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a b s t r a c t 

Dynamic functional connectivity (dFC) in resting-state fMRI holds promise to deliver candidate biomarkers for 

clinical applications. However, the reliability and interpretability of dFC metrics remain contested. Despite a 

myriad of methodologies and resulting measures, few studies have combined metrics derived from different con- 

ceptualizations of brain functioning within the same analysis - perhaps missing an opportunity for improved in- 

terpretability. Using a complexity-science approach, we assessed the reliability and interrelationships of a battery 

of phase-based dFC metrics including tools originating from dynamical systems, stochastic processes, and infor- 

mation dynamics approaches. Our analysis revealed novel relationships between these metrics, which allowed us 

to build a predictive model for integrated information using metrics from dynamical systems and information the- 

ory. Furthermore, global metastability - a metric reflecting simultaneous tendencies for coupling and decoupling - 

was found to be the most representative and stable metric in brain parcellations that included cerebellar regions. 

Additionally, spatiotemporal patterns of phase-locking were found to change in a slow, non-random, continuous 

manner over time. Taken together, our findings show that the majority of characteristics of resting-state fMRI 

dynamics reflect an interrelated dynamical and informational complexity profile, which is unique to each acqui- 

sition. This finding challenges the interpretation of results from cross-sectional designs for brain neuromarker 

discovery, suggesting that individual life-trajectories may be more informative than sample means. 
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There is great anticipation that functional neuroimaging may com-
lement current clinical phenomenology in the diagnosis of disorders of
rain functioning, and provide brain-based markers for patient stratifi-
ation, disease progression tracking, and prediction of treatment out-
omes ( Zhang et al., 2021 ). In this context, the investigation of the
rain’s functional connectivity (FC) – as revealed by resting-state func-
ional magnetic resonance imaging (fMRI) – holds promise for enabling
Abbreviations: fMRI, functional magnetic Resonance Imaging; BOLD, blood oxyge  

ectivity; LEiDA, Leading Eigenvector Dynamic Analysis; DFA, detrended fluctuation
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ools of great clinical value, with thousands of articles per year focused
n elucidating properties of normal and abnormal whole-brain func-
ionality ( Zhang et al., 2021 ). Static FC reveals the statistical interde-
endence among different brain regions using blood oxygenation level
ependent (BOLD) signals ( Friston, 1994 ). However, these static mea-
ures camouflage the inherent dynamic nature of brain activity, which
s captured with time-varying functional connectivity, or dynamic FC
dFC). Unfortunately, the fact that fMRI may be capturing something
ther than BOLD signals ( Drew et al., 2020 ; Raut et al., 2021 ), and in
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he absence of a ground truth, the hurdles to use FC metrics in the clinic
re high ( Woo and Wager, 2015 ), and considerably higher for dFC due
o issues of interpretation ( Lurie et al., 2020 ) and sampling variability
 Laumann et al., 2017 ), although the latter has been rigorously chal-
enged ( Miller et al., 2018 ). Moreover, the popularity of FC and dFC
ethods comes with a plethora of heterogeneous methodologies derived

rom distinct conceptualizations of brain functioning ( Bijsterbosch et al.,
020 ). 

Candidate neuromarkers should demonstrate a high degree of re-
iability and ideally be robust and interpretable in terms of neuro-
cience ( Woo and Wager, 2015 ). Despite efforts to assess the test-retest
eliability of dFC metrics, the results remain contested ( Abrol et al.,
017 ; Bijsterbosch et al., 2017 ; Choe et al., 2017 ; Orban et al., 2020 ;
aisvilaite et al., 2021 ; Vohryzek et al., 2020 ). Common approaches

o address these concerns of validity include comparison of results with
ull models ( Battaglia et al., 2020 ) or replication of results in alternative
atasets ( Varley et al., 2020 ). Neuroscientific interpretation of candidate
euromarkers is enhanced with convergence of evidence from multiple
ources ( Woo and Wager, 2015 ), and together with reliability, is one of
he necessary conditions to introduce neuromarkers into the clinic. 

With this in mind, in this paper we took a complexity-science per-
pective to identify a number of diverse dFC metrics for investigation
 Turkheimer et al., 2021 ). Complexity science takes an inter-disciplinary
pproach to identify common laws that govern complex systems, bring-
ng together tools from statistical physics, dynamical systems theory,
nformation theory, and other fields ( Holland, 2014 ; Thurner et al.,
018 ; Waldrop, 1993 ). Conceptualizing the brain as a complex sys-
em offers novel perspectives on spontaneous ongoing brain dynam-
cs ( Turkheimer et al., 2021 ). While the exact definition of a complex
ystem continuously evolves ( Ladyman et al., 2013 ; Turkheimer et al.,
021 ), the brain satisfies the four shared properties that characterizes a
ystem as ‘complex’ ( Jensen, 1998 ): 

1 Multiplicity and interdependence: the brain is made of small sub-
units that interact with each other through a vast network of local
and long-range connections. 

2 Nonlinearity: The interactions between neural elements are often
nonlinear, giving rise to rich dynamical phenomena. 

3 Self-organization: The activity of the multiple brain sub-units devel-
ops into structured patterns spontaneously, in the absence of any
form of centralized control mechanisms. 

4 Emergence: The macroscopic behavior of coordinated brain activ-
ity cannot be understood purely in terms of the neuron-to-neuron
interactions. 

This perspective allows us to investigate the brain with the sophis-
icated conceptual machinery of complexity science, complementing
he existing repertoire of neuroimaging analysis techniques with tools
pecifically designed to fully exploit the richness of imaging datasets. 

The existence of distinct methodologies that investigate intrinsic
rain activity either from a dynamical systems perspective, from consid-
rations of the time-evolution of the dynamical system as a stochastic
rocess, or from an information processing perspective, compels us to
onfront the challenging task of piecing together a coherent description
f brain dynamics consistent across the underlying theories. 

Two specific metrics, metastability and integrated information, de-
ived from bottom-up and top-down analysis respectively, hold spe-
ial interest for investigation. Theoretically, metastability has been de-
cribed as a subtle blend of segregation and integration among brain
egions that show tendencies to diverge and function independently,
ith tendencies to converge and function collectively ( Tognoli and
elso, 2014 ). Metastability has been considered a key attribute for com-
utational models exploring mechanisms of brain dynamics and an im-
ortant indicator of healthy brain functioning ( Deco et al., 2017 ). From
n alternative but complementary perspective, integrated information
operationalized as the quantity Φ) has been proposed as a way of quan-
ifying the balance between integration and segregation, and possibly
2 
onsciousness ( Tononi, 2004 ). More recent metrics of integrated infor-
ation, Φ𝑅 , extend this construct to reflect the degree of synergistic

nd transfer information processing across brain areas ( Mediano et al.,
022 ). Therefore, we sought to investigate if these two metrics con-
ributed converging evidence for the processes of integration and segre-
ation that are believed to take place as part of intrinsic brain activity. 

Our objective was to develop a coherent description of brain dynam-
cs consistent across underlying theories. Therefore, rather than investi-
ate metastability and integrated information in isolation, we assessed
hem in combination with metrics originating in complexity-science, as
ell as metrics identified theoretically or empirically as characterizing
r contributing to metastability or integrated information. Whilst the
ethodologies used in this study have already been individually vali-
ated against null models or with surrogate data ( Battaglia et al., 2020 ;
onari et al., 2021 ; Mediano et al., 2022 ), there is a lack of studies
here these methodologies were used to compare performance in the

ame subjects across multiple fMRI acquisitions. Therefore, we set out
o answer the following questions: are the chosen dFC metrics represen-
ative and reliable across multiple fMRI acquisitions? Are these metrics
elated via their ability to capture different aspects of dFC? And finally,
hat are the implications of these relationships? 

To address these questions, we used four resting-state fMRI acquisi-
ions recorded on two consecutive days from 99 healthy unrelated par-
icipants from the Human Connectome Project ( Van Essen et al., 2013 ),
nd considered an anatomical parcellation with and without the cere-
ellar regions. 

aterials and methods 

ata 

All data used in this study was collected for the Human Connec-
ome Project, WU-Minn Consortium (Principal Investigators: David Van
ssene and Kamil Ugurbil; 1U54MH091657) with funding from the six-
een NIH Institutes and Centers supporting the NIH Blueprint for Neuro-
cience Research; and by the McDonell Center for Systems Neuroscience
t Washington University. 

thics statement 

The Washington University institutional review board approved the
canning protocol, participant recruitment procedures, and informed
ritten consent forms, and consented to share deidentified data. 

articipants 

We used the data from the ‘500 subject’ release but restricted our
nalysis to the ‘100 Unrelated Subjects’ (aged 20 to 35 years old, 54
emales ( Glasser et al., 2013 )). A list of employed subject ID numbers
nd associated scan times is provided in Supplementary Table ST1. 

MRI data acquisition and pre-processing 

Each participant underwent four scans of resting-state fMRI (rs-fMRI)
ollected over two experimental sessions (two scans in each session)
hich took place on consecutive days. The datasets acquired from all
articipants in each of the 4 scans are referred to as ‘runs’ 1 to 4. During
ach scan 1200 frames were acquired using a multiband sequence at 2
m isotropic resolution with a repetition time (TR) of 0.72 s over the

pan of 14 min 24 s. Participants were instructed to maintain fixation on
 bright crosshair presented on a dark background in a darkened scan-
ing room. The two scans in each session differed only in the oblique
xial acquisition phase encoding. For the first 6 subjects, the rs-fMRI
uns were acquired using a Right-Left (RL) phase-encoding followed by
 Left-Right (LR) phase-encoding on both days. For the following 94
ubjects, the order of the different phase-encoding acquisitions for the
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s-fMRI runs across days was counterbalanced (RL followed by LR on
ay 1; LR followed by RL on Day 2). 

Data were pre-processed with the HCP’s minimal pre-processing
ipeline, and denoising was performed by the ICA-FIX procedure
 Glasser et al., 2013 ; Griffanti et al., 2014 ; Salimi-Khorshidi et al., 2014 ).
 complete description of the acquisition and pre-processing details may
e found at the HCP website https://www.humanconnectome.org/ .
riefly, fMRI data was gradient-nonlinearity distortion corrected,
igidly realigned to adjust for motion, fieldmap corrected, aligned
o the structural images, and then registered to MNI space
ith the nonlinear warping calculated from the structural im-
ges. ICA-FIX was then applied on the data to identify and re-
ove motion and other artifacts in the timeseries. The result-

ng files provided the baseline for this study (e.g., MNINonLin-
ar/Results/rfMRI_REST1_RL/rfMRI_REST1_RL_hp2000_clean.nii.gz 
rom released HCP data). 

One subject was excluded from the analysis as the image file was
orrupted. 

arcellations 

We parcellated the pre-processed fMRI data by averaging time-
ourses across all voxels for each region defined in the anatomical par-
ellation AAL ( Tzourio-Mazoyer et al., 2002 ) considering all cortical and
ubcortical brain areas including the cerebellum, N = 116 or without
he cerebellum N = 90. We choose the AAL parcellation as it includes
ubcortical and cerebellar regions which are relevant for application of
he methods in future studies with psychiatric cohorts ( Anteraper et al.,
021 ; Cierpka et al., 2017 ; Duan et al., 2015 ; McCutcheon et al., 2019,
020 ). 

andpass filtering 

To isolate low-frequency resting-state signal fluctuations, we band-
ass filtered the parcellated fMRI time-series within 0.01–0.08 Hz us-
ng a discrete Fourier transform (DST) computed with a fast Fourier
ransform (FFT) algorithm in MATLAB. We included frequencies below
.03 Hz, as unpublished data indicate that results obtained in the lower
requency bands are consistent with those found in the 0.01–0.08 Hz
and (see inline Supplementary Figure S1). Additionally, we applied
arson’s empirical rule ( Carson, 1922 ; Pachaud et al., 2013 ) on the an-
lytical signal which was calculated using the Hilbert transform of the
eal signal ( Gabor, 1946 ), to confirm non-violation of the Bedrosian the-
rem for our bandpassed signals (see inline Supplementary Figure S2). 

hase synchronization measures 

We investigated two complementary phase synchronization mea-
ures based on phase and phase difference. Instantaneous phase 𝜃( 𝑡 ) is
btained from the analytical signal. We define phase synchrony (PS)
s the magnitude of the Kuramoto order parameter ( Acebrón et al.,
005 ; Cabral et al., 2011 ; Deco et al., 2017, 2018 ; Shanahan, 2010 ).
his has also been referred to by other authors as Phase Coherence
 Breakspear et al., 2010 ; Váš a et al., 2015 ). For any brain region M of r

arcels at time t , PS is then defined as 

 𝑆 𝑀 

( 𝑡 ) = 

|||⟨𝑒 
𝑖 θ( 𝑟,𝑡 ) ⟩|||, 𝑟 ∈𝑀 

(1)

hase synchrony measures the degree of synchronization across the
rain region M, at time t and is bound between 0 and 1. 

Phase synchrony is distinct from phase coherence (PC) as used in
 Pedersen et al., 2018 ). PC is related to phase difference, is measured as
 1 − |sin (Δ𝜃( 𝑡 ) |), and is bound between 0 and 1. PC was not used in this
tudy. 

We define phase-locking (PL) as the cosine of the relative phase
 Alonso Martínez et al., 2020 ; Cabral et al., 2017 ; Deco et al., 2019 ,
3 
017a; Figueroa et al., 2019 ; Honari et al., 2021 ; Lord et al., 2019 ;
ohryzek et al., 2020 ) 

L ( 𝑛, 𝑝, 𝑡 ) = cos ( Δ𝜃( 𝑛, 𝑝, 𝑡 ) ) 

here 

𝜃( 𝑡 ) = 

(
𝜃( 𝑛, 𝑡 ) − 𝜃( 𝑝, 𝑡 ) 

)
, the phase difference between regions n and p . 

(2) 

hase-locking is a measure of synchronization that preserves positive
nd negative dependence in the data, that is, in-phase locking and anti-
hase locking. Phase locking is bound between − 1 and + 1. 

Phase-locking is distinct from phase locking value (PLV) as used in
 Ponce-Alvarez et al., 2015 ). PLV measures the magnitude (absolute
alue) of the Δθ(t) and is bound between 0 and 1, and was not used
n this study. 

The behavior of phase synchrony and phase-locking between 2 sig-
als is illustrated in Fig. 1 , where the phase of one signal (A) shifts away
rom the phase of a reference signal. 

unctional connectivity through phase-locking 

We estimated functional connectivity (FC) with the nonlinear mea-
ure of phase-locking which may be more suitable than linear mea-
ures such as Pearson correlation for analyzing complex brain dynamics.
pecifically, phase synchronization measures are not affected by ampli-
ude variability between subjects ( Glerean et al., 2012 ), and nonlinear
ethods provide insight into interdependence between brain regions at

oth short and large time and spatial scales allowing the analysis of com-
lex nonlinear interactions across space and time ( Pereda et al., 2005 ;
uian Quiroga et al., 2002 ). From a practical perspective, unlike corre-

ation or covariance measures, phase synchronization can be estimated
t the instantaneous level and does not require time-windowing. When
veraged over a sufficiently long time window, phase-locking values
rovide a close approximation to Pearson correlation, varying within
he same range of values ( Cabral et al., 2017 ; Honari et al., 2021 ). 

Indeed, a variety of phase synchronization measures have been lever-
ged in dFC studies to date. An overview presenting the range of studies,
nd the phase synchronization measure assessed in those studies, is pre-
ented in Supplementary Table ST2. 

Following ( Cabral et al., 2017 ), we first calculated the analytical sig-
al using the Hilbert transform of the real signal ( Gabor, 1946 ). Then,
he instantaneous phase-locking between each pair of brain regions n
nd p was estimated for each time-point t as the cosine difference of the
elative phase as 

𝑃 𝐿 ( 𝑛, 𝑝, 𝑡 ) = cos ( θ( 𝑛, 𝑡 ) − θ( 𝑝, 𝑡 ) ) (3)

hase-locking at a given timepoint ranges between − 1 (regions in anti-
hase) and 1 (regions in-phase). For each subject the resulting iPL was
 three-dimensional tensor of size NxNxT where N is the dimension of
he parcellation, and T is the number of timepoints in the scan. 

EiDA – leading eigenvector dynamic analysis 

To reduce the dimensionality of the phase-locking space for our dy-
amic analysis, we employed the Leading Eigenvector Dynamic Analysis
LEiDA) ( Cabral et al., 2017 ) method. The leading eigenvector V 1 (t) of
ach iPL(t) is the eigenvector with the largest magnitude eigenvalue and
eflects the dominant FC (through phase-locking) pattern at time t. V 1 (t)

s a Nx1 vector that captures the main orientation of the fMRI signal
hases over all anatomical areas. Each element in V 1 (t) represents the
rojection of the fMRI phase in each region into the leading eigenvector.
hen all elements of V 1 (t) have the same sign, this means that all fMRI

hases are orientated in the same direction as V 1 (t) indicating a global
ode governing all fMRI signals. When the elements of V 1 (t) have both
ositive and negative signs, this means that the fMRI signals have differ-
nt orientations, behaving like opposite anti-nodes in a standing wave.

https://www.humanconnectome.org/
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Fig. 1. Two complementary phase synchronization measures for the calculation of dFC metrics. 

Phase synchrony (PS) reflects the degree of synchronization between the two signals, whilst phase-locking (PL), evaluated as the cosine of the relative phase, reflects 

phase alignment and is sensitive to both in-phase and anti-phase relationships between the two signals. 
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his allows us to separate the brain regions into two ‘communities’ (or
oles) according to their orientation or sign, where the magnitude of
ach element in V 1 (t) indicates the strength of belonging to that com-
unity ( Newman, 2006 ). For more details and graphical representation

ee ( Figueroa et al., 2019 ; Lord et al., 2019 ; Vohryzek et al., 2020 ). The
uter product of V 1 (t) reveals the FC matrix associated with the leading
igenvector at time 𝑡 . 

ode extraction 

To identify recurring spatiotemporal modes 𝜓 or phase-locking pat-
erns, we clustered the leading eigenvectors for each run with K-means
lustering with 300 replications and up to 400 iterations for 2–10 cen-
roids considering 116 and 90 (i.e., excluding the cerebellum) anatom-
cal regions. K-means clustering returns a set of K central vectors or
entroids in the form of Nx1 vectors V c . As V c is a mean derived vari-
ble, it may not occur in any individual subject data set. To obtain time
ourses related to the extracted modes 𝜓 𝑘 at each TR we assign the clus-
er number to which V(t) is most similar using the cosine distance. 

ode visualization 

We rendered the centroid vectors V c in cortical space by representing
ach element as a sphere placed at the center of gravity of the relevant
rain region, and scaling the color of the spheres according to the value
f the relevant eigenvector. Regions with similar phase orientation are
olored alike (yellow-to-red for the smallest community and cyan-to-
lue for the largest community), where darker colors (red/blue) indicate
eak contributions and lighter colors (cyan/yellow) indicate stronger

ontributions. We also plot links between the corresponding areas to
ighlight the network formed by the smallest community of brain areas
see Supplementary Figure S5). 

luster representation in voxel space 

To obtain a visualization in voxel space of the spatial modes V c we
rst reduced the spatial resolution of all fMRI volumes from 2mm 

3 to
0mm 

3 to obtain a reduced number of brain voxels (here N = 1821 )
o be able to compute the eigenvectors of the NxN phase-locking matri-
es. The analytic signal of each 10mm 

3 voxel was computed using the
ilbert transform, and the leading eigenvectors were obtained at each

ime point (with size NxT ). Subsequently, the eigenvectors were aver-
ged across all time instances assigned to a particular cluster, obtaining
n this way, for each cluster, a 1xN vector representative of the mean
hase-locking pattern captured in voxel space. 
4 
easures and metrics 

The following sections provide an accessible overview of the mea-
ures and metrics used in this study. Detailed mathematical treatment
nd explanations for all metrics may be found in Supplementary meth-
ds and metrics. Each metric has found application in either theoretical
r empirical studies, or both. Examples of their application may be found
n Supplementary Table ST3. 

etrics derived from phase-locking 

Fractional occurrence of mode 𝜓 𝑘 was calculated as number of time-
oints assigned to mode 𝜓 𝑘 divided by the total number of timepoints.
his measure reflects the proportion of time the fMRI activity patterns
re closer to mode 𝜓 𝑘 than to any other mode 𝜓 ≠𝑘 . Its values are bound
etween 0 and 1. 

Duration of mode 𝜓 𝑘 was calculated as the mean of all consecutive
eriods spent in a particular mode, measured in seconds. 

Reconfiguration speeds were calculated as 1 – correlation between
unctional connectivity ( iPL matrices) at time t and t +1. This measure
haracterizes the time evolution of the phase-locking modes. Low speed
ndicates smooth transitions in phase-locking relationships. Faster speed
ndicates abrupt switching between phase-locking relationships. 

The fractal scaling coefficient 𝛼 derived from detrended fluctuation
nalysis (DFA) characterizes power-law scaling in a time series. DFA 𝛼

alues less than 0.5 indicate non-persistent fluctuations and a return
o the mean. Values equal to 0.5 indicate random fluctuations and an
nderlying process with no memory. Values between 0.5 and 1 indicate
ersistent fluctuations and an underlying process that has memory and
ong-term correlations. 

Following Ton and Daffertshofer (2016), power-law scaling was
ested for linearity using a Bayesian model comparison technique and
he best fit model was selected with Bayesian Information Criterion.
nly subjects that exhibited extended linear power-law scaling were

ncluded in the summary metric of DFA 𝛼. 

etrics derived from phase synchrony 

Empirical metastability studies to date have used pre-defined resting-
tate networks (RSN) extracted with ICA ( Hellyer et al., 2014 ), with net-
ork masks ( Lee et al., 2018 ), or with functional templates ( Lee et al.,
019 ) to represent communities of oscillators for investigation of net-
ork synchrony and metastability. In contrast, we decided to take a
urely data driven approach, using the recurrent modes extracted with
-means clustering to represent communities of oscillators. As we de-
ided to retain 5 recurrent modes (see Results), we therefore have 5
ommunities of oscillators 𝜓 - 𝜓 . Note that the AAL regions are not
1 5 
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onstrained to a single community and so the communities reflect time-
arying coalitions among regions. 

Synchronization was calculated as the time-average of the Kuramoto
rder parameter in each community, which is given by 

 𝜓 ( 𝑡 ) = ⟨𝑒 𝑖𝜃( 𝑟,𝑡 ) ⟩, 𝑟 ∈𝜓 (4)

bove, 𝑍 𝜓 ( 𝑡 ) is a complex value where its magnitude, 𝑆𝑌 𝑁𝐶 𝜓 = |𝑍 𝜓 ( 𝑡 ) |,
rovides a quantification of the degree of synchronization of the com-
unity at each time t, taking values between 1 (for fully synchronized

ystems) and 0 (for fully desynchronized systems) . 
Metastability was calculated as the standard deviation over time of

he Kuramoto order parameter in each community. The mean value of
his measure across communities denoted as global metastability, repre-
ents the overall variability in the synchronization across communities.

Cluster synchronization, or chimerality, was calculated as the vari-
nce over communities of the Kuramoto order parameter at time t . This
etric reveals if some communities cluster together in synchrony whilst

ther communities remain disordered. 
Instantaneous phase coherence across communities was calculated

s the average phase across communities with synchronization values
igher than a synchronization threshold 𝜆 > 0.8 at time t . This measure
epresents the coherence between communities when they are highly
ynchronized internally. Phase coherence coefficient was calculated as
he fraction of time that instantaneous phase coherence occurred. 

Although chimerality reflects the prevalence of cluster synchroniza-
ion, it does not indicate if the system repeatedly visits a small num-
er of chimera configurations, or if the system has a large repertoire of
uch configurations. To quantify the diversity of cluster synchronization,
e calculate the coalition entropy formed at each timepoint t, reported

n bits ( Mediano et al., 2022; Mediano et al., 2016 ; Shanahan, 2010 ;
ildie and Shanahan, 2012 ). 
Integrated information Φ𝑅 ( Mediano et al., 2021 ) was computed

rom 5 binarized time-series, one for each mode extracted through K-
eans clustering. Values were set to 1 if synchronization values were
igher than a coalition threshold 𝜆 > 0.8 at time t . The value for 𝜆 was
hosen based on results from computational studies ( Mediano et al.,
022; Mediano et al., 2016 ) and is identical to the synchronization
hreshold explained earlier. In this study, integrated information in-
icates the degree of synergistic and transfer information processing
ithin the system computed over an integration timescale 𝜏 reported

n bits. 

tatistical analysis 

nterclass correlation coefficient (ICC) 

ICC is a relative metric that is used for test-retest reliability in mea-
urement theory ( Lavrakas, 2008 ). It is generally defined as the pro-
ortion of the total measured variance that can be attributed to within
ubject variation. As such, ICC coefficients may be low when there is
ittle variance between subjects, that is in a homogeneous sample, or
hen the within-subject variance is large ( Xing and Zuo, 2018 ). In this

tudy we use the ICC forms from Shrout and Fleiss (1979) . 
There are many scales for ICC, so for clarity we will use those of

 Landis and Koch, 1977 ): 

• low (0 < ICC < 0.2) 
• fair (0.2 < ICC < 0.4) 
• moderate (0.4 < ICC < 0.6 
• substantial (0.6 < ICC < 0.8) 
• almost perfect (0.8 < ICC < 1) 

We calculated the run reliability of mode 𝜓 extraction with ICC(1,1)
n search of agreement rather than consistency across runs ( Noble et al.,
021 ). For the test-retest assessment of metric consistency over runs,
e used the ICC(3,1) form ( Shrout and Fleiss, 1979 ) as recommended
y ( Koo and Li, 2016 ), which is the equivalent of a 2-way mixed ANOVA
 Li et al., 2015 ). As such, there is an assumption that the data comes from
5 
 normal distribution. When the assumption of normality is violated, it is
ecommended to use non-parametric tests such as permutation testing. 

epeated measures ANOVA 

We performed repeated measures ANOVA on global metrics using
he ranova() function in MATLAB MathWorks R2021b. Greenhouse-
eisser correction was necessary as the assumption of sphericity was
iolated in most cases. We therefore assessed normality of the data with
hapiro-Wilk tests and include the results in inline Supplementary Table
T4. 

As the results indicated non-normal distribution of the data, we de-
ided to replace ICC(3,1) with non-parametric permutation testing. We
lso performed repeated measures ANOVA on the mode-specific met-
ics. It should be noted that for the AAL parcellation that included the
erebellar regions, the order of the modes in run 2 and 4 was adjusted
o match the order in run 1 and 3 for all statistical testing. 

ermutation testing 

We used a non-parametric permutation-based paired t -test to identify
ignificant differences between runs. This non-parametric two-sample
ypothesis test uses permutations of group (run) labels to estimate the
ull distribution rather than relying on the t -test standard distributions.
he null distribution was computed independently for each run. A t -test
as then applied with 1000 permutations to compare runs. 

inear mixed effects modeling 

We used lmerTest ( Kuznetsova et al., 2017 ) in RStudio 2021.09.1
uild 372, with the purpose of building predictive models with both
tandardized and non-standardized metric data that could deal with data
hat was not independent and identically distributed. To investigate the
elationship between integrated information and all other metrics, we
tted a linear mixed-effect model (estimated using REML and nloptwrap
ptimizer) to predict ΦR with standardized metric values. The model
ncluded RUN as random effect (formula: ∼1 | RUN). 95% Confidence
ntervals (CIs) and p-values were computed using the Satterthwaite’s
ethod. 

ode availability statement 

The Matlab and R code developed for this analysis is available at
ithub.com/franhancock/Complexity-science-in-dFC together with the
 phase-locking mode centroids for AAL parcellation in NIFTI and in
atlab format. 

esults 

eliability of dFC measures and metrics 

patial patterns of phase-locking are invariant across fMRI acquisitions 

We first sought to evaluate if the spatiotemporal patterns of phase-
ocking observed in fMRI are representative and stable across multi-
le acquisitions. For this purpose, we compared the spatial patterns
f phase-locking extracted independently for each of the 4 fMRI runs
ecorded from the same 99 participants ( Fig. 2 ). Each mode of phase
ocking 𝜓 𝐾 corresponds to a 1xN vector (with N being the number of
rain areas considered) obtained through K-means clustering of phase-
ocking patterns obtained at every time point in each run. We chose
 = 5 modes according to the silhouette value (Supplementary Fig-
re S3) and in consideration of a previous test-retest study performed
n the same dataset ( Vohryzek et al., 2020 ), and a reproducibility test
tudy on a more extensive dataset with 28 groups of 250 age matched
ubjects ( Abrol et al., 2017 ). We calculated run reliability with inter-
lass correlation coefficient (ICC(1,1)) in search of agreement across
uns ( Noble et al., 2021 ). With N = K90 anatomical non-cerebellar brain
egions defined in the AAL parcellation, the modes extracted indepen-
ently in each run showed almost perfect agreement between runs with
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Fig. 2. Invariant spatiotemporal patterns of phase-locking obtained independently in each of the 4 fMRI runs on the same 99 participants – sagittal view. 

LEiDA was applied separately to the 4 fMRI runs recorded on 2 consecutive days from 99 participants and the centroids obtained from clustering into K = 5 are 

reported here. Each centroid V c (with size 1xN, with N = K116) is represented for each mode in 10 mm voxel space by averaging the eigenvector values over all 

time instances assigned to a particular cluster/mode. The modes were then plotted over a 1mm 

3 MNI T1 image. 

0  

i  

r  

f  

o
 

i  

l  

c  

a  

t  

w  

l  

a  

i  

a  

s  

l  

u  

F
 

t  

o  

l  

t  

S  

c  

s
 

n  

l  

w  

(  

w  

a  

P  

a  

t  

C  

w
 

l  

T  

y

.99 > ICC > 0.97. With the inclusion of cerebellar regions, the reliabil-
ty of spatial patterns showed again almost perfect agreement between
uns with 1 > ICC > 0.94, although the probability of occurrence dif-
ered across runs, altering the order of the modes when sorted by relative
ccupancy. 

The similarity of the 5 cluster centroids 𝜓 𝑘 =1 ,.., 5 across the 4 runs
s clearly visible in Fig. 2 and 3 . To illustrate the patterns of phase re-
ationships between brain regions, the 1xN centroids are rendered in
ortical space together with the associated phase-locking matrices. In
ddition, to visualize the phase-relationships in voxel space, we reduce
he fMRI volumes from 2mm 

3 to 10mm 

3 , resulting in 1821 brain voxels
ithin the MNI brain mask, and compute the eigenvectors of phase-

ocking at each time point. Subsequently, the eigenvectors are aver-
ged across all time points assigned to each cluster, and represented
n sagittal and axial planes overlaying on a 1mm 

3 MNI structural im-
ge. This approach allows visualizing the patterns of phase relation-
hips in voxel space, revealing meaningful functional subsystems over-
apping with resting-state networks described in the literature. ICC val-
es for both 90 and 116 regions are reported in inline Supplementary
igure S4. 

We used the eigenvectors obtained with 116 regions to shed light on
he composition of the extracted modes and their putative membership
6 
f seven cerebral intrinsic functional networks ( Yeo et al., 2011 ) col-
ectively known as resting-state networks (RSN), and connections with
he sub-cortical and cerebellum regions. In inline Supplementary Figure
5 we show the composition of each mode eigenvector color-coded ac-
ording to the RSNs, and the rendering of these eigenvectors in cortical
pace. 

We find that mode 𝜓 1 represents a global mode where the fMRI sig-
als in all regions are aligned in-phase. Mode 𝜓 2 consists of a phase-
ocking pattern where regions associated with the Default Mode Net-
ork (DMN), the Limbic network (LBC), the subcortical hippocampi

SC) regions, and some cerebellum (CB) regions are shifted in phase
ith respect to the rest of the brain. Mode 𝜓 3 comprises regions associ-
ted with the Frontal Parietal Area (FPA), the LBC, the SC Caudate and
utamen, and a number of CB regions. Mode 𝜓 4 comprises of regions
ssociated with the Sensory Motor network (SMT), and the Ventral At-
ention network (VAT), with some contribution from the FPA and the
B regions. Finally, 𝜓 5 is comprised mainly of the Visual network (VIS)
ith significantly lower contributions from SMT, LBC, DMN, and SC. 

Overall, these results show that spatiotemporal patterns of phase-
ocking are representative and stable across multiple fMRI acquisitions.
hey therefore provide a stable basis for the characterization and anal-
sis of our battery of dFC metrics. 
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Fig. 3. Invariant spatiotemporal patterns of phase-locking obtained independently in each of the 4 fMRI runs on the same 99 participants – axial view. 

LEiDA was applied separately to the 4 fMRI runs recorded on 2 consecutive days from 99 participants and the centroids obtained from clustering into K = 5 are 

reported here. Each centroid V c (with size 1xN, with N = 116) is represented for each mode in 10 mm voxel space by averaging the eigenvector values over all time 

instances assigned to a particular cluster/mode. The modes were then plotted over a 1mm 

3 MNI T1 image. 
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lobal metastability was the most stable metric across all runs 

As a second step, we sought to investigate the stability of a series
f global metrics - namely metastability, synchronization, chimera in-
ex, phase-coherence coefficient, coalition entropy, integrated infor-
ation, and typical reconfiguration speed – across different multiple

MRI acquisitions. For this, the values of each metric in four different
uns were compared using a non-parametric permutation-based paired
 -test to identify significant differences. Fig. 4 A shows the bar plots for
ach metric including the mean value and indicators for where sig-
ificant differences were found between the runs. In Fig. 4 B we show
he distribution of the metrics across runs which provides complemen-
ary information on the median and spread of the metric values across
uns. 

There was no statistically significant difference in the measure
f global metastability across the 4 fMRI runs. When the cere-
ellum was excluded, however, global metastability did not show
he same reliability (inline Supplementary Figure S6). The mea-
ures of global synchronization and phase-coherence coefficient were
ound to be reliable across runs 2, 3, and 4. The remaining met-
ics however, showed statistically significant differences across the 4
cquisitions. 
o

7 
igh dynamical and informational complexity across acquisitions of 

esting-state fMRI 

Although a measure of global metastability was found to be stable
cross the cohort of healthy young adults between all runs, this was not
he case for individual subjects. To illustrate this, we plot the temporal
volution of a series of metrics for two scans and chart the global metrics
or each of the 4 scans from one representative subject as illustrated in
ig. 5 . As is evident in Fig. 5 F, the measure for global metastability,
ETA, is lower in RUN 3 than any of the other runs. For comparison

urposes, we include the same information for another subject in inline
upplementary Figure S7. 

ode-specific metrics do not appear representative or stable across runs 

We further defined mode-specific metrics by considering only the
ubsets of brain areas shifted in phase in each spatial mode, and com-
ared their values across the 4 runs. Mode-specific metrics are com-
only used to investigate differences between normal and abnormal

unctional brain activity ( Kottaram et al., 2019 ; Zarghami et al., 2020 ).
sing repeated measures ANOVA, we did not find any mode-specific
etric that was reliable in all 5 modes across all 4 runs when excluding

r including the cerebellar region as shown in Table 1 . 
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Fig. 4. Stability of global metrics across 4 runs. 

(A) The mean values for each metric are shown 

as bar plots. The ∗ ∗ ∗ indicate a statistically signif- 

icant difference between the metric across the as- 

sociated runs where ∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 

0.001, and > ∗ ∗ ∗ p < 0.0001. (B) The distribution of 

the global metrics across runs. META, metastabil- 

ity; SYNC, synchronization; CHI, chimera index; 

PCC, phase-coherence coefficient; H C coalition en- 

tropy; Φ𝑅 , integrated information; SPEED, typical 

reconfiguration speed. 
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We also used a non-parametric permutation-based paired t -test to
nvestigate if these differences were due to 1 idiosyncratic run or if the
ifferences emerged over different runs. The differences remained sta-
istically significant and were present across different runs even after
erforming Bonferroni correction for multiple comparisons across the
 modes, as can be seen in inline Supplementary Figure S8. Notably,
etrics of fractional occurrence and duration of modes - which have

een used for comparisons between conditions studies - were not reli-
ble across 4 acquisitions in the AAL parcellation with or without the
erebellar regions. 
8 
haracterization of the dFC process 

econfiguration speeds in phase-locking space exhibit fractal scaling and 

eviate from Gaussianity 

An unanswered question regarding dFC is whether spatiotemporal
atterns change in a discrete or continuous manner over time. K-means
lustering yields a distinct mode for each timepoint, but this mode is just
he cluster centroid with the shortest distance, and a number of other
odes may also contribute to the resulting spatiotemporal pattern at

ach timepoint. An alternative perspective is to view dFC as a smooth
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Fig. 5. Overview of all metrics in all runs for a representative subject. 

(A) Exemplar snippets from the instantaneous phase synchrony or Kuramoto order parameter time series for each run color-coded to show which mode was dominant 

over time. (B) The same as A but for chimerality or cluster synchronization. (C) The evolution of instantaneous synchrony within each of the color-coded modes. 

(D) The evolution of instantaneous phase-coherence. (E) Mode-specific metrics calculated independently for each of the 4 runs. (F) The values of the global metrics 

across all 4 runs. META, metastability; CHI, chimera index; PCC, phase coherence coefficient; H c, coalition entropy; and Φ𝑅 , integrated information. 
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econfiguration of phase-locking connectivity, and to collapse these re-
ations to a point in the space of possible relations. We can then view the
volution of this point as a stochastic exploration of a high-dimensional
pace. This is a direct adaptation of the reconfiguration speed introduced
n ( Battaglia et al., 2020 ) for phase-locking functional connectivity. 

We computed the reconfiguration speeds ( Fig. 6 A) and fractal scal-
ng characteristics ( Fig. 6 D) of phase-locking dFC. Our initial plan was
o include the Hurst-like exponent 𝛼 derived from detrended fluctua-
ion analysis (DFA 𝛼) ( Peng et al., 1993 ) in our battery of dFC metrics
see Materials and Methods). However, we found that the assumption of
xtended linear power-law scaling was violated in 40–50% of subjects
ig. 6 (B-C). When linear power-law scaling was present, FC fluctuations
howed fractal scaling with DFA 𝛼 > 0.5 indicating that the stochastic re-
9 
onfiguration process in phase-locking space was not random, but dis-
layed long-range correlations and deviated from Gaussianity as shown
n Fig. 6 D. 

The reconfiguration random-walk of dynamic phase-locking matri-
es, or dPL stream , is represented in 3 dimensions in Fig. 7 (using a t-
tochastic Neighbor Embedding algorithm, see Materials and Methods).
he resulting distance preserving non-linear projections in 3 dimensions
f the associated dPL stream (timeseries) are shown with respect to time
left) and with respect to the mode visited (right). The speeds of recon-
guration revealed periods of slow morphing interspersed with sharp
hanges in the configuration of phase-locked connectivity correspond-
ng to the concept of ‘knots and leaps’ in ( Battaglia et al., 2020 ), in
ontrast to unstructured space filling. 
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Table 1 

Repeated measures ANOVA results for mode-specific metrics over 4 fMRI acquisitions in AAL parcellations 

excluding the cerebellar regions (AAL90), and including the cerebellar regions (AAL116). 

OCC, occurrence; META, metastability; SYNC, synchronization; SPEED, typical reconfiguration speed. 

Repeated measures ANOVA for mode-specific metrics Repeated measures ANOVA for mode-specific metrics 

Significant differences Significant differences 

AAL90 AAL116 

Metric Mode F score p value Metric Mode F score p value 

OCC 𝜓 2 F(3294) = 10.570 p < 0.001 OCC 𝜓 1 F(3294) = 7.158 p < 0.001 

OCC 𝜓 4 F(3294) = 5.362 p = 0.001 OCC 𝜓 2 F(3294) = 9.634 p = 0.001 

DURATION 𝜓 1 F(3294) = 6.139 p = 0.001 OCC 𝜓 3 F(3294) = 2.817 p = 0.039 

DURATION 𝜓 2 F(3294) = 3.152 p = 0.025 OCC 𝜓 4 F(3294) = 8.234 p < 0.001 

META 𝜓 5 F(3294) = 7.462 p < 0.001 DURATION 𝜓 1 F(3294) = 7.932 p < 0.001 

SYNC 𝜓 1 F(3294) = 14.466 p < 0.001 META 𝜓 3 F(3294) = 4.262 p = 0.006 

SYNC 𝜓 2 F(3294) = 7.062 p < 0.001 SYNC 𝜓 1 F(3294) = 11.334 p < 0.001 

SYNC 𝜓 3 F(3294) = 9.381 p < 0.001 SYNC 𝜓 2 F(3294) = 5.138 p = 0.002 

SYNC 𝜓 4 F(3294) = 24.355 p < 0.001 SYNC 𝜓 3 F(3294) = 3.537 p = 0.015 

SYNC 𝜓 5 F(3294) = 6.956 p < 0.001 SYNC 𝜓 4 F(3294) = 17.132 p < 0.001 

SPEED 𝜓 1 F(3294) = 9.069 p < 0.001 SYNC 𝜓 5 F(3294) = 85.632 p < 0.001 

SPEED 𝜓 2 F(3294) = 12.065 p < 0.001 SPEED 𝜓 1 F(3294) = 8.552 p < 0.001 

SPEED 𝜓 3 F(3294) = 9.251 p < 0.001 SPEED 𝜓 2 F(3294) = 16.348 p < 0.001 

SPEED 𝜓 4 F(3294) = 8.907 p < 0.001 SPEED 𝜓 3 F(3294) = 3.272 p = 0.022 

SPEED 𝜓 5 F(3294) = 10.805 p < 0.001 SPEED 𝜓 4 F(3294) = 17.662 p < 0.001 

SPEED 𝜓 5 F(3294) = 65.839 p < 0.001 

Fig. 6. dFC reconfiguration speeds and De- 

trended Fluctuation Analysis (DFA). 

(A) Phase-coupling dFC reconfiguration speeds 

were slow across all 4 fMRI acquisitions. (B) Be- 

fore performing DFA we established if subjects 

exhibited extended sections of linear power- 

law scaling in FC fluctuations. Between 50% to 

60% of subjects exhibited ‘genuine’ power-law 

scaling. (C) For the majority of subjects that 

demonstrated linear power-law scaling, DFA 𝛼

was greater than 0.5 which implies the pres- 

ence of persistent fluctuations, long-range cor- 

relations, and deviation from a Gaussian gen- 

eration process. (D) The probability densities 

for DFA 𝛼 for ‘genuine’ subjects in each of the 4 

runs. (E) An example of linear power-law scal- 

ing where the best fit was found to be linear. 

(F) An example of non-linear power-law scal- 

ing. We used FluctuationAnalysis() (Ton and 

Daffertshofer, 2016) to test for linearity and to 

calculate DFA . 
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Overall, these findings are consistent with previous literature
 Battaglia et al., 2020 ) and suggest that spatiotemporal patterns of
hase-locking change in a non-random slow continuous fashion over

ime. t  

10 
elationship between global metrics 

As a next step in our investigation, we sought to investigate how
he various studied global metrics are related to each other between
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Fig. 7. Visualizations of a reconfiguration 

walk in the phase space of leading eigenvec- 

tors. 

(A) We show a distance preserving non-linear 

projection in three dimensions of a subject’s 

dPL stream from a single fMRI scan obtained 

with the t-SNE algorithm. Each point corre- 

sponds to a specific observation of FC(t) and 

the path connecting the points indicates in (A) 

the temporal order in which the different con- 

figurations are visited. (B) The same projection 

but color-coded with the mode assigned to the 

timepoint in the timeseries. 

Fig. 8. Relationships between metrics. 

Correlation coefficients for all metrics in run 

1. Coefficients with X indicate statistical sig- 

nificance with 𝛼 < 0.05. SYNC, synchroniza- 

tion; CHI, chimera index; META, metastability; 

OCC, fractional occurrence of 𝝍 1 ; DURATION, 

duration of 𝝍 1 ; SPEED, typical reconfiguration 

speed; PCC, phase-coherence coefficient; CEN- 

TROPY, coalition entropy; PHI, integrated in- 

formation. 
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ubjects. For this, we calculated the Spearman correlation between all
airs of metrics. As illustrated in Fig. 8 (which corresponds to RUN1),
ost metrics were significantly correlated, with some metrics correlat-

ng more than 90% - revealing relationships that can be more or less
vident given their nature. For instance, it is not surprising that syn-
hrony is highly correlated ( r = 0.84) with the occupancy of the mode
, since the latter represents more time in a mode of global phase co-
erence, while being also highly correlated ( r = 0.92) with the phase
oherence coefficient. Moreover, the occupancy and duration of mode 1
re also highly correlated ( r = 0.92), which can be explained by the fact
hat the more a mode occurs, the more probable it is to be detected on
 consecutive time points. Less obvious, perhaps, are the strong correla-
ions detected between Phase Coherence Coefficient, Coalition Entropy
nd Integrated Information. Moreover, both the Chimera Index (CHI)
11 
nd the reconfiguration speed (SPEED) exhibit negative relationships
ith the other metrics, but the two are not correlated to each other,

ndicating that they are sensitive to complementary dynamical features
f the system. Correlation matrices for runs 2–4 may be found in inline
upplementary Figure S9. 

To further investigate the relationship between integrated informa-
ion and all other metrics, we fitted a linear mixed-effect model to pre-
ict PHI based on the values of SYNC, CENTROPY, and CHI with stan-
ardized metric values. As there appeared to be quadratic structure in
he distribution of the residuals, we investigated each predictor variable
n its quadratic form. SYNC 

2 provided the best model fit and so was re-
ained as a quadratic term. Additionally, the model included random
ntercepts to account for the effect of different fMRI runs. The model’s
xplanatory power related to the fixed effects alone (i.e., its marginal
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Table 2 

Linear mixed-effect regression model - fixed effects. 

Predictor Beta T score p value 

SYNC 2 0.05 t(390) = 3.03 p = 0.003 

CENTROPY 0.87 t(390) = 42.35 p < 0.001 

CHI − 0.11 t(390) = − 5.17 p < 0.001 
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2 ) is 0.85. All predictors in this model were found to be significant,
ith SYNC and CENTROPY displaying positive effects while CENTROPY
isplayed a negative effect as illustrated in Table 2 . 

The quality of the model fit was assessed using performance

 Lüdecke et al., 2021 ) and a visualization of the model checks can
e found in inline Supplementary Figure S10. Additionally, this linear
ixed regression model indicated that there were no random effects due

o RUN as the standard deviation of the random intercept was 1.454e-
6. 

These findings provide unique empirical evidence that dynamical
nd informational complexity are related; and show convergence of ev-
dence from multiple approaches to support the interpretability of these
etrics within neuroscience. 

iscussion 

When conceptualizing the brain as a complex system
 Turkheimer et al., 2021 ) one has a number of theoretical approaches
nd corresponding methodological tools available to assess dynamic
unctional connectivity beyond viewing them as mere time-varying
emporal correlations in fMRI signals. In this work we empirically
nvestigated the relationships between approaches that investigate
ntrinsic brain activity from a dynamical systems perspective, from a
tochastic process view, and from an information-processing perspec-
ive, providing some practical first steps towards the development of
nified accounts of brain function. 

Four main insights can be derived from our results. First, from a
ethodological perspective, phase-locking functional connectivity de-

ived with LEiDA, provides an invariant basis of spatial modes for the
nvestigation of dynamical behavior between brain regions. This invari-
nt basis could be used as a template for future studies providing a
alidated (in terms of test-retest reliability) basis for cross study com-
arisons. These 5 reliable spatiotemporal modes of phase-locking activ-
ty reflect the physics of self-organization ( Haken, 1996 ): that is, these
acroscopic patterned modes are spontaneously created and change
ramatically at critical points, showing how global order can emerge
rom local interactions ( Kelso, 1995 ). 

The patterns detected in this study closely align with those de-
ected in previous published works applying the same LEiDA methods to
atasets in different conditions ( Cabral et al., 2017 ; Farinha et al., 2022 ;
igueroa et al., 2019 ; Lord et al., 2019 ), and more generally to canoni-
al resting-state networks or intrinsic connectivity networks, suggesting
hese are expressions of the same phenomenology. Although the pat-
erns are found to diverge slightly depending on the parcellation, on the
nclusion of subcortical and/or cerebellar areas, on the preprocessing
teps, or on particular characteristics of the cohort, there seems to be a
trong overlap across studies. In addition, we have unpublished results
howing how these patterns of PL depend on the MR acquisition se-
uences (including multiband and in-plane acceleration), showing that
ome sequences may be more sensitive to some patterns than others
work in preparation). 

Second, global metastability was the only representative and stable
etric across a cohort of healthy young adults when the cerebellum

s considered in conjunction with the cortex and subcortex. This may
eem surprising given that the modes themselves were invariant across
canning sessions. However, the modes reflect centroids derived from
-means clustering, and as such represent the center of the cluster. Any
12 
articular instance or realization of a fMRI timeseries will not necessar-
ly reflect these centroids, but will nevertheless have their time-points
ssigned to the mode they are closest to. The disadvantage of such hard
lustering is that each time-point will only be assigned to one mode
hen in fact, the spatiotemporal pattern of the time-point may closely
atch more than one mode. 

In addition to methodological considerations, there may be phys-
ological effects that affect brain activity across runs. Indeed, within-
ndividual changes in resting-state dynamics have been associated with
uctuations in arousal ( Laumann et al., 2017 ), physiological state
 Chang et al., 2013 ; Schneider et al., 2016 ), ongoing conscious expe-
ience ( Gonzalez-Castillo et al., 2021 ) and spontaneous memory replay
 Tambini and Davachi, 2019 ). Systematic differences have also been
ound with time of day ( Orban et al., 2020 ; Vaisvilaite et al., 2021 ).
owever, our results indicate that global metastability is relatively in-

ensitive to these effects. This global metric is therefore a potential can-
idate for neurological markers of effect in intervention studies. 

Indeed, empirical results have shown global metastability to be
igher when the brain was at rest ( Hellyer et al., 2014 ), reduced dur-
ng states of unconsciousness ( Jobst et al., 2017 ), and increased be-
ond the resting-state maximum when the brain was in a psychedelic
tate ( Carhart-Harris et al., 2014 ; Lord et al., 2019 ). In clinical
opulations, global metastability was found to be progressively re-
uced for mild cognitive impairment to Alzheimer’s disease ( Córdova-
alomera et al., 2017 ) and positively correlated with cognitive flexibility
 Hellyer et al., 2015 ). Metastable synchronization of brain subsystems
as also been shown to drive the transient emergence of cluster synchro-
ization, replicating features of resting-state magnetoencephalography
EG ( Cabral et al., 2014 ). Global metastability, is therefore, a reliable

FC metric that has promise for both empirical and computational stud-
es. 

However, as the majority of metrics were not representative across
he same subjects in different acquisitions, they may not be representa-
ive or generalizable to the overall population of healthy young adults.
his nonergodicity challenges the interpretation of cross-sectional study
utcomes and questions the applicability of such designs to study phe-
omena that may be more suitable to investigation of individual life-
rajectories through approaches such as fingerprinting ( Van De Ville
t al., 2021 ). 

The differential effect of including the cerebellum in the calculation
f our dFC metrics is intriguing. The cerebellar regions have been shown
o be associated with the DMN and FPA ( Buckner et al., 2011 ), and to
e active across a range of motor and cognitive tasks including work-
ng memory, cognitive control, social cognition ( King et al., 2019 ) and
motional processing ( Pierce and Péron, 2020 ). Interestingly, it has been
uggested that the cerebellar regions fine-tune limbic-induced synchro-
ization of the cortical regions ( Pierce and Péron, 2020 ) which is con-
istent with our findings that mode 𝜓 3 includes frontal-parietal, limbic,
nd cerebellar regions. This synchronization effect of the cerebellar re-
ions has been neglected to date in dFC studies, but appears to play a
ey role for the reliability of global metastability. 

Third, we sought to find reproducible evidence of convergence from
ultiple methods by investigating the relationship between our di-

ersely derived metrics. The development of a prediction model that
as independent of run and included metrics derived from dynami-

al systems theory, information theory, and information dynamics testi-
es to the neuroscientific interpretability of our results. It also revealed

n empirical data that dynamical and informational complexity are re-
ated, confirming previous computational study findings ( Mediano et al.,
022 ). It is interesting to note that in our regression model, the main
ffect of cluster synchronization was to reduce mean integrated informa-
ion Φ𝑅 . What this suggests is that excessive competition between the
ommunities to create coalitions may lead to predominantly redundant
nformation processing; conversely, the diversity of cluster coalitions
ould be what leads to transfer and synergistic information processing.

ntegrated information - as computed in this study, with the additional
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ubtleties of decomposition and multivariate sources and targets, may
e capturing some elements of conscious processing. Intriguingly, in-
egrated information was not significantly predicted by metastability,
lthough moderate positive correlations between the two metrics were
ound in all 4 runs. Indeed, global metastability could be associated with
omeostasis, reflecting a healthy regulation of tendencies for integra-
ion and segregation. Metastability can be viewed as providing the op-
ortunity for the system to engage in cluster synchronization resulting
n segregation of the communities. This dynamic segregation feature of
he system appears to be complementary to the speed of changes in FC,
nd the metrics sensitive to these features exhibit negative relationships
ith all other metrics. 

Taking metrics derived from dynamical systems theory and stochas-
ic processes yields complementary insights into the dynamical com-
lexity of brain functioning. However, not all metrics revealed findings
onsistent with previous literature. It is not unexpected to find periods
f high phase coherence across communities in the global mode, but it
ould be expected to find CTC-like channels of communication when
ther modes are dominant. It may be that the synchronization thresh-
ld 𝜆 = 0.8 was too high to allow for delays in phase synchronization
etween remote communities. Indeed, when the threshold was set to
= 0.7, periods of high phase coherence across communities were also

ound in other modes as can been seen in inline Supplementary Figure
11. 

Computational models play a crucial role in neuroscience either for
redicting phenomenon or for replicating phenomenon observed in em-
irical data. In this study we included metrics from both empirical data
nd computational modeling, and have unveiled relationships that will
equire a fundamental review of the underlying theoretical and mathe-
atical concepts for neuroscientific interpretation. 

Fourth, and finally, from describing brain behavior from the per-
pective of a stochastic process, we have provided tentative confirma-
ory results that the dFC process changes in a slow, non-random man-
er. It must be noted that we used phase-locking functional connectivity
ather than temporal correlation as in the original application of this in-
ovative methodology ( Battaglia et al., 2020 ). Our non-linear measures
f dynamic phase-locking behaved differently than linear correlations.
espite this difference, we were still able to show in the majority of

ubjects, that spatiotemporal patterns of phase-locking change in a con-
inuous and non-random manner, exhibiting long-range temporal corre-
ations, indicating the presence of memory. 

Taken together, these results are congruent with complex systems
heory ( Turkheimer et al., 2021 ) in that phase-relationships in fMRI of
he resting state brain exhibit: 

• Invariant spatiotemporal patterns that are indicative of self-
organized processes ( Haken, 1996 ). 

• Nonergodicity in that dFC metrics are in general, not representative
across samples ( Turkheimer et al., 2021 ). 

• Diversity in cluster synchronization ( Turkheimer et al., 2021 ). 
• Fractal scaling in the continuous change of functional connectivity

( Battaglia et al., 2020 ). 

imitations and future research 

A number of limitations that should be considered when evaluating
he findings. Starting with modes, we found near perfect ICC agreement
f all 5 spatiotemporal phase-locking modes across all 4 runs. However,
CC is a relative metric and the large between-region differences may
ias a high ICC value in the absence of genuinely small within-region
ifferences. However, we achieved similar results with Pearson correla-
ion. 

Another possible limitation of this study is that in contrast to previ-
us studies of metastability, we defined the communities of oscillators
irectly from the phase-locking data and not from intrinsic connectiv-
ty networks. Our so-derived communities are not distinct, specifically
13 
ode 𝜓 1 comprises all other modes. This may be a violation of assump-
ions for calculating some metrics but we believe that it is more represen-
ative of what may actually be happening in the brain, that is, coalitions
ransiently forming between phase-related communities. 

Moving on to communities, previous investigations of Φ𝑅 in fMRI
ata have used a continuous model to compute the relevant informa-
ion theoretic variables ( Luppi et al., 2022 ). In this study we adopted
he discrete data model which has been used in computational models
f weakly coupled Kuramoto oscillators ( Mediano et al., 2022; Mediano
t al., 2016 ). We computed Φ𝑅 for an integration timescale from 1 to
00 TRs and retained the max Φ𝑅 obtained as indicative of integrated
nformation for a specific subject in a specific run. Although there is
nformation in the integration timescale that yielded this Φ𝑅 

𝑚𝑎𝑥 
, a max-

mum statistic test ( Novelli et al., 2019 ) would be required before any
nferences may be drawn. 

We note that there are a number of differences between our findings
nd those of ( Battaglia et al., 2020 ). Our stochastic walks were based
n instantaneous phase-locking and not on smoothed sliding-window
emporal correlation. We used a parcellation with 116 rather than 68
natomical regions which influences the resulting speeds, and poten-
ially the power-law scaling and fluctuation characteristics. We also did
ot pool our data as we had sufficient datapoints (1198 TRs) for our
alculations. Unlike Battaglia et al. we found that between 40 and 50%
f the HCP subjects exhibited a loss of linearity in power-law scaling in
ny particular run. In fact, just 7 subjects showed ‘genuine’ power-law
caling over the 4 runs. In a previous study investigating fractal scaling
n phase synchronization, fluctuations were averaged over all subjects
efore determining the scaling component 𝛼 ( Daffertshofer et al., 2018 )
otentially obscuring loss of linearity in some individual subjects. The
ack of linear power-law scaling in individual subjects has been noted be-
ore ( Botcharova, 2014 ). We did not investigate the reasons for this lack
r loss of linearity although there have been suggestions that this may be
ue to periodic trends ( Hu et al., 2001 ), non-stationarities ( Chen et al.,
002 ) or non-linear transformations ( Chen et al., 2005 ). Indeed, it has
ecently been reported that different RSNs exhibit different degrees of
on-stationarity ( Guan et al., 2020 ). unraveling the reasons for loss of
inearity is beyond the scope of the present paper, but merits future
tudy. 

We did not develop any null models to test the validity of the
ethodologies employed which may be considered a weakness of this

tudy. However, each of these methodologies has already been vali-
ated against null models or with surrogate data ( Battaglia et al., 2020 ;
onari et al., 2021 ; Mediano et al., 2022 ). In contrast, there have been

ew studies that used these methodologies to compare performance
cross fMRI realizations. 

We have just started to explore the relationships between metrics
rom different conceptualizations of brain functioning. It is clear that
here are a number of possible avenues for future research arising from
his study. An investigation into the gender specificity of the 5 invari-
nt modes warrants further investigation. Indeed, we found that the
nter-class correlation of mode 5 between female and male subjects
ICC = 0.89) was lower than the that between runs (ICC = 0.94). This
ndicates that there was more variance in mode 5 between genders
han between runs (see inline Supplementary Figure S12). Another as-
ect worth investigating is the behavior of the metrics in narrow fre-
uency bands. An initial comparison of global metastability and syn-
hrony across 5 frequency bands between 0.01 and 0.08 Hz indicates
hat the behavior may indeed differ (see inline Supplementary Figure
13). A deeper investigation of power-law linearity differences between
ubjects and runs for reconfiguration speeds could reveal interesting
rait or state correlations. Understanding the relationships between the
etrics in general, and with respect to integrated information specif-

cally, poses a challenging task. unraveling these relationships, poten-
ially with computational models, may provide novel insight into the
echanisms and dynamics of functional connectivity. Finally, apply-

ng this battery of metrics to longitudinal or individual life-trajectories
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ould uncover novel relationships that have evaded detection with sin-
le methodologies. 

oncluding remarks 

Neuromarkers need to demonstrate reliability and interpretability
efore introduction into a clinical environment. A measure of global
etastability, a universal phenomenon across multiple conceptualiza-

ions of intrinsic brain activity, was found to be the most represen-
ative and stable across multiple fMRI acquisitions of the same sub-
ects. This nonergodicity challenges the use of cross-sectional study de-
igns for dFC. Using concepts and tools from complexity science we
ave described the metastable behavior of fMRI resting-state activity
nd our findings are congruent with complex system theory. The inter-
elationships between metrics derived from dynamical systems theory,
nformation theory, and information dynamics highlight the simultane-
us and balanced tendencies for functional segregation and global inte-
ration in the healthy brain. Our battery of metrics may one day help
o understand why this balance is lost in psychiatric disorders, or how
harmacological interventions can affect this balance. 
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