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Abstract

tomography

Due to the beam-hardening effect of the broad energy spectrum of the X-ray source in computed tomography,
the reconstructed images usually suffer from severe artifacts when metallic objects are being imaged. Metal artifact
correction methods are usually sophisticated and not practical, especially in some non-medical applications, in
which the linear attenuation coefficients are unknown. This paper suggests a simple and effective algorithm to
estimate the unreliable measurements. The proposed algorithm is an iterative algorithm, in which the iteration is
performed in the projection domain, while the objective function is set up in the image domain. The final image is
reconstructed with the conventional filtered backprojection algorithm. The feasibility of the proposed method is
verified with airport bags that contain some unknown metals.
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Introduction
In airport bag computed tomography (CT) scans, almost
every bag contains some unknown metallic objects. The
X-ray tubes in the CT scanners have a broad energy
spectrum. The linear attenuation coefficients of the me-
tallic materials vary dramatically within the energy
spectrum; this dramatic variation in the linear attenu-
ation coefficients is not properly handled in the recon-
struction algorithms. As a result, severe streaking and
shadow artifacts appear in the reconstructed images.
Many attempts have been made to battle the metal ar-
tifacts. For example, only the projections not affected by
the metals are used in an iterative algorithm that also
has an edge-preserving prior [1]. Other popular methods
are to replace metal affected projections with estimated
values. These types of methods are also referred to as
projection completion or inpainting [2]. The inpainting
methods can use many non-linear image processing
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techniques such as opening, closing, and segmentation
[3]. Inpainting can also be implemented in the Fourier
domain, which is essentially lowpass filtering [4]. It is
noticed that inpainting can lose spatial resolution; the
boundary information from the filtered backprojection
(FBP) reconstruction (before inpainting) can be useful
[5]. Segmentation in the inpainting methods can be
avoided by using histogram deformation [6]. Some au-
thors try to model the polychromatic energy spectrum
into the algorithm [7-9]. Using dual-energy CT is able
to better synthesize virtual monochromatic images at
different photon energy levels, and virtual monochro-
matic images obtained at high kiloelectron volt levels are
known to reduce the effects of beam hardening [8, 9].
Other inpainting methods are also reported in refs. [10—
12]. Park et al. [13] proposed a method of correcting
metal artifacts due to beam hardening based on the ob-
servation that streaking artifacts arise mainly from the
geometry of the boundaries of the metallic objects.
Using dual energy CT, one can use mathematical models
to convert the measurements into synthetic monochro-
matic measurements. The resultant monochromatic
measurements can be used to reconstruct the images
with less severe artifacts [14—16]. The mathematical
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models depend on X-ray source spectrum and metal
properties. These properties are not available for un-
known objects. Iterative algorithms are popular in image
reconstruction when metal objects are involved [17-20].
In ref. [17], an iterative maximum-likelihood polychro-
matic algorithm was suggested to reconstruct the image.
The object’s photoelectric and Compton scatter proper-
ties are assumed known. In ref. [18], an iterative polye-
nergetic statistical algorithm was derived. This algorithm
required knowledge of the incident spectrum and know-
ledge of the distribution of the different types of mate-
rials in the object. Reference [19] presented an
“alternating minimization” iterative algorithm; the algo-
rithm used prior knowledge of the metal object in the
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patient, including its pose, shape, and attenuation map.
In ref. [20], two methods of estimating the metal affected
measurements were compared. It showed that the total
variation (TV) inpainting performed better than linear
interpolation. In ref. [21], a review was provided for the
state-of-art technologies in metal artifact reduction, and
the limitations of these technologies were also pointed
out. Most recently, machine leaning methods are ex-
plored to battle the metal artifacts in CT [22-25]. In ref.
[22], an unsupervised deep neural network artifact disen-
tanglement network was proposed to decouple the metal
artifacts and the CT images for clinical applications.
Reference [23] suggested a conditional generative ad-
versarial network CGAN for data domain sinogram
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Fig. 1 Airport bag #1. Upper row, Left: conventional FBP reconstruction; Lower row, Left: metal segmentation; Upper row, Right: FBP reconstruction
after proposed damaged value recovery; Lower row, Right: image-domain TV reconstruction. The small red square indicates the ROI
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completion. Reference [24] reported a convolutional
neural network based metal artifact reduction (CNN-
MAR) framework. It was an artifact reduction frame-
work able to distinguish tissue structures from arti-
facts and fuse the meaningful information to yield a
CNN image. By applying the designed tissue process-
ing technique, a good prior was generated to further
suppress artifacts. Instead of removing artifacts in
the projection domain, ref. [25] proposed a U-net in
the image domain. The convolutional layer in the U-
net extracted the image and artifact features.

The current metal artifact reduction methods can be
roughly divided into two categories. In the first category
[2-20], the affected sinogram data is replaced by the es-
timated data. The estimated data is obtained by using its
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neighboring measurements and/or by X-ray beam hard-
ening models. These methods do not work well with
complicated objects such as airport bags, because one
can never have an exact model to predict the beam
hardening effects.

In the second category [21-25], the beam hardening
effects are “learned” from a large set of measurements
with and without metals. The learned model is auto-
matically achieved after the training phase. The re-
sults from this category are in general better than
those in the first category. However, to gather a large
number of representative training images can be
overwhelming.

In airport luggage scanning, almost every bag contains
metallic objects, and their linear attenuation coefficients
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Fig. 2 Airport bag #2. Upper row, Left: conventional FBP reconstruction; Upper row, Right: metal segmentation; Lower row, Left: FBP
reconstruction after proposed damaged value recovery; Lower, Right: image-domain TV reconstruction. The small red square indicates the ROI
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are unknown. Therefore, metal artifacts in bag scans are
more unpredictable and more difficult to eliminate than
in clinical studies, where the metals are usually known.
This paper will focus on the airport bag metal artifact
reduction.

The TV minimization method was used in ref. [18]
to assist inpainting. In ref. [18], the TV norm was
evaluated in the projection domain, where the TV
method is used as a smoothing filter. In this paper,
the TV norm is also used, but the TV norm is evalu-
ated in the image domain instead. Even though the
TV norm is evaluated in the image domain, our pro-
posed iteration procedure is carried out in the projec-
tion domain. The TV norm is now used as a figure-

(2020) 3:16

Page 4 of 11

of-merit for the sinogram consistency. This is the
unique feature of our proposed algorithm.

This paper suggests a projection-domain iterative algo-
rithm to estimate the unreliable metal-affected projec-
tion measurements. After this step is done, the
conventional FBP algorithm is used to reconstruct the
final image. Realistic bag scan examples are used to ver-
ify the feasibility of the proposed method.

Methods
Motivation
The metal artifacts are the beam hardening effects,
which are nonlinearly dependent on the metallic mate-
rials. These nonlinear effects introduce errors to the
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Fig. 3 Airport bag #3. Upper row, Left: conventional FBP reconstruction; Upper row, Right: metal segmentation; Lower row, Left: FBP
reconstruction after proposed damaged value recovery; Lower, Right: image-domain TV reconstruction. The small red square indicates the ROI
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line-integral model of the measurements. The line-
integral amplitudes are distorted when the integra-
tion lines pass through metals. Usually, the distorted
line-integral value is smaller than the true value.
The distortion is nonlinear and difficult to estimate,
because the metallic materials in the objects are
unknown.

For a collection of random metallic and non-
metallic objects, it is almost impossible to establish a
beam hardening model to convert the broad-spectrum
measurements into pseudo mono-energy measure-
ments so that the metal artifacts can be removed. On
the other hand, machine learning methods do not
need the exact mathematic models. Instead, the
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recent machine leaning methods learn to recognize
the metal artifacts and to remove these artifacts. The
machine learning methods seem to be more effective
and give better results. Inspired by the machine learn-
ing methods, this paper gives up on trying to model
the beam hardening effects and it focuses on recog-
nizing/reducing the metal artifacts.

A conventional objective function for an iterative algo-
rithm typically has a data-fidelity term and a Bayesian
term. This paper proposes an objective function that
does not have a data-fidelity term. The proposed object-
ive function only contains one Bayesian term, which the
TV normal of the FBP reconstruction. In other words,
our objective function is a figure-of-merit. A larger value
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Fig. 4 Airport bag #4. Upper row, Left: conventional FBP reconstruction; Upper row, Right: metal segmentation; Lower row, Left: FBP
reconstruction after proposed damaged value recovery; Lower, Right: image-domain TV reconstruction. The small red square indicates the ROI
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of this objective function implies more artifacts in the
image. Our philosophy of selecting this objective func-
tion is as follows. The distortion of the line-integral
measurements causes extra structures in the FBP recon-
struction. By minimizing the TV-norm of the FBP re-
construction, the extra structures (i.e., artifacts) can be
reduced.

In the proposed algorithm, the iteration is only per-
formed for the distorted measurements. The reliable
measurements are kept to their original values
unaltered.

Our proposed method has the following unique
features:

e It does not assume what metals are in the object.
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It does not use the TV method to process the
image. It does not use interpolation methods to
estimate the metal-affected projection values. It uses
the TV objective function to tell us how the metal-
affected projection values should be corrected.

It does not need other good and similar images to
train or assist. It does not even use the neighboring
projection values to estimate and replace the bad
projection values.

It is not an iterative image reconstruction method,
but it is rather an iterative bad projection value
replacement method.

It does not assume any prior knowledge of the
object and does not segment the image into some
known values.
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Fig. 5 Airport bag #5. Upper row, Left: conventional FBP reconstruction; Upper row, Right: metal segmentation; Lower row, Left: FBP
reconstruction after proposed damaged value recovery; Lower, Right: image-domain TV reconstruction. The small red square indicates the ROI
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Algorithm development

Let f be the FBP reconstruction. The image f is repre-
sented in a two-dimensional array and f;; is its pixel
value at the ith row and jth column. The TV norm of f
is defined as

T= Zw’\/(fi,j ‘ft,j+1)2 + (fz}/’ _fi+1-,i)2’

When the quantity under the square root in Equation
(1) is positive, the partial derivative of T with respect to
pixel (i, j) is readily calculated as [26]

(1)

oT
of i
(f,'.,' —f,'.;'+1) + (fi.f _fi+1-i>

) \/(fi.j_fi.j+l>2 + (fij‘fiﬂj)z

Ui.j:

n Sfij=fij-1 (2)
\/(fi,,‘A‘fL:j)z"‘ (ftl/'fl ‘fi+1A/71)2
i Sfij-ficv;

\/(fifl.;*fifl,/ﬂ)z + (fi71.j’fi.j)2

When the quantity under the square root is zero, the
quantity already reaches its minimum and the penalty
function is no longer needed. In this situation, it is safe
to set the derivative to zero. One easy way to handle this
situation in an actual implementation of Equation (2) is
to add a very small positive constant ¢, say, 10~%, under
the square roots in all denominators. Thus Equation (2)
becomes
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U~ (fu/‘f;:/ﬂ) + (fz:;—fm.j)
ij =
\/(fi.j ’fi,;-l)z + (fz:j*fiﬂ.j)z t+e
n Sfij=fij-1
\/(fi.jf 1 _fi./>2 + (fi.j—l = firry- 1)2 te
+ fi,j_fi—l./
\/(fi—l‘/_fz’—l./#l)z + (fpl,/‘fi,/)ZJFs
(3)

Thus, an iterative gradient descent algorithm to
minimize the objective function T defined in Equation
(1) is

15 =1t - (4)

Equation (4) is not useful, because it will make f con-
verge to a constant (i.e., a flat image with U; ;=0). We
will now make some modifications to Equation (4) so

AL[,»J

that it can be useful for our purposes.
The first modification to Equation (4) is taking the
Radon transform on both sides of Equation (4),

obtaining
iy =pi - AR{U:} (5)

where A is the relaxation parameter chosen to be 0.01 in
this paper, R is the Radon transform operator, and p, 4
= R{f} with (¢, 0) being the measurement space coordi-
nates. In fact, Equation (5) is not useful, like Equation
(4), only driving U;; to 0.

Fig. 6 From left to right: Projection masks for measurements of bags 1 to 5, respectively. These are binary images with values 0 (black) and 1
(white). The white regions indicate the projection values that are adjusted by the proposed algorithm. The black regions indicate the projection
values that are kept unchanged
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Table 1 Artifact severity comparison in an ROI
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Bag Conventional FBP method Image-domain update TV method Projection-domain update TV method (proposed)
1 0.2491 0.2625 0.2848

2 -0.2616 —0.2491 0.0983

3 -0.3233 -0314 0.0971

4 —-0.1485 -0.1104 0.148

5 -0.0125 0.0076 0.0466

A smaller value indicates a more severe artifact. A larger number indicates better performance. Do not compare between bags, because they contain

different objects

The second modification is to multiply a mask func-
tion on both sides of Equation (5). In order to find this
mask function, we first use the FBP algorithm to recon-
struct an initial image, which may contain lots of metal
artifacts. Select a threshold value (for example, 1/3 of
the maximum image value), and use this value to seg-
ment the FBP reconstruction to create a metal object
image f,era- The mask, denoted as mask,,e.,;, is a func-
tion in the projection-domain and is based on the Radon
transform of f,,.,,;. The mask function mask, e, is 1 at
the location that the Radon transform of f;,,.;,; is positive
and is O at the location that the Radon transform of f,,,.
w18 0. The mask function restricts Equation (5) only on
the region when mask,,e;s; is 1. Thus, Equation (5) is
further modified as

new old

Pro (metal) — Pro (metal) = A X maskopeta % m{uis/}

(6)

Equation (6) only updates the line-integral measure-
ments that the projection rays p,gmear) touch the metal
objects.

Equation (6) is still not satisfactory, because it will
smooth out all metallic objects while minimizing the TV
norm (Equationl). In order to keep the metallic objects
in the image, the image-domain masking function f;,,;.;

can be used to hide the metals in TV gradient image
U, that is, replacing U;; by (U;;) x (1- fierar). At a pixel
with metal, (1- f,c.) =0. At a pixel without metal, (1-
Sfinetar) = 1. The final algorithm proposed in the paper is,
therefore, expressed as

new _ _old
Pt 0(metal) = Pt 0(metal) - A X maskpmetal X %{ul}i

X (1 _fmeml)} (7)

The proposed algorithm can be implemented in the
following steps:

(1) Obtain a raw FBP reconstruction.

(2) Use a threshold to segment a metal image, f,,czas
from the raw FBP reconstruction.

(3) Set the raw FBP reconstruction as the initial image
and perform iterative updates for the unreliable
measurements py, gmerqs) according to Equation (7).

(4) Obtain the final FBP reconstruction with the
measurements, the unreliable portions of them have
been revised by step (3).

Airport bag experiments

The original projections of airport bags were acquired
with an Imatron C300 clinical CT scanner, which was a
fifth generation CT scanner based on a scanning
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Fig. 7 Airport bag #1. TV norm of the image as a function of the iteration number
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Fig. 8 Airport bag #2. TV norm of the image as a function of the iteration number

electron beam X-ray source manufactured in the late
1990s. The original projection data was rebinned and
downsized for our reconstruction in this paper. The
number of views was 180 over 180°. The number of
channels (i.e., the detection bin at each view) was 597.
The projections used the parallel-beam imaging geom-
etry. The reconstructed image size was 420 x 420.

Results

Five airport-bag examples are presented here to illustrate
the feasibility of the proposed algorithm. For each
example, the following 5 images are shown: (1) the raw
FBP reconstruction, (2) the segmented metal image f,,crus
(3) the projection-domain mask mask, ., (4) the final
FBP reconstruction using the restored projections, and (5)
the reconstructed image using the image-domain TV
iterative algorithm. The image-domain TV iterative
algorithm is similar to Equation (4), by adding a data
fidelity term. The relaxation parameter for the data fidelity
term was 0.001 and the relaxation parameter for the TV

constraint term was 0.0005. The number of iterations was
400 for both the proposed projection-domain iteration al-
gorithm and for the image-domain iterative TV algorithm.
The reconstructions are displayed from the minimum
image value to 0.3 times the maximum image value. The
results from these five examples are shown in Figs. 1, 2, 3,
4 and 5, respectively.

Figure 6 shows the projection masks for the mea-
surements of bags 1 to 5, respectively. These are bin-
ary images with values 0 (black) and 1 (white). The
white regions indicate the projection values that are
adjusted by the proposed algorithm. The black re-
gions indicate the projection values that are kept
unchanged.

In this section, three methods are compared in terms
of their performance on correcting metal induced errors.
These three methods are: the conventional FBP algo-
rithm, the TV-minimization algorithm with image-
domain update, and the proposed TV-minimization al-
gorithm with projection-domain update. For the five
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Fig. 9 Airport bag #3. TV norm of the image as a function of the iteration number
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airport bags, the reconstructed images using these three
methods are shown in Figs. 1, 2, 3, 4 and 5, respectively.

The metal object induced artifacts appear as dark un-
dershoots around the bright metal objects. Visual assess-
ments indicate that the conventional FBP algorithm
gives the most severe artifacts, the image-domain-update
TV algorithm somewhat reduces the artefacts with wors-
ened spatial resolution, and the proposed algorithm is
most effective in metal artifact reduction.

Numerical evaluation of the metal artifact reduction is
by measuring the minimum image pixel value in the
dark undershoot region. Firstly, an undershoot region-
of-interest (ROI) is identified visually. The ROI is a 40 x
40 square region. Secondly, the minimum value in this
ROI is searched. This minimum value serves as the
figure-of-merit. A smaller minimum value indicates a
more severe artifact. A smaller value is a value closer to
the negative infinite. The numerical results are summa-
rized in Table 1, from which the proposed method per-
forms the best among the three methods.

These numerical results also imply that the metal
streaking artifacts can be reflected by the image TV
norm. Figures 7, 8, 9, 10 and 11 show the convergence
curves of the image TV norm versus the iteration num-
ber for the proposed algorithm for the five airport bags,
respectively.

Conclusions

The proposed projection-domain iterative algorithm
minimizes the image-domain TV norm of the FBP re-
construction. This algorithm does not use any models
for the unreliable projections. Therefore, this algorithm
can be applied to many applications in addition to re-
moving beam-hardening artifacts. The proposed method
may be effective in applications where most of the mea-
surements are with excellent quality and few measure-
ments are severely damaged. The few measurements
cause some severe streaking artifacts. The proposed
method may not be effective in applications where there
are too many unreliable measurements. The proposed
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method may not be effective in image de-noising, for ex-
ample, in acoustic imaging [27] for speckle reduction,
because the error sources are distributed to all
measurements.

This paper has achieved the goal of effectively reduce
the metal artifacts without any prior knowledge of the
X-ray source spectrum and the metal properties. The
main restriction of the proposed method is that most
measured projections are accurate, and only a small por-
tion of the measurements are severely damaged. Our fu-
ture research includes investigation of using more
constraints so that we can handle the situations, where
more measurements are severely damaged.

Abbreviations
FBP: Filtered backprojection; ROI: Region-of-interest; TV: Total variation;
CT: Computed tomography; CNN: Convolutional neural network

Acknowledgements

The airport bag data was provided by the U.S. Department of Homeland
Security, Science and Technology Directorate, No. HSHQDC-12-J-00056. In
this paper, the author downgrades the spatial resolution of the original data
on purpose. The views and conclusions are those of the author and should
not be interpreted as necessarily representing the official policies, either
expressed or implied, of the U.S. Department of Homeland Security.

Author’s contributions
The author read and approved the final manuscript.

Funding
This research is partially supported by NIH, No. R15EB024283.

Availability of data and materials
Not applicable.

Competing interests
Not applicable.

Received: 6 January 2020 Accepted: 3 July 2020
Published online: 21 July 2020

References

1. Zhang XM, Wang J, Xing L (2011) Metal artifact reduction in x-ray
computed tomography (CT) by constrained optimization. Med Phys 38(2):
701-711. https.//doi.org/10.1118/1.3533711

2. Joemai RMS, De Bruin PW, Veldkamp WJH, Geleijns J (2012) Metal artifact
reduction for CT: development, implementation, and clinical comparison of
a generic and a scanner-specific technique. Med Phys 39(3):1125-1132.
https://doi.org/10.1118/1.3679863

3. Karimi S, Cosman P, Wald C, Martz H (2012) Segmentation of artifacts and
anatomy in CT metal artifact reduction. Med Phys 39(10):5857-5868. https.//
doi.org/10.1118/1.4749931

4. Kratz B, Weyers |, Buzug TM (2012) A fully 3D approach for metal artifact
reduction in computed tomography. Med Phys 39(11):7042-7054. https://
doi.org/10.1118/1.4762289

5. Meyer E, Raupach R, Lell M, Schmidt B, KachelrieB M (2012) Frequency split
metal artifact reduction (FSMAR) in computed tomography. Med Phys 39(4):
1904-1916. https.//doi.org/10.1118/1.3691902

6. Schuller S, Sawall S, Stannigel K, Hulsbusch M, Ulrici J, Hell E et al (2015)
Segmentation-free empirical beam hardening correction for CT. Med Phys
42(2):794-803. https.//doi.org/10.1118/1.4903281

7. Van Slambrouck K, Nuyts J (2012) Metal artifact reduction in computed
tomography using local models in an image block-iterative scheme. Med
Phys 39(11):7080-7093. https;//doi.org/10.1118/1.4762567

8. Chang ZQ, Ye DH, Srivastava S, Thibault JB, Sauer K, Bouman C (2019) Prior-
guided metal artifact reduction for iterative X-ray computed tomography.

(2020) 3:16

Page 11 of 11

IEEE Trans Med Imaging 38(6):1532-1542. https://doi.org/10.1109/TMI.2018.
2886701

9. Wellenberg RHH, Hakvoort ET, Slump CH, Boomsma MF, Maas M, Streekstra
GJ (2018) Metal artifact reduction techniques in musculoskeletal CT-
imaging. Eur J Radiol 107:60-69. https://doi.org/10.1016/j.ejrad.2018.08.010

10.  Abdoli M, Ay MR, Ahmadian A, Dierckx RAJO, Zaidi H (2010) Reduction of
dental filling metallic artifacts in CT-based attenuation correction of PET
data using weighted virtual sinograms optimized by a genetic algorithm.
Med Phys 37(12):6166-6177. https://doi.org/10.1118/1.3511507

11. Bazalova M, Beaulieu L, Palefsky S, Verhaegen F (2007) Correction of CT
artifacts and its influence on Monte Carlo dose calculations. Med Phys 34(6):
2119-2132. https://doi.org/10.1118/1.2736777

12. Roeske JC, Lund C, Pelizzari CA, Pan XC, Mundt AJ (2003) Reduction of
computed tomography metal artifacts due to the Fletcher-Suit applicator in
gynecology patients receiving intracavitary brachytherapy. Brachytherapy
2(4)207-214. https;//doi.org/10.1016/}.brachy.2003.08.001

13. Park HS, Hwang D, Seo JK (2016) Metal artifact reduction for polychromatic
X-ray CT based on a beam-hardening corrector. IEEE Trans Med Imaging
35(2):480-487. https//doi.org/10.1109/TMI.2015.2478905

14.  Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray
computerized tomography. Phys Med Biol 21(5):733-744. https://doi.org/10.
1088/0031-9155/21/5/002

15. Lehmann LA, Alvarez RE, Macovski A, Brody WR, Pelc NJ, Riederer SJ et al
(1981) Generalized image combinations in dual kVp digital radiography.
Med Phys 8(5):659-667. https://doi.org/10.1118/1.595025

16. Yu LF, Leng S, McCollough CH (2012) Dual-energy CT-based
monochromatic imaging. Am J Roentgenol 199(S5):59-S15. https://doi.org/
10.2214/AJR.12.9121

17. De Man B, Nuyts J, Dupont P, Marchal G, Suetens P (2001) An iterative
maximum-likelihood polychromatic algorithm for CT. IEEE Trans Med
Imaging 20(10):999-1008. https;//doi.org/10.1109/42.959297

18.  Elbakri IA, Fessler JA (2002) Statistical image reconstruction for
polyenergetic X-ray computed tomography. IEEE Trans Med Imaging 21(2):
89-99. https://doi.org/10.1109/42.993128

19. Williamson JF, Whiting BR, Benac J, Murphy RJ, Blaine GJ, O'Sullivan JA et al
(2002) Prospects for quantitative computed tomography imaging in the
presence of foreign metal bodies using statistical image reconstruction.
Med Phys 29(10):2404-2418. https://doi.org/10.1118/1.1509443

20. Duan XH, Zhang L, Xiao YS, Cheng JP, Chen ZQ, Xing YX (2008) Metal
artifact reduction in CT images by sinogram TV inpainting. In: Abstracts of
2008 IEEE nuclear science symposium conference record, IEEE, Dresden, 19-
25 October 2008

21, Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O (2018) Current and novel
techniques for metal artifact reduction at CT: practical guide for radiologists.
RadioGraphics 38(2):450-461. https://doi.org/10.1148/rg.2018170102

22, Liao HF, Lin WA, Zhou SK, Luo JB (2020) ADN: artifact disentanglement
network for unsupervised metal artifact reduction. IEEE Trans Med Imaging
39(3):634-643. https//doi.org/10.1109/TMI.2019.2933425

23, Ghani MU, Karl WC (2020) Fast enhanced CT metal artifact reduction using
data domain deep learning. IEEE Trans Comput Imaging 6:181-193. https//
doi.org/10.1109/TC1.2019.2937221

24.  Zhang YB, Yu HY (2018) Convolutional neural network based metal artifact
reduction in x-ray computed tomography. IEEE Trans Med Imaging 37(6):
1370-1381. https://doi.org/10.1109/TMI.2018.2823083

25. ZhuLL, HanY, Li L, Xi XQ, Zhu MW, Yan B (2019) Metal artifact reduction for
x-ray computed tomography using U-net in image domain. IEEE Access 7:
98743-98754. https://doi.org/10.1109/ACCESS.2019.2930302

26.  Panin VY, Zeng GL, Gullberg GT (1999) Total variation regulated EM
algorithm [SPECT reconstruction]. IEEE Trans Nucl Sci 46(6):2202-2210.
https://doi.org/10.1109/23.819305

27. Nasiriavanaki M, Xia J, Wan HL, Bauer AQ, Culver JP, Wang LV (2014) High-
resolution photoacoustic tomography of resting-state functional
connectivity in the mouse brain. Proc Natl Acad Sci U S A 111(1):21-26.
https://doi.org/10.1073/pnas. 1311868111

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://doi.org/10.1118/1.3533711
https://doi.org/10.1118/1.3679863
https://doi.org/10.1118/1.4749931
https://doi.org/10.1118/1.4749931
https://doi.org/10.1118/1.4762289
https://doi.org/10.1118/1.4762289
https://doi.org/10.1118/1.3691902
https://doi.org/10.1118/1.4903281
https://doi.org/10.1118/1.4762567
https://doi.org/10.1109/TMI.2018.2886701
https://doi.org/10.1109/TMI.2018.2886701
https://doi.org/10.1016/j.ejrad.2018.08.010
https://doi.org/10.1118/1.3511507
https://doi.org/10.1118/1.2736777
https://doi.org/10.1016/j.brachy.2003.08.001
https://doi.org/10.1109/TMI.2015.2478905
https://doi.org/10.1088/0031-9155/21/5/002
https://doi.org/10.1088/0031-9155/21/5/002
https://doi.org/10.1118/1.595025
https://doi.org/10.2214/AJR.12.9121
https://doi.org/10.2214/AJR.12.9121
https://doi.org/10.1109/42.959297
https://doi.org/10.1109/42.993128
https://doi.org/10.1118/1.1509443
https://doi.org/10.1148/rg.2018170102
https://doi.org/10.1109/TMI.2019.2933425
https://doi.org/10.1109/TCI.2019.2937221
https://doi.org/10.1109/TCI.2019.2937221
https://doi.org/10.1109/TMI.2018.2823083
https://doi.org/10.1109/ACCESS.2019.2930302
https://doi.org/10.1109/23.819305
https://doi.org/10.1073/pnas.1311868111

	Abstract
	Introduction
	Methods
	Motivation
	Algorithm development
	Airport bag experiments

	Results
	Conclusions
	Abbreviations
	Acknowledgements
	Author’s contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

