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Abstract: Importance sampling is a Monte Carlo method where samples are obtained from an
alternative proposal distribution. This can be used to focus the sampling process in the relevant parts
of space, thus reducing the variance. Selecting the proposal that leads to the minimum variance can be
formulated as an optimization problem and solved, for instance, by the use of a variational approach.
Variational inference selects, from a given family, the distribution which minimizes the divergence to
the distribution of interest. The Rényi projection of order 2 leads to the importance sampling estimator
of minimum variance, but its computation is very costly. In this study with discrete distributions that
factorize over probabilistic graphical models, we propose and evaluate an approximate projection
method onto fully factored distributions. As a result of our evaluation it becomes apparent that a
proposal distribution mixing the information projection with the approximate Rényi projection of
order 2 could be interesting from a practical perspective.

Keywords: importance sampling; minimum variance unbiased estimator; Rényi divergence;
variational inference; fully factorized family

1. Introduction

In many different fields, there exists a need for efficient and unbiased estimators for complex
expectations. For example, in Bayesian statistics or in statistical physics, one can usually come across
expectations of various quantities with respect to complex distributions which need to be computed.
In this context, analytical solutions might not be available due to its computational complexity,
among other issues. In those cases, we can resort to approximate estimation. Monte Carlo methods
are a very popular sampling-based strategy to this end, and, specifically, importance sampling is a
well-studied solution for variance reduction.

Importance sampling uses a probability distribution, called the proposal distribution, alternative
to the distribution of interest, to obtain samples from. A wisely-selected proposal distribution would
help to reduce the variance of the estimator. The characteristics of the optimal proposal distribution
have largely been studied [1,2]. In our preliminary study [3], we showed that the optimal proposal
distribution is also the one that minimizes the Rényi divergence with r = 2 and presented an algorithm
for computing the Rényi projection of a (unfactored) distribution onto the family of fully factored
probability distributions.

However, due to different reasonable practical issues, this theoretical best proposal might
malfunction in daily practice. For example, if the proposal distribution is selected from an
easy-to-sample family of distributions, the chosen density might be far away from the theoretical
optimum. More importantly, if the distribution is sampled only a reasonable number of times,
the optimum distribution may show a larger observed variance than other theoretically worse solutions.
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Distributions with a very improbable piece of mass which introduces a very large variance are usually
discarded although in limited realistic scenarios they might be really competitive.

In this paper, we extend our preliminary study [3] by proposing a projection algorithm for
graphical models that takes into account the factorization of the distribution we are projecting so as to
increase its efficiency. We present a competitive approximate projection which heuristically considers
the subset of factors that minimizes entropy. This solution suffers from the above referred practical
issues too. We show that the use of a mixture of distributions obtained from the Rényi (R) and the
information (I) projections ([4], Chpt. 8), a mode-matching projection usually with large theoretical
variance, is useful in practice. A small contribution of the component obtained from the I-projection is
enough to maintain the empirical variance controlled. Indeed, the theoretical variance of the resulting
mixture is bounded through the use of control variates [5]. To the best of our knowledge, this is the
first work that proposes mixing different projections of a very same distribution to build a highly
efficient proposal distribution for importance sampling.

The rest of the paper is organized as follows. First of all, the background concepts are presented.
In Section 3 we present our approximate Rényi projection as a competitive proposal for importance
sampling. Then, we discuss a practical issue of the theoretical minimum-variance estimator and
present, in Section 5, a solution based on proposal mixture distributions. Then, our final proposal is
empirically tested. The paper finishes visiting several related works and drawing conclusions and
future work.

2. Background

The techniques presented in this work are aimed to solve a type of problems where the objective
is to compute an expectation such as,

` = E[ f (X)] =
∫

f(x)ρ(x)dx (1)

where X is a random vector which follows a continuous probability distribution with density function
ρ and f(x) is a real-valued function usually known as the performance function. Frequently in these
complex scenarios, for different reasons, the integral in Equation (1) cannot be solved analytically,
and we need to resort to approximate numerical integration.

Sampling methods aim to approximate ` by evaluating and averaging the performance function f

at a sufficiently large set of randomly sampled points {xi}N
i=1. Monte Carlo (MC) is probably the most

popular and simple approach. It obtains the random sample {xi}N
i=1 from ρ and estimates ` as the

sample mean of their evaluation in f:

ˆ̀MC = N−1
N

∑
i=1

f(xi). (2)

where ˆ̀MC is an unbiased estimator of `, in the sense that E( ˆ̀MC) = `. Moreover, by the law of large
numbers, ˆ̀MC converges to ` with probability 1 as N → ∞.

In spite of its popularity, MC presents a few drawbacks that prevent its effective use in mainly
two different scenarios: (i) when the probability distribution ρ is highly complex and independent
points cannot be easily generated from it, and (ii) when the values of the function f(x) vary vastly
between regions.

Importance sampling (IS) is a well-known alternative that deals with both mentioned MC
drawbacks. In this case, a different distribution q is considered such that:

` = E[ f (X)] =
∫

f(x)
ρ(x)
q(x)

q(x)dx
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Posing the integral in this form reveals the IS approach. A set of points {xi}N
i=1 are sampled from q,

which is known as the proposal distribution. In turn, ` is estimated as the weighted sample mean of
the points’ evaluations in f:

ˆ̀ IS = N−1
N

∑
i=1

f(xi)
ρ(xi)

q(xi)
. (3)

where the quotient ρ(xi)/q(xi) is the weight for sample xi, which adjusts the contribution of f(xi) to
the distribution ρ while the influence of q is compensated.

The proposal distribution q in IS is usually selected from an easy to sample family of distributions
to deal with the first difficult scenario described above. To face the second scenario, q may be selected
to reduce the variance. In this way, it is well-known that the optimal proposal distribution q is
proportional to |f · ρ| [1,2].

Variational inference (VI) provides a set of tools to find in a simpler family of distributions the
one which is most similar to a (usually very complex) distribution p of interest, that is, to project the
distribution p onto a family of our choice, Q:

q∗ = projQ[p] = arg min
q∈Q

D(p||q)

Then, one can use the projected distribution q∗ selected from family Q to approximate the original
distribution. It is stated as an optimization problem where we want to find the member of family Q
which is closer to p regarding some divergence, D(·||·) (A detailed introduction to divergences can
be found in [6]). A popular choice for Q is the family of fully factorized distributions, which places a
strong assumption of independence between variables:

q(x) = ∏
i

qi(xi)

Regarding the divergence, the reverse (Note that KL is not symmetric.) Kullback–Leibler (KL) divergence

KL(q||p) =
∫

x
q(x) log

q(x)
p(x)

dx +
∫

x

(
p(x)− q(x)

)
dx (4)

where the last term is a correction factor so that it applies to unnormalized distributions [7], leads to
the formulation of the optimization problem as follows,

q∗ = arg min
q∈Q

KL(q||p)

This minimization problem, known as the information (I) projection, has an efficient solving
algorithm for factored distributions p and the fully factorized family Q, the Mean Field (MF)
algorithm ([4], Chpt. 8). For each variable Xi ∈ X, the updating function

qi(xi) ∝ exp

 ∑
pj :Xi∈d(pj)

∫
z

q(z, xi) log pj(z, xi)dz

 (5)

is iteratively applied until convergence, where z ∈ ΩX−Xi , pj are factors of the distribution p, and d(pj)

is a function that returns the variables in the scope of pj.
Variational Importance Sampling (VIS) proposes to use variational inference techniques to find the

proposal distribution to perform importance sampling. In our preliminary paper [3], we explored the
use of VI techniques to find the proposal distribution of minimum variance for IS as q = projQ[|f · ρ|].
The use of the I-projection was shown to be inefficient in practice due to its zero-forcing behavior [8]
which leads to fitting q to a mode of |f · ρ|. We proposed to use the Rényi divergence as an alternative.

The Rényi divergence is in fact a family of divergences parametrized by r:
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D(p||q) = Renyir(p||q) = 1
r− 1

log
∫

x
pr(x)q1−r(x)dx (6)

The projection of p = |f · ρ| with respect to the Rényi divergence with r = 2 leads to the q of minimum
variance for IS. We developed the algorithm for the Rényi (R) projection of unfactored distributions [3],
which simply iterates

qi(xi) ∝

√∫ p2(xi, x−i)

q−i(x−i)
dx−i (7)

for all Xi until convergence, where q−i = ∏j 6=i qj. However, this method does not scale well with the
size of X and easily becomes unfeasible in realistic scenarios as it requires to sum over all the possible
configurations of x (only xi is fixed).

In this paper, we present an efficient method for discrete factored distributions that performs
IS with a proposal of minimum variance projected from p = |f · ρ|. To deal with the impracticability
of Rényi projection, an approximation that heuristically limits the considered factors based on a
minimum-entropy criterion is used. For the sake of simplicity, in the rest of the paper the family of
fully factored distributions Q is considered to project onto.

3. An Approximation to the Rényi Projection

The main drawback for using the exact Rényi projection of Equation (7) is the marginalization
of all the variables but xi. Its computational time is exponential on the size of X. To simplify this
projection so that it becomes feasible, several approaches can be taken. We propose to take advantage
of the factorization of p to greedily select a subset of relevant factors from which to project.

Assuming the Rényi divergence definition in Equation (6), we aim to find each qi such that

q∗i = arg min
qi

Renyir
(

p||qi · q−i
)

≈ arg min
qi

Renyir
(

p̃i||qi · (q−i)
↓d( p̃i)

)
(8)

where p̃i is the product of the subset of factors from p that determine the most the marginal
p(xi), and (q−i)

↓d( p̃i) denotes the marginalization of all the variables but those in d( p̃i) from q−i.
Many alternatives could be considered for the selection of the relevant factors involved in p̃i.
As detailed below, an entropy-based criterion is considered in this paper.

To find the qi, we need to define the Lagrangian:

G(qi) =
∫

x∈Ωd( p̃i)

p̃r
i (x)q1−r

i (x)
(

q↓d( p̃i)
−i (x)

)1−r
dx

− λi

(∫
y∈Ωd(qi)

qi(y)dy− 1

)
(9)

Setting to zero the derivative with respect to qi(y), for Y = d(qi) and y ∈ ΩY, ∂G
∂qi(y)

= 0, we obtain

0 =

∂

(∫
z,y p̃r

i (y, z)q1−r
i (y)

(
q↓d( p̃i)
−i (y, z)

)1−r
dzdy

)
∂qi(y)

− λi

= (1− r)q−r
i (y)

∫
z

p̃r
i (y, z)

(
q↓d( p̃i)
−i (y, z)

)1−r
dz− λi
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where Z = d( p̃i) \ d(qi) and z ∈ ΩZ, and, thus,

qi(y) ∝
[∫

z
p̃r

i (y, z)
(

q↓d( p̃i)
−i (y, z)

)1−r
dz
]1/r

which in the fully factorized case is

qi(y) ∝

∫
z

p̃r
i (y, z) ∏

j∈d( p̃i)

qj(zj)
1−rdz

1/r

(10)

Up to this point, we have an algorithm for the approximate R projection if we iterate Equation (10)
for all Xi until convergence. Thus, we only have left the selection of p̃i, a key matter of our
approximation. We propose to select greedily a subset of factors among the ones of p according
to their entropy. Initially, we take the factors that include xi, p̃i = ∏j:xi∈d(pj)

pj. Then, sequentially,
other factors are selected according to the following heuristic: the factor pj (not included yet, pj 6∈ p̃i,
but in its Markov blanket, d(pj) ∩ d( p̃i) 6= ∅) which has the smallest entropy is included. That is,
we consider the factors of lowest entropy because these are expected to impact the most on the marginal
p(xi). We keep selecting new factors pj until a number of variables vmax is included, |d( p̃i)| = vmax.
This number of variables vmax is a free parameter of our approximate projection. We will study its
effect in practice in Section 4.1. Note that, by being a greedy heuristic, this sequential procedure does
not guarantee reaching an optimal solution to the problem of finding the set of most relevant factors
(in terms of minimum entropy). However, this heuristic can efficiently provide working suboptimal
solutions that allow the method to perform, as shown below, competitively in practice.

As mentioned above, this method takes advantage of the factorization of p: the finer-grained
the factorization, the larger the expected performance improvement obtained. Note that this is a
characteristic feature of ours and other methods which take advantage of a factored p distribution.

4. Empirical Study of VIS Performance

In this section, we aim to empirically show the performance of the proposed approximate Rényi
projection when it is used as proposal distribution for importance sampling.

In this extensive set of experiments, our approach (VIS-Rh) is compared to other approaches
or baselines, namely, the use of the popular I-projection (VIS-I) and the exact R projection (VIS-R).
Moreover, we also implemented another approximate projection method proposed by Minka [9].
Their approach (VIS-Rm) assumes that there exists a factor δj for every pj (d(δj) = d(pj)) such
that δj(x) = ∏i γji(xi). Alternatively, there are per-variable factors qi(xi) = ∏j:xi∈d(δj)

γji(xi).
The simplification is at assuming that, when we want to update the δj, the rest of the distribution is
already well fitted,

Renyir
(

p||q
)
≈ Renyir

(
pj · ∆−δj ||δj · ∆−δj

)
,

where ∆−δj = ∏l 6=j δl(x). By defining

ηy =
∫

z

pr
j (z, y)∏l 6=i∈d(pj)

q1−r
l (zl)

(∏l 6=i:l∈d(δj)
q\j

l (zl)q
\j
i (y))−r

dz,

the update of the γ factors is found to be:

γji(y) =
1

C · q\j
i (y)

η1/r
y (11)
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where C is the normalizing constant of qi(y) = C−1η1/r
y . A detailed description can be found in

Appendix A.
Note that VIS-R is only feasible in limited-size models, and thus, for the sake of comparison,

we restrict ourselves to models for which the exact R projection can be obtained. We are only interested
in Rényi projection of order r = 2, so we fix this parameter. Whenever it is not explicitly stated, we use
vmax = 7 for our method. In the implementation of both approximated approaches (VIS-Rh and
VIS-Rm), a damping factor ε = 0.5 is used for the updating operations in order to benefit convergence
of these heuristic methods: s(t) = (s(t−1))ε · (s′)(1−ε) where the actual update in time t is a combination
of the value in the previous time and the update s′ given by Eqs. 10 or 11, correspondingly.

Synthetic problems. All the experiments are carried out with 4 × 4 Ising Grid models with
binary variables, where unary factors are defined as u(xi = k) = exp(κ · cik) with cik ∼ U (0, 1),

whereas pairwise factors are defined as b(xi, xj) = exp(2−1/2 · τ · B) with B =

∣∣∣∣∣ 0 cij
cij 0

∣∣∣∣∣ and

cij ∼ U (0, 1). Whereas the unary potential parameter κ = 0.1 is fixed, we induce different dependence
into the pairwise potentials by carefully choosing the value of the binary potential parameter τ.
The higher the value of τ, the stronger the dependence between variables (specifically, different values
in the two variables in the factor are favored), and thus, the higher the probability of generating
peaky distributions. Specifically, for the sake of clarity, four different problems are generated and
repeatedly used throughout this paper: two different grid examples are generated (using random
seeds 7 and 17) with two different dependence strengths (τ = 3.5 and 10). Note that, given a random
seed, the difference between the problems generated with different τ is only that value, as all the cik
and cij values are the same (generated from the same seed).

In the remaining of this section, two sets of experiments are carried out: (i) an experimental
comparison of the aforementioned techniques, which includes an empirical study on the impact of the
value of vmax, and (ii) a test on an extreme scenario where an exhaustive (non-sampling) method is
used to pose a lower bound of the variance.

4.1. Experimental Comparison of Different VIS Approaches

To compare the four considered approaches in the four synthetic problems previously described,
Figure 1 shows the evolution of the mean relative error and mean empirical variance (n · Var( ˆ̀),
in logarithmic scale) for each of the VIS methods as the number of samples used for the MC estimator
grows. Each of the lines in this figure shows the mean over 1000 independent estimators. The x-axis
shows the number of samples of each estimator, which take values on the set {64 · k|1 ≤ k ≤ 128}.
The last point of each line represents an average over 1000 estimators with 213 samples each.
This amount of samples represents about 12.5% of the whole sample space in these 4 × 4 Ising
Grid models of binary variables. The use of approximate technique such as ours is only reasonable
when there exists a considerable saving regarding, for example, computational time. Here we assume
that estimators with up to 213 samples cover all the reasonable setups. Exploring further the sample
space just to obtain an approximated estimator might not make sense in real-world practice.

The performance of all the methods based on the Rényi projection (both approximated and exact
versions) is similar with slight variations depending on the specific instance problem. As expected,
among these three, the one that used the exact projection (VIS-R) usually showed the best performance
both in terms of mean relative error and mean empirical variance. The observed behavior of VIS-I was,
however, completely different: the number of samples used by the estimators almost did not affect the
mean error (rather constant lines in the mean relative error figures) and the empirical variance seemed
to always grow. Nevertheless, for estimators with a limited number of samples (initial points of the
curves), VIS-I was consistently the best approach. In problems generated with higher dependence
between variables (higher τ in pairwise factors), the overcoming of VIS-I extended to estimators with
larger numbers of samples. In the case of the first model example with τ = 10 (Figure 1c), not even the
estimators with 213 samples using the different Rényi projections reached the performance of VIS-I.
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(a) Example 1 of low dependence scenario (τ = 3.5)
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(b) Example 2 of low dependence scenario (τ = 3.5)
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(c) Example 1 of high dependence scenario (τ = 10)
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(d) Example 2 of high dependence scenario (τ = 10)

Figure 1. Results on four different synthetic problems (see Section 4), in terms of mean relative error
and mean empirical variance (left and right plots for each subfigure, respectively), of the different VIS
approaches: the I-projection (VIS-I), our approximated R projection (VIS-Rh), Minka’s approximated
R projection (VIS-Rm) and the exact R projection (VIS-R). Each point in the lines is a mean over
1000 estimators with a specific number of samples in {64 · k|1 ≤ k ≤ 128}. This is considered to cover
the reasonable setups (up to 213, a 12.5% of the whole sample space) for sampling based estimators.

The main problem regarding the use of the exact R projection (VIS-R) is its high computational
cost, which makes it unfeasible even for medium-size models. Thus, the time consumed by the
approximate versions (VIS-Rh and VIS-Rm) should be taken into account. We have tested the four
approaches (the aforementioned and VIS-I) in both 4× 4 and 5× 5 Ising Grid models with increasing
dependence between variables (τ ∈ {2, 3.5, 5, 10} for the parameter of pairwise potentials). A total of
20 randomly generated instances of each Ising Grid model example were generated. VIS-Rm showed a
time consumption one order higher than that of VIS-Rh or VIS-I in both 4× 4 and 5× 5 grid models.
When moving from 4× 4 to 5× 5 grid models, whereas the computation cost of these three approaches
slightly increased, we observed an explosion in computational cost of VIS-R, which was much more
time consuming than the rest. All the tests were performed with an Intel Core i7-7700 (3.6 GHz) with
32 GB of main memory.

Finally, we explore the performance of our approximate approach VIS-Rh when different values
for the parameter vmax are considered. Note that as the value of vmax tended to the number of
variables of the model, vmax → v, our approximation resembled the exact VIS-R. On the other extreme
scenario, when vmax = 1 only the unary factor for each specific variable was considered every time
(no dependence can be captured). In Figure 2 we compare different possible values for vmax in tests
with both 4× 4 and 5× 5 Ising Grid models. It can be seen that the time required for projection
was exponential on the vmax values, and the empirical variance showed an almost imperceptible
downwards trend.
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(a) Exps. with 4× 4 grids (b) Exp. with 5× 5 grids

Figure 2. Experimental results in terms of empirical variance of VIS-Rh with different vmax, as well as
the time required for our approximated projection. Each figure shows the results for problem instances
generated with two different dependence strengths (τ = {3.5, 10}). Every point is an average over
100 estimators, with 213 samples each, on 20 different problem instances.

4.2. Experimental Comparison versus a Deterministic Approach

The Rényi projection of order r = 2 provides the distribution that minimizes the variance of
the estimator. This was the motivation behind our development. However, there are decisions that
might have an effect on the performance, such as the projection family of distributions considered
or the simplifying assumptions of the approximate projections. Taking advantage of the fact that we
are restricting ourselves to limited-size models to compare against the exact R-projection, we can
observe the behavior of the methods if we use a sample size as large as the size of the whole space,
24×4. In these conditions, we use an exhaustive approach to establish a clear reference to compare with.
This baseline deterministic method goes thoroughly through all the points in the domain by sampling
at random but without repetitions.

Using the same representation than in the previous set of experiments, Figure 3 shows the results
in terms of mean relative error and mean empirical variance (n ·Var( ˆ̀), in logarithmic scale) of the
four previous approaches, the aforementioned deterministic method (DEst) and the simple MC (sMC).
As before, each of the curves is the mean over 1000 estimators and shows a continuity of 27 estimators
with increasing number of samples per estimator ({512 · k|1 ≤ k ≤ 128}). Note that these figures are
somehow a zoom-out of the Figure 1: this previous figure shows the initial part of the current Figure 3.
As explained before, both mean relative error of DEst and its variance tended to 0 as the number of
samples got close to 24×4.

The performance of all the methods based on the Rényi projection (both approximated and exact
versions) showed again a similar behavior with slight variations. However, in this long term sampling
experiment, the better performance of the exact R-projection approach was more perceptible (in terms
of empirical variance). Moreover, the theoretically higher variance of the VIS-I approach was now
observed (in the long run) for all the cases. The observed behavior of sMC in the long run was in many
cases comparable to those of both VIS with approximate R projections. However, it was usually the
worst approach when the estimators use a limited-size set of samples, as expected. Finally, the observed
behavior of the deterministic approach, DEst, was comparable to that of the VIS approaches based on
the Rényi projection in the case of estimators with a reasonable number of samples. As it went through
a third of the points of the whole space, it overcame the sampling based approaches, and steadily
approached zero relative error and variance afterwards. This point where DEst overcame the rest of
approaches poses a clear boundary for the use of sampling based techniques in these problems: it is
unnecessary to spend time looking for the best proposal distribution to sample from, if it happens that
enumerating the sample space is a better approach.
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(a) Example 1 of low dependence scenario (τ = 3.5)
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(b) Example 2 of low dependence scenario (τ = 3.5)
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(c) Example 1 of high dependence scenario (τ = 10)
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(d) Example 2 of high dependence scenario (τ = 10)

Figure 3. Results on four different synthetic problems (see Section 4), in terms of mean relative error
and mean empirical variance (left and right plots for each subfigure, respectively), of the different VIS
approaches: the I-projection (VIS-I), our approximated R projection (VIS-Rh), Minka’s approximated R
projection (VIS-Rm) and the exact R projection (VIS-R). Moreover, simple Monte Carlo (MC) and an
exhaustive procedure (DEst) are also included. Each point in the lines is a mean over 1000 estimators
with a specific number of samples in {512 · k|1 ≤ k ≤ 128}. This covers up to the whole sample
space (216).

4.3. Discussion

This extensive set of experiments has shown the strengths of our proposal. Whereas the actual R
projection is unfeasible even for medium-size models, ours seems to be a competitive approximate
alternative. Our approach reduces the complexity of the problem by assuming independence with
respect to any variable that has not a low-entropy factor linking it to the variable of interest. Moreover,
our method projects onto a single unary factor all the information regarding the corresponding variable.
This is different for the other considered approximate R-projection [9], which uses multiple copies
of unary factors (as many as factors with that variable in p) and simplifies the problem by assuming
that, when projecting for a specific variable, “the distribution of the rest of the model is already
fitted and the product of corresponding projections is a good approximation”. According to the
previous experimental results, both approximate approaches (VIS-Rh and VIS-Rm) show a competitive
behavior regarding the exact VIS-R. Moreover, the differences between VIS-Rh and VIS-Rm are hardly
perceptible in terms of error and variance. However, our approach requires a lower computational
effort (the difference in terms of computational time is one order of magnitude lower in favor of
VIS-Rh) to obtain similar results.

The results regarding the impact of the vmax value show that the performance is similar throughout
all the experiments. This is in line with the previous discussion, where both approximations and the
exact Rényi projection showed indistinguishable results. The projection time increases as with the
value of vmax. The choice of vmax = 7 in these experiments looks for a trade off by means of which a
substantial part of the original distribution p is taken into account and the projection time does not
increase exponentially.

A behavior that repeats all over this set of experiments is that, frequently, the empirical variance
of the VIS-I approach is (extremely) lower than that of those based on the Rényi projection. However,
in terms of theoretical variance, the differences are the other way around: the Rényi projection leads to
the estimator with minimum theoretical variance, and that of VIS-I is (extremely) large. This poses
an interesting question: how is it possible that a theoretically high-variance method shows lower
empirical variance than the method that employs the theoretically optimal distribution?
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First of all, let us note that this is not an issue specific from our experimental setting. It is a general
issue which is regularly observed if an otherwise low-variance distribution has a small probability
mass with a very large contribution to variance. While sampling from the low mass regions with
high contribution to the theoretical variance is improbable, the observed variance may be low. Let us
use the following example to illustrate this situation. Let us define two distributions: (i) a normal
distribution, r, with variance 4 and (ii) another distribution, s, with variance 6. Let us define this
second distribution as a mixture of two normal distributions where the main component has a very
low variance and there exists a second tiny component which is responsible for the large variance of
the mixture (Var. = 6). See Figure 4 for a graphical description of both distributions. Note that the mass
of the extreme region of distribution s is 2−10. We use both distributions to obtain a sampling estimator
of their expected value (in both cases, E[X] = 0). In Figure 5 we show the results of comparing the
error of both estimators, depending on the number of estimators (and the number of samples per
estimators). Both subfigures show the proportion of cases in which the error of the lower variance
distribution, r, is larger than that of the larger variance distribution, s. The error of the approximation
that uses distribution s is proportionally lower while the number of estimators do not reach 210.
That is, this depends on the mass of the extreme region of s. In a sampling approach, the contribution
(to variance) of a region is not observed until a point is sampled from there. As the probability of
sampling there increases (the number of samples is larger than the inverse of the probability of that
region), its contribution to variance starts to be observed and, observed variance tends to its theoretical
value. Still, many more samples are required to always observe a better performance of the theoretically
lower variance estimator, r: it only overcomes completely the larger variance distribution s when
the number of points (number of estimators × number of samples) is ∼220 (Figure 5). One might be
tempted of disregarding those low mass regions but, by doing so, an unbiased high-variance estimator
would be converted into a low-variance biased estimator. In the illustrative example in Figures 4 and 5,
the low mass region has a probability of 2−10 leading to a variance of 6, whereas in our experiments this
rare events might be of the order of 2−30. Precisely, the initial advantage of VIS-I is more prominent as
we induce a larger dependence between variables, that is, as the probability mass is more concentrated
around one or more modes.

Figure 4. Distributions considered in the simple variance analysis. A normal distribution with variance
4 and a mixture of larger variance (6) with a large component (αa = 1 − αb, centered in −0.07,
with variance 0.2) and a small component with a huge contribution to variance (αb = 2−10, centered in
77.02, with variance 1).
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Figure 5. Proportion of cases (over 1000 repetitions) where the mean square error of the estimator
using the lower variance distribution (normal distribution in Figure 4) is larger than that of the one
using the larger variance distribution (mixture in Figure 4). On the left, the proportion for different
number of estimators (a single data point sampled per estimator). On the right, the same proportion
for different number of estimators and samples per estimator.

This discussion is really relevant because the order of samples in which VIS-I still overcomes the
Rényi based approaches usually covers the reasonable scenarios for sampling. In real-world practice,
we will not sample so many times, since otherwise exhaustive techniques start being competitive
in terms of error and even time. In the next section, we take advantage of this type of distributions
(I-projection) to propose an estimator that, as the number of samples increases, performs almost as
robustly as VIS-R. We achieve this task by using a proposal distribution for IS which combines both
the I and our approximate R-projections by means of a mixture distribution.

5. Mixture IS Approach

So far, we have considered single fully factored distributions as proposal density for IS. However,
the proposal can also be a mixture distribution [5]:

qα(x) = αqa(x) + (1− α)qb(x)

where α ∈ [0, 1] is the parameter that weighs the components of this simple two-component mixture.
The estimator of mixture importance sampling is similar to Equation (3), as only the proposal

is changed:

ˆ̀MIS = N−1
N

∑
i=1

f(xi)
ρ(xi)

qα(xi)
(12)

The use of mixture distributions has the interesting property that the variance of the estimator
is bounded by those of the components when the same component distributions are used as control
variates [5]. Control variates is a variance reduction procedure that takes advantage of the correlation
between the statistic of interest and another (simple) statistic to reduce the variance of the estimator.

If the components qt of the mixture are distributions (E[qt] = 1), they can be used as control
variates, so that the estimator (CVIS) would be as follows:

ˆ̀CVIS =N−1
N

∑
i=1

f(xi)ρ(xi)−∑t∈{a,b} βtqt(xi)

qα(xi)

+ ∑
t∈{a,b}

βt (13)
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where βa and βb are the control variate coefficients of components qa and qb, respectively. According to
Theorem 2 of Owen and Zhou [5], the use of control variates allows for establishing an upper bound
on the variance of the estimator in Equation (13):

σ2
ˆ̀CVIS

≤ min
t∈{a,b}

α−1
t σ2

t

that is, the variance of the CVIS estimator is less than the minimum variance of an IS estimator using
only one component qt of the mixture as proposal distribution to a factor inversely proportional to the
weight of the component in the mixture (α−1

t ).
This bound holds if the control variate coefficients are close to the optimal vector β. Note that the

estimation of the control variate coefficients seems to be a first step for Equation (13). However, Owen
and Zhou [5] described the conditions in which this problem can be reformulated as a multiple regression

yi = ˆ̀CVIS + ~βzi = ˆ̀CVIS + βazai + βbzbi,

and, thus, the control variate coefficients, βa and βb, and ˆ̀CVIS can be simultaneously estimated as
the parameters and the intercept, respectively. In this regression setting, the dependent variable
is yi = f(xi)ρ(xi)q−1

α (xi), and the independent variables are zti = qt(xi)q−1
α (xi) − 1, for t ∈ {a, b}.

A detailed description can be found in Appendix B.

Deterministic Mixture IS with Control Variables: Combining the Strengths of I and R Projections

We propose to use the I-projection and our approximation to the R-projection of r = 2 as
components of a mixture distribution for the proposal of IS.

According to Hesterberg [10], stratifying or deterministically sampling from the proposal mixture
distribution reduces the empirical variance. Deterministic sampling means that each component of the
mixture is separately sampled a specific number of times: in our method, qa is sampled Nα times and
qb, N(1− α) times (rounded to the closest integer in both cases).

6. Empirical Study of Mixture VIS Performance

In this section, we aim to empirically show the behavior of the mixture importance sampling
with the I and our approximated R projections combined into the proposal distribution. We compare
our mixture approach (VIS-Rx) to other approaches such as VIS with any of the components of the
mixture (VIS-I and VIS-Rh), VIS using Minka’s approximate R projection (VIS-Rm) and the exact R
projection (VIS-R). Here we follow the same experimental setting as in the previous set of experiments
(Section 4). All the experiments are also carried out on the same four synthetic problems (Ising Grid
model instances). With the objective of testing the behavior of the proposed method whereas as many
external effects as possible are kept controlled, the following (hyper-)parameters are fixed throughout
the experiments: Rényi projection of order r = 2, for our approximate Rényi projection, vmax = 7,
a damping factor ε = 0.5 is used for Equations (10) and (11).

In the remaining of this section, we first present an empirical study on the impact of the weight of
the components of the mixture, and then a complete experimental comparison of the aforementioned
techniques is carried out.

6.1. Empirical Study on the Importance of the Component Weight, α

In a mixture distribution, one of the most relevant elements is the mixture weights. In this
set of experiments we aim to show some insights into the most appropriate value for the mixture
weights. We test, in the experimental setup of Section 4, VIS-Rx with four different values for
α ∈ {0.5, 0.25, 0.1, 0.05} (α is the weight of the I-projection component, whereas 1 − α is that of
the R-projection) together with another approach (VIS-Rx-rel) where the weight of the I-projection
is inversely proportional to the number of samples of the estimator. The VIS approach which uses
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the exact R-projection is also considered for comparison. Figure 6 shows the results in terms of mean
relative error and mean empirical variance (n · Var( ˆ̀), in logarithmic scale). Each of the lines in
this figure is the mean over 1000 estimators and shows a continuity of 27 estimators with increasing
number of samples per estimator ({64 · k|1 ≤ k ≤ 128}) (with up 213 samples, which cover the so-called
reasonable setups). It is important to remark that, in the case of VIS-Rx-rel, the mixture weight α along
the corresponding line is not constant but decreasing.
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(a) Example 1 of low dependence scenario (τ = 3.5)
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(b) Example 2 of low dependence scenario (τ = 3.5)
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(c) Example 1 of high dependence scenario (τ = 10)
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(d) Example 2 of high dependence scenario (τ = 10)

Figure 6. Results on four different synthetic problems (see Section 4), in terms of mean relative error
and mean empirical variance (left and right plots for each subfigure, respectively), of VIS-Rx with five
different α selections: constant α ∈ {0.5, 0.25, 0.1, 0.05} and a decreasing α value (VIS-Rx-rel) relative to
the number of samples. Each point in the lines is a mean over 1000 estimators with a specific number
of samples in {64 · k|1 ≤ k ≤ 128}. This is considered to cover the reasonable setups (up to 213, a 12.5%
of the whole sample space) for sampling based estimators.

The performance of VIS-Rx was similar for all the values of α. Starting from a minimum variance
point, which, as observed above, was established by the I-projection, the empirical variance quickly
rose to then reduce the slope and continued increasing more softly. However, smaller values of α led
to reduced empirical variance. Specifically, the approach which used an α value which depended
on the number of samples (the larger the sample, the smaller the proportion of I-projection points)
showed consistently the best results. The behavior of VIS-R was noticeably different, starting from a
larger variance and relative error points. In the case of empirical variance, after a considerable increase,
it steadily decreased.

6.2. Experimental Comparison of Mixture Importance Sampling

In this set of experiments, our mixture importance sampling approach is compared to the rest of
(VIS) techniques considered in this paper. Given the results of Section 6.1, we decided to include just
the results of VIS-Rx-rel as a representative of the mixture approaches. Thus, Figure 7 shows the results
in terms of mean relative error and log mean empirical variance following again the experimental setup
of Section 4. Our VIS-Rx-rel is compared to VIS using each of its mixture components (VIS-I and our
VIS-Rh), VIS with Minka’s approximated R projection (VIS-Rm) and VIS using the exact R projection
(VIS-R). Each of the lines in this figure is the mean over 1000 estimators and shows a continuity
of 27 estimators with increasing number of samples per estimator ({64 · k|1 ≤ k ≤ 128}). In this
experimental scenario with estimators limited to reasonable setups (number of samples up to 12.5%
of the total space), the performance of all the methods based exclusively on the Rényi projection
(both approximated and exact versions) was similar: the mean relative error was initially large and
quickly decreased to obtain reasonably good estimators, whereas the empirical variance initially
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also increased, then stabilized and finally decreased steadily. As described in the previous section,
VIS-I showed a competitive behavior in limited setups, although the mean relative error resembled
that of a biased estimator and the empirical variance quickly increased as estimators of larger number
of samples were used. The behavior of the mixture proposal (VIS-Rx-rel) was clearly superior to that
of the rest. It started from the initial point posed by I-projection, both in terms of mean relative error
and log mean empirical variance, but showed a trend more similar to that of the approaches based on
the R-projection.
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(a) Example 1 of low dependence scenario (τ = 3.5)
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(b) Example 2 of low dependence scenario (τ = 3.5)
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(c) Example 1 of high dependence scenario (τ = 10)
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(d) Example 2 of high dependence scenario (τ = 10)

Figure 7. Results on four different synthetic problems (see Section 4), in terms of mean relative error
and mean empirical variance (left and right plots for each subfigure, respectively), of five different
VIS approaches: our mixture-based proposal (VIS-Rx-rel), those using its components (VIS-I and our
VIS-Rh), Minka’s approximated R projection (VIS-Rm) and the exact R projection (VIS-R). Each point
in the lines is a mean over 1000 estimators with a specific number of samples in {64 · k|1 ≤ k ≤ 128}.
This is considered to cover the reasonable setups (up to 213, a 12.5% of the whole sample space) for
sampling based estimators.

Moreover, in order to show the whole picture, we show in Figure 8 a similar set of experiments
but obtaining a number of samples up to the total size of the space. In this scenario, we again compare
against the non-sampling 0-variance estimator DEst.

The performance of our mixture-based approach was better than any other method in the first grid
example (with both τ = 3.5, Figure 7a, and τ = 10, Figure 7c), whereas in the second one VIS-Rx-rel
had the best performance for estimators with limited number of samples, and it ended up showing a
similar behavior to the R-projection based approaches. However, note that whenever VIS-Rx-rel was
overcome (in any of the four problems in Figure 7), the best approach was the deterministic method
(DEst). The performance of all the methods based on the Rényi projection (both approximated and
exact versions) showed again a similar behavior, and the empirical variance of VIS-I was in line with
its higher theoretical variance.

6.3. Discussion

Different practical ideas can be drawn from these empirical studies. Firstly, the use of a mixture of
the I-projection and our approximated R-projections seems to be a reasonable choice as the proposal for
IS. The I-projection places most of the probability mass in a mode of the projected distribution and leads
to a theoretically high variance unbiased estimator. However, in practical limited scenarios (in terms of
number of estimators/samples), the VIS-I estimator behaves as a biased low variance estimator which
frequently shows a low error. The R-projection, and thus also our approximation, is a flatter distribution
which leads to the theoretical minimum variance unbiased estimator. In practice, it shows a smoother
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behavior which involves a very competitive performance in the long run, lacking efficiency in the
more limited scenarios which are considered reasonable for real-world practice. Sampling these points
with a large probability mass according to the I-projection from the beginning allows VIS-Rx to show
the characteristic behavior of the VIS-Rh method but starting from the competitive performance levels
reached by VIS-I when the number of samples is limited. One may wonder how many samples need to
be obtained from the I-projection for VIS-Rx to show this behavior. This is precisely what we tested in
Section 6.1, where we studied the relevance of the mixture weight α. Our experiments show that a small
proportion of samples from the I-projection is enough to attain this behavior (α = 0.05). Moreover,
the best result is obtained by the mixture IS approach with relative α (VIS-Rx-rel), i.e., a method where
the mixture weight α depends on the number of samples of the estimator. The I-projection points to an
important region that is advisable not to miss. As the number of samples of the estimator increases, the
probability of missing that important region by the R-projection decreases and so does the relevance of
the I-projection.

Meanwhile, the experiments of Section 6.2 show that the mixture approach is the best approach in
reasonable setups. In fact, it is interesting to realize that whenever the DEst approach, a deterministic
trivial solution, is the best approach, no sampling technique makes sense. Thus, we can look for
the point (estimators with a specific number of samples) where DEst becomes the best approach in
terms of empirical variance, for instance. Before that point, our VIS-Rx-rel is, consistently throughout
all the problems, the best technique. As the number of samples used by the estimator increases,
the performance of VIS-Rx-rel tends to that of the R-projection based approaches. Remember that
VIS-Rx-rel uses a mixture weight α which is inversely proportional to the number of samples of the
estimator. This explains the observed behavior of why VIS-Rx tends to VIS-Rh. However, a part of
the experimental results (Figure 8a,c) shows that the referred convergence might require a very large
number of samples (even larger than the whole domain size).
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(a) Example 1 of low dependence scenario (τ = 3.5)
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(b) Example 2 of low dependence scenario (τ = 3.5)

0 20,000 40,000 60,000
Num. samples

0.00

0.02

0.04

0.06

0.08

0.10

M
ea

n 
re

la
tiv

e 
er

ro
r

VIS-Rx-rel
VIS-Rh
VIS-Rm
VIS-I
VIS-R
DEst
sMC

0 20,000 40,000 60,000
Num. samples

103

104

M
ea

n 
va

ria
nc

e

(c) Example 1 of high dependence scenario (τ = 10)
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(d) Example 2 of high dependence scenario (τ = 10)

Figure 8. Results on four different synthetic problems (see Section 4), in terms of mean relative error
and mean empirical variance (left and right plots for each subfigure, respectively), of five different
VIS approaches: our mixture-based proposal (VIS-Rx-rel), those using its components (VIS-I and our
VIS-Rh), Minka’s approximated R projection (VIS-Rm) and the exact R projection (VIS-R). Moreover,
simple MC and an exhaustive procedure (DEst) are also included. Each point in the lines is a mean
over 1000 estimators with a specific number of samples in {512 · k|1 ≤ k ≤ 128}. This covers up to the
whole sample space (216).

7. Related Work

This paper is related to different previous works in the literature.
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Regarding importance sampling, the key work by Owen and Zhou [5] establishes the bases for
our proposal. They propose different alternatives to improve the variance of importance sampling
estimators. They expose the properties of mixture importance sampling, the use of control variates,
multiple importance sampling, etc. Ours works on mixture IS with control variates. Multiple importance
sampling [2], although similar in the sense of using several distributions as proposals, does not consider
a mixture of them. Elvira et al. [11] presented more recently a comprehensive study of both mixture
and multiple IS, showing that mixture IS is more robust than multiple IS, although it is also more
expensive. They finally present a method based on multiple IS with many proposals which are in turn
mixture distributions.

In information theory and variational inference, the concepts of information and momentum
projections, which consider Kullback-Leibler divergence, are well established [4,8]. This classical KL
divergence has been generalized and several families of divergences have been proposed, where KL is
just a special case. Minka [9] took advantage of one of these families, the α-divergences, to propose a
general projection method for any divergence is the family. Similarly, Regli and Silva [12] proposed a
method for the α− β divergences, Wang et al. [13] for the f-divergences. In this paper, we explored the
use of the Rényi family of divergences [14]. It has been previously used in the context of variational
inference [15], where a new class of variational evidence lower-bounds, the variational Rényi bound,
was proposed.

8. Conclusions

In this paper, a practical solution to importance sampling using variation inference to obtain the
estimator of minimum variance is proposed. Our study considers discrete distributions, which are
projected to the fully factorized family of distributions. We present a competitive approximation to
the exact Rényi projection to be used as proposal distribution for IS. Note that Rényi projection of
order 2 leads to the theoretical minimum variance estimator. Nevertheless, we empirically show that
this theoretical minimum is overcome, in real-world set-ups, by other solutions with large theoretical
variance with specific characteristics. We combine both worlds to propose the use of a mixture of
the Rényi projection of order 2 and the information projection with control variates as proposal of IS.
The robustness of this approach is on its ability to perform competitively across scenarios of different
complexity where samples might be scarce as in many realistic situations. Indeed, the variance of
this estimator is bounded by the smallest component variance to a factor determined by the mixture
weights. The method has been shown to behave very competitively in a large experimental setting.

For future work, adapting this approach to project onto more expressive families of
distributions—other than the fully factorized family—could be an interesting extension. Minka [9]
showed that the α parameter (global) of the divergence when projecting the whole distribution does
not lead to the same solution as using the same α (local) to project parts of the distribution. Something
similar might be happening with Rényi’s r parameter. It would be interesting to study and adjust,
if necessary, the local r parameters so that the whole projection minimizes the r = 2 Rényi divergence.
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Appendix A. Minka’s Based Procedure Full Derivation

Minka [9] proposed a general method based on α-divergences for the projection of factored
distributions. A factor δj for every pj (d(δj) = d(pj)) is devised. In the fully factored case, δj(x) =

∏i γji(xi), and per-variable factors are qi(xi) = ∏j:xi∈d(δj)
γji(xi). Thus, Q(x) ≡ ∆(x).
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The simplification in [9] is related with the assumption of

Renyir
(

P||Q
)
≈ Renyir

(
pj · ∆−δj ||δj · ∆−δj

)
Their algorithm was developed for the α-divergences, but it can be adapted to the Rényi

divergences in Equation (6). In this case, from the previous assumption, the Rényi divergences
simplify as follows,

Renyir
(

pj · ∆−δj ||δj · ∆−δj

)
=
∫

x,z
pr

j (x)δ1−r
j (x)∆−δj(x, z)dxdz

∝
∫

x
pr

j (x)δ1−r
j (x)∏

k 6=j
∏

i:i∈d(δj)

∧i∈d(δk)

γki(xi)dx

=
∫

x

pr
j (x)∏i∈d(pj)

q1−r
i (xi)

∏k 6=j ∏ i:i∈d(δj)

∧i∈d(δk)

γ−r
ki (xi)

dx

With this expression, the problem of finding the optimal update of the individual factors γji can
be posed. Let us redefine qi as a normalized probability mass function, qi(xi) =

1
si

∏j:xi∈d(δj)
γji(xi).

Let the Lagrangian be:

G(qi) =
∫

x

pr
j (x)∏i∈d(pj)

q1−r
i (xi)

∏k 6=j ∏ i:i∈d(δj)

∧i∈d(δk)

γ−r
ki (xi)

dx

− λi

(∫
y∈Ωd(qi)

qi(y)dy− 1

)
(A1)

Setting to zero the derivative with respect to qi(y), for a y ∈ Ωd(qi)
, ∂G

∂qi(y)
= 0 we obtain

(1− r)q−r
i (y)

∫
z

pr
j (z, y)∏l 6=i∈d(pj)

q1−r
l (zl)

(∏l 6=i:l∈d(δj)
q\j

l (zl)q
\j
i (y))−r

dz + λi = 0

with

q\j
i (xi) =

1
si

∏
k 6=j:xi∈Ωd(δk)

γki(xi)

By defining

ηy =
∫

z

pr
j (z, y)∏l 6=i∈d(pj)

q1−r
l (zl)

(∏l 6=i:l∈d(δj)
q\j

l (zl)q
\j
i (y))−r

dz

then

qi(y) =
1
C

η1/r
y ∝ η1/r

y (A2)

Therefore, we can define the update of the γ factors as:

γji(y) =
1

C · q\j
i (y)

η1/r
y (A3)
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Appendix B. Mixture Importance Sampling Estimator with Control Variates as a
Multiple Regression

The mixture importance sampling estimator with control variates is, for this simple two
component mixture, as follows,

ˆ̀CVIS =N−1
N

∑
i=1

f (xi)p(xi)− βaqa(xi)− βbqb(xi)

qα(xi)

+ (βa + βb)

where βa and βb are the control variate coefficients of component qa and qb, respectively, and α

(and 1− α) are the weights of the components in the mixture.
To solve this problem, the first step is to estimate the value of the control variate coefficients,

{βa, βb}. In this paper, we follow the idea of Owen and Zhou [5], who presented a transformation
of this into a multiple regression problem and to estimate both the control variates and ˆ̀CVIS as
the regression coefficients and the intercept, respectively. Let us re-arrange the previous equation
as follows,

ˆ̀CVIS =N−1
N

∑
i=1

f (xi)p(xi)

qα(xi)
− βaN−1

N

∑
i=1

(
qa(xi)

qα(xi)
− 1
)

− βbN−1
N

∑
i=1

(
qb(xi)

qα(xi)
− 1
)

and

N−1
N

∑
i=1

f (xi)p(xi)

qα(xi)
= ˆ̀CVIS + βaN−1

N

∑
i=1

(
qa(xi)

qα(xi)
− 1
)

+ βbN−1
N

∑
i=1

(
qb(xi)

qα(xi)
− 1
)

Let us define
yi = f (xi)p(xi)q−1

α (xi),

zai = qa(xi)q−1
α (xi)− 1, and zbi = qb(xi)q−1

α (xi)− 1.

We can express it as

yi = ˆ̀CVIS + ~βzi

Note that this is the same definition of a multiple regression Z as random independent variables
and Y as a dependent variable.
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