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The sensitivity of vector borne diseases like malaria to climate continues to raise considerable concern over the implications of
climate change on future disease dynamics. The problem of malaria vectors shifting from their traditional locations to invade
new zones is of important concern. A mathematical model incorporating rainfall and temperature is constructed to study the
transmission dynamics of malaria. The reproduction number obtained is applied to gridded temperature and rainfall datasets for
baseline climate and future climate with aid of GIS. As a result of climate change, malaria burden is likely to increase in the tropics,
the highland regions, and East Africa and along the northern limit of falciparum malaria. Falciparum malaria will spread into the
African highlands; however it is likely to die out at the southern limit of the disease.

1. Introduction

Climate change is projected to alter the distribution of vector
borne diseases and malaria is no exception. Children under
five years of age and pregnant women continue to be at risk.
One of the key millennium development goals is to halve,
halt, and reverse the scourge of malaria by 2015. The disease
has not yet been halved, although a significant reduction in
malaria incidences has been recorded [1]. These little gains
achieved to date are under threat from climate change.

Malaria is sensitive to climate change in the sense that
the vector that spreads malaria and the parasite that causes
the disease are sensitive to climate variables especially rainfall
and temperature. Research on the impact of climate change
on the dynamics of malaria is still ongoing [2–6]. However,
most studies tend to consider the effect of temperature
alone on the dynamics of malaria, neglecting the impact of
incorporating rainfall in the mathematical models of malaria
transmission. Understanding the role of temperature and
rainfall in malaria transmission is of particular importance
in light of climate change as changes can alter vector
development rates, shift vector geographical distribution,

and alter transmission dynamics. Climate change is widely
expected to significantly affect the global spread, intensity,
and distribution of malaria. The question is, how is climate
change going to affect the gains made thus far in trying to
reduce the burden of malaria? That is a question which was
once answered by Tanser et al. [7] using spatial models and
which we also seek to answer using a mathematical model.

This study seeks to build a mathematical model in
conjunction with the use of Geographical Information Sys-
tems (GIS) that will enable prediction and mapping of
the current and potential future distribution of malaria in
Africa as a result of climate change. The study will highlight
how combining regional climate models with mathematical
models of malaria transmission provides valuable tools for
better understanding of future disease scenarios as climatic
conditions change. We modify our previous work [4] to
incorporate rainfall into the model. We focus on the con-
struction of a realistic, climate-based malaria transmission
model that captures the combined effects of both rainfall and
temperature on malaria infection dynamics. This approach
permits us to gain insight into the effect of climate change
on malaria transmission. However, to reduce the complexity
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of the model genetic variation in vector competences is not
explored in the same way as rainfall is not partitioned into
runoff and infiltration in this paper.

2. Model Description

A deterministic transmission model is developed as a frame-
work for understanding the impact of temperature and
rainfall on malaria dynamics. The human population is
subdivided into four classes: susceptible (𝑆

𝐻
(𝑡)), exposed

or incubating (𝐸
𝐻
(𝑡)), infectious (𝐼

𝐻
(𝑡)), and recovered

individuals who become partially immune (𝑅
𝐻
(𝑡)), with 𝑡

accounting for time in days. Individuals are recruited into
the susceptible class at a rate 𝜃 and individuals die naturally
at a rate 𝜇

𝐻
. The rate of infection of a susceptible individual

is dependent on the mosquito’s biting rate 𝑎(𝑇, 𝑅) and the
proportion of bites by infectious mosquitoes on susceptible
humans that produce infection 𝑏

𝐻
. 𝑇 and 𝑅 account for

temperature and rainfall dependence, respectively. Once
individuals are infected, they do not automatically become
infectious as they do not have gametocytes, but they enter
the exposed class 𝐸

𝐻
, where parasites in their bodies are

still in the asexual stages. Exposed humans then progress at
a rate 𝜅

𝐻
to the infectious class, in which they now have

gametocytes in their bloodstream making them capable of
infecting the susceptible anopheles mosquitoes. Individuals
recover through treatment at a rate 𝛼, where a proportion (1−

𝑝) recovers with temporary immunity and the compliment 𝑝
recovers with no temporary immunity. Temporarily immune
individuals lose immunity at a rate 𝛾. Infected individuals
who do not seek treatment die from infection at a rate 𝜂. Both
human and mosquito infections take time to develop into an
infectious state. Within host parasite dynamics are weather
independent, but within vector parasite dynamics as well as
the mosquito life cycle are weather dependent.

The mosquito population is divided into the juvenile
(𝐽
𝑀
(𝑡)) and adult population, and the adult population is

subdivided into three classes: susceptible (𝑆
𝑀
(𝑡)), exposed

(𝐸
𝑀
(𝑡)), and infectious (𝐼

𝑀
(𝑡)). The juvenile stages describe

the development of the aquatic stages which mature to
become susceptible adult mosquitoes at a rate 𝛽

𝑀
. The rate of

infecting a susceptible mosquito depends on the mosquitoes’
biting rate 𝑎(𝑇, 𝑅) and the proportion of bites by susceptible
mosquitoes on infected humans that produce infection 𝑏

𝑀
.

Susceptible mosquitoes that feed on infectious humans will
take gametocytes in blood meals, but as they do not have
sporozoites in their salivary glands, they enter into the
exposed class 𝐸

𝑀
. After fertilisation, sporozoites are pro-

duced and migrate to the salivary glands ready to infect any
susceptible host; the vector is then considered as infectious
and enters class 𝐼

𝑀
. Mosquitoes die at a rate 𝜇

𝑀
which is

independent of infection status. Infected mosquitoes are not
harmed by the infection and never clear their infection and
the infective period of the mosquito ends with its death. The
following system of differential equations describes the rain-
fall and temperature dependent malaria transmission model:

𝑆
󸀠

𝐻
(𝑡) = 𝜃 − 𝜆

𝐻 (𝑇, 𝑅) 𝑆𝐻 (𝑡) − 𝜇
𝐻
𝑆
𝐻 (𝑡) + 𝑝𝛼𝐼

𝐻 (𝑡)

+ 𝛾𝑅
𝐻 (𝑡) ,

𝐸
󸀠

𝐻
(𝑡) = 𝜆

𝐻 (𝑇, 𝑅) 𝑆𝐻 (𝑡) − (𝜅
𝐻

+ 𝜇
ℎ
) 𝐸
𝐻 (𝑡) ,

𝐼
󸀠

𝐻
(𝑡) = 𝜅

𝐻
𝐸
𝐻 (𝑡) − (𝜇

𝐻
+ 𝛼 + 𝜂) 𝐼

󸀠

𝐻
(𝑡) ,

𝑅
󸀠

𝐻
(𝑡) = (1 − 𝑝) 𝛼𝐼

𝐻 (𝑡) − (𝛾 + 𝜇
𝐻
) 𝑅
𝐻 (𝑡) ,

𝐽
󸀠

𝑀
(𝑡) = 𝛽

𝐽 (𝑇, 𝑅)𝑁𝑀 (𝑡) (1 −
𝐽
𝑀 (𝑡)

𝐾
) − 𝜇
𝐽 (𝑇) 𝐽𝑀 (𝑡)

− 𝛽
𝑀 (𝑇, 𝑅) 𝐽𝑀 (𝑡) ,

𝑆
󸀠

𝑀
(𝑡) = 𝛽

𝑀 (𝑇, 𝑅) 𝐽𝑀 (𝑡) − 𝜆
𝑀 (𝑇, 𝑅) 𝑆𝑀 (𝑡)

− 𝜇
𝑀 (𝑇) 𝑆𝑀 (𝑡) ,

𝐸
󸀠

𝑀
(𝑡) = 𝜆

𝑀 (𝑇, 𝑅) 𝑆𝑀 (𝑡) − (𝜅
𝑀 (𝑇) + 𝜇

𝑀 (𝑇)) 𝐸𝑀 (𝑡) ,

𝐼
󸀠

𝑀
(𝑡) = 𝜅

𝑀 (𝑇) 𝐸𝑀 (𝑡) − 𝜇
𝑀 (𝑇) 𝐼𝑀 (𝑡) .

(1)

Here, 𝜆
𝐻

= 𝑎(𝑇, 𝑅)𝑏
𝐻
𝐼
𝑀
(𝑡)/𝑁
𝑀
(𝑡), 𝜆
𝑀

= 𝑎(𝑇, 𝑅)𝑏
𝑀
𝐼
𝐻
(𝑡)/

𝑁
𝐻
(𝑡), 𝑁

𝐻
(𝑡) = (𝑆

𝐻
+ 𝐸
𝐻

+ 𝐼
𝐻

+ 𝑅
𝐻
)(𝑡), and 𝑁

𝑀
(𝑡) =

(𝑆
𝑀
+𝐸
𝑀
+𝐼
𝑀
)(𝑡).𝑋(𝑇, 𝑅) specifies a function of temperature

and rainfall, while𝑋(𝑇) represents a function of temperature
alone.

Predicting the effect of climate change onmalaria dynam-
ics requires a framework that specifically incorporates the
role of each climate sensitive parameter. The functional
forms of temperature and rainfall dependent parameters are
presented in Table 1.

2.1. Model Analysis. Following van den Driessche and Wat-
mough [14], the treatment induced reproduction number
[R
𝑚
] of the model in (1) is given by

R
𝑚

= √
𝑎 (𝑇, 𝑅) 𝑏𝐻𝜅𝐻

𝜇
𝑀 (𝑇) (𝜅𝑀 (𝑇) + 𝜇

𝑀 (𝑇))

𝑎 (𝑇, 𝑅) 𝑏𝑀𝜅𝑀 (𝑇)

(𝜅
𝐻

+ 𝜇
𝐻
) (𝜇
𝐻

+ 𝛼 + 𝜂)
.

(2)

In the absence of treatment 𝛼 = 0; then lim
𝛼→0

R
𝑚

=

R
0
, the basic reproduction number. The treatment induced

reproduction number defines the average number of new
infections a single infected mosquito/individual would pro-
duce during its/his (her) entire infectious period where
treatment is the only intervention strategy.

3. Mapping Transmission Dynamics
across Africa

We applied (2) to gridded temperature and precipitation
datasets for the baseline climate and future climate to com-
pute 𝑅

0
for each pixel in a GIS.The datasets used covered the

entire continent of Africa. Data on mean annual temperature
and total annual precipitation for the baseline climate (i.e.,
average values for the period from 1950 to 2000) were down-
loaded from the WorldClim database as raster grids with a
spatial resolution of 30 arc-seconds (approximately 1 km at
the equator) [15]. For the future climate, we used temperature
and precipitation projections of the HadCM3 and CSIRO
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Figure 1: Reproduction number as a function of daily rainfall, 𝑅, in mm and temperature, 𝑇, in ∘C.
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Figure 2: Basic reproduction number for falciparum malaria based on the baseline climate.

Mk3 general circulation models (GCM) based on the A2a
emission scenario. Data for the future climate (average values
for 2020–2039, hereafter 2040) were downloaded from the
Intergovernmental panel on climate change (IPCC) database
in raster format at the same spatial resolution of 30 arc-
seconds [16]. 𝑅

0
was calculated separately for the baseline

climate and for each GCMmodel.
To determine whether falciparum malaria will persist or

the disease dies out in the future, we evaluated the following
boolean expressions on a pixel basis, respectively: 𝑅

0
< 1 for

the baseline map and 𝑅
0
> 1 for the future map; 𝑅

0
> 1 for

the baseline map and 𝑅
0
< 1 for the future map.

This allowed us to classify an area as becoming malaria
endemic or malaria-free. All the maps generated in this study

are based on the Albers equal-area conic projection. We
clipped the 𝑅

0
maps by the raster maps of the digital map

of dominant vectors to exclude malaria-free areas such as the
Sahara Desert (indicate source here).We used ArcGIS 10.1 for
all GIS analysis.

4. Results

In Figure 1, we plot 𝑅
0
for falciparum malaria as a function

of rainfall and temperature. We observe that the optimum
temperature window for falciparum malaria transmission is
30–32∘C.

Figure 2 illustrates the simulated 𝑅
0

for falciparum
malaria on the African continent based on baseline climate.



Malaria Research and Treatment 5

Basic reproduction number
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Basic reproduction number
0-1
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based on HadCM3 A2a climate projection
Basic reproduction number for falciparum malaria

based on CSIRO Mk3 A2a climate projection

Figure 3: 2040 projected basic reproduction number for falciparum malaria.

We observe distinct geographic patterns in the intensity of
falciparum malaria. The transmission intensity is highest in
the tropics as well as the coastal areas of East Africa. The
subtropics exhibit low levels of transmission intensity. Our
simulations fall within the observed spatial distribution of
falciparummalaria on the continent described by Gething et
al. [17].

Figure 3 shows the projected 𝑅
0
for falciparum malaria

in Africa based on HadCM3 and CSIRO Mk3 A2a climate
scenarios for 2040. Compared to the simulations for the
baseline climate, we observe increases in 𝑅

0
in the tropics,

the highland regions, and East Africa as well as along the
northern limit of falciparum malaria. By contrast, a decrease
in 𝑅
0
is projected to occur on the southern fringe of the

disease by 2040.These changes are similar for both HadCM3
and CSIROMk3 A2a climate projections.

In Figure 4we notice that the increases in𝑅
0
are sufficient

to turn most areas in the African highlands into malaria
endemic areas by 2040. The northern limit of falciparum
malaria is also projected to become an endemic region.

In contrast, the decreases in 𝑅
0
are sufficient to turn areas

that fringe the southern limit of the disease into malaria-free
zones. A similar trend is expected for isolated areas in the
African highlands as noted in Figure 5.

5. Discussion

A model incorporating rainfall and temperature is analysed
regarding malaria transmission. Results from the model
suggest that the optimum temperature window for peak falci-
parummalaria transmission is 30–32∘C.This is in agreement
with other studies [4, 5]. Furthermore, results from model
analysis suggest that daily rainfall in the range of 15–17mm is
ideal for the spread of malaria. Perhaps the most interesting
but unexpected result is that by 2040 malaria is projected
to die out on the southern fringe of the disease in Africa.
The fact that the same result was detected using projections
from two different GCM models makes this a key result. A
drying trend is the likely driving force for this change [18].
This finding has implications for malaria elimination in some
regions of Africa. In other words, the result offers hope that
the international goal of shrinking the malaria map may be
achieved in southern Africa.

Results of this study suggest that due to climate change
endemic malaria will become an increasing problem in the
African highlands; this seems to be in agreement with other
studies [5, 7, 19–22]. A warming trend is the likely factor
driving the projected increase in malaria endemicity in the
highlands, though socioeconomic factors such as land use
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Figure 4: 2040 projected malaria endemic areas, previously malaria-free.
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Figure 5: 2040 projected malaria-free areas, previously malaria endemic.
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change and drug resistance can also be attributed to increases
in malaria incidences in highlands too.

The model has the following limitations: (i) it did not
consider the role of human migration neither did it consider
other climate variables in particular relative humidity as the
tropical anopheline mosquitoes prefer humidities above 60%
[23]; (ii) it did not consider the role of socioeconomic factors
in malaria transmission dynamics but it would be interesting
to incorporate these factors to ascertain whether climate
change in combinationwith these factors will amplifymalaria
transmission in the highlands. Despite these limitations, the
model is reasonable enough to be able to give a realistic
picture of malaria in the African continent. Thus, results
from the study will be useful at various levels of decision
making, for example, in setting up an early warning and
sustainable strategies for climate change and adaptation for
malaria vectors control programmes in Africa. These results
can be generalized to other tropical regions outside Africa.
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