [205]. Attractive for immunother-
apy due to their structural versatility, inorganic nanoparticles with lipid shells have been
investigated to effectively encapsulate drugs [206]. LPN is a mature technology platform for
safe and effective delivery of RNA drugs. Compared with other nucleic acid drug delivery
systems, LPN has great advantages, such as high nucleic acid encapsulation rate and effec-
tive cell transfection, high tissue penetration, low cytotoxicity and immunogenicity. For
example, researchers have used materials such as ionizable lipid libraries, phospholipids,
cholesterol, and lipid-anchored PEG to create a lipid–polymer hybrid nanoparticle that can
effectively deliver mRNA to mouse fetuses [207,208]. After encapsulation of mRNA by
lipid–polymer hybrid nanoparticles and intravenous injection into the fetus, it was demon-
strated that lipid–polymer hybrid nanoparticles enabled functional delivery of mRNA to
the liver, lungs, and intestine. Notably, lipid–polymer hybrid nanoparticles were also used
to deliver erythropoietin (EPO) mRNA to demonstrate its therapeutic potential. Delivery
of EPO mRNA to mouse fetal hepatocytes increased the EPO protein content in the fetus
and greatly enhanced the therapeutic effect (Figure 7) [207].

Lipid–polymer hybrid nanoparticles retain the properties of lipid nanoparticles while
providing more structural options that offer advantages in immunotherapy. Therefore,
LNPs are a key technology for mRNA vaccines to effectively protect mRNA and transport
it into cells to play an important role, but their complex structures and manufacturing
processes can hinder the clinical application of these heterogeneous nanoparticles [209],
and further research is needed to overcome these hindrances to achieve better therapeutic
results.
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Figure 7. GFP mRNA and EPO mRNA were delivered in utero with LNPs. (A) GFP expression
in fetal liver at 24 h post-injection. (B) Analysis of single cell suspensions from fetal liver by flow
cytometry, recording the percentage of CD45- and GFP+ cells. (C) Levels of EPO in fetal liver after
injection [207]. * p ≤ 0.05, ** p ≤ 0.01.

4.4. Micelles

In recent decades, mRNA has developed into a very effective therapeutic method [210,211],
but the stability of mRNA remains a limiting factor for its efficiency [212]. Micelles are
molecularly ordered aggregates that start to form massively after the surfactant concentra-
tion in aqueous solutions reaches a certain value. The hydrophobic groups aggregate to
form the inner micelle core, avoiding contact with polar water molecules. The hydrophilic
groups form the outer layer of the micelle, which can interact with water molecules and
protect the internal groups. The compounds forming micelles are generally amphiphilic
molecules that are soluble in polar solvents such as water. Biocompatible polylactic acid
(PLA)-based micelles offer safe and degradable advantages, and some investigators de-
signed a micelle-based mRNA delivery platform that combines PLA-based micelles and
cationic dense peptides to provide a new option for clinical applications [213]. Relying
on the coupling of RALA peptides (histidine-/arginine-rich amphiphilic peptides) on mi-
celles [214–216], mRNA was further captured by electrostatic interactions. Thus, micelles
were found to adequately protect mRNA from degradation by serum nucleases, decrease
the toxic effects of cationic peptides, and facilitate transfection of DCs with significantly
improved therapeutic efficacy.

5. Conclusions and Future Directions

In the last few decades, lipid nanoparticles have enabled a dramatic improvement
in mRNA delivery for enhancing tumor immunotherapeutic efficacy and have attracted
wide interest in the biomedical field. In order to achieve the desired application of lipid
nanoparticles, intensive preclinical and clinical research on the properties of lipid nanopar-
ticles is needed when studying their immune formulation. (1) Lipid nanoparticles have
good targeting properties, which can improve the effectiveness of drugs and reduce the
occurrence of toxic side effects. Specific ligands at the focal site can be coupled to lipid
nanoparticles, so that these nanoparticles interact specifically with tumor cells and deliver
drugs to specific sites in a timely manner. (2) The composition of lipid nanoparticles is
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similar to cell membranes and has good cellular affinity and histocompatibility, and can be
adsorbed around target cells for a long time, allowing the drug to fully penetrate into the
target cells and enter the cells through fusion. (3) Encapsulating drugs in lipid nanoparticles
can attenuate the excretion and metabolism of drugs in the kidneys and increase the drug
half-life, thus enhancing the effect of drugs. (4) Lipid nanoparticles are often used in new
combination therapies, which can improve the synergistic effect of combination therapies
in tumor treatment by controlling the release of small molecule drugs in the body at the
appropriate rate and concentration through diffusion and permeation. It can improve the
synergistic effect of combination therapy in tumor treatment, control the release of small
molecule drugs in the body at appropriate rates and concentrations through diffusion and
permeation, effectively improve the bioavailability of insoluble drugs, reduce the degree of
drug damage to normal tissues, and improve the effectiveness of treatment.

Therefore, the application of lipid nanoparticles in mRNA delivery for tumor im-
munotherapy has received much attention and achieved many exciting immunotherapeutic
results, providing much valuable information for future tumor immunotherapy. Given the
rapid development of lipid nanoparticles in recent years and the remarkable application po-
tential shown in several clinical trial phases, the next generation of lipid nanoparticles will
be further developed for tumor immunotherapy, thus improving healthcare and bringing
new hope for the treatment of various diseases.
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