The association between apelin polymorphisms and hypertension in China: A meta-analysis

j<u>raas</u>

Journal of the Renin-Angiotensin-Aldosterone System January-March 2019: 1–12 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1470320319827204 journals.sagepub.com/home/jra

Tianyi Wang^{1*}, Conghe Liu^{1*} Lili Jia¹ and Jun Ding²

Abstract

Introduction: Apelin plays an important part in regulating blood pressure, metabolism, and the development of cancer. Recent studies have investigated the association of apelin polymorphisms and hypertension risk, but no meta-analysis has been conducted.

Materials and methods: Five studies were included in this meta-analysis in total. The pooled odds ratio and its corresponding 95% confidence interval were calculated by the random-effect model.

Results: The overall pooled odds ratio of the distribution of rs3761581 G allelic frequency was 0.90 (95% confidence interval: 0.82–1.00). In female participants, the pooled odds ratio of the frequency of G allele was 1.01 (95% confidence interval: 0.89–1.14). For males, the pooled odds ratio of the frequency of G allele was 0.69 (95% confidence interval: 0.46–1.03). As for rs56204867, the overall pooled odds ratio of the frequency of G allele was 1.09 (95% confidence interval: 0.86–1.37). In females, the pooled odds ratio of the frequencies of the G allele was 1.05 (95% confidence interval: 0.86–1.29). In male participants, the frequency of G allele did not show significant correlation with hypertension (pooled odds ratio=1.21 95% confidence interval: 0.81–1.79).

Conclusion: This meta-analysis revealed that there was no correlation between apelin polymorphisms, rs3761581 and rs56204867, and the prevalence of hypertension.

Keywords

Apelin, essential hypertension, single nucleotide polymorphism, rs3761581, rs56204867, meta-analysis

Date received: 10 August 2018; accepted: 17 December 2018

Introduction

Essential hypertension (EH) is regarded as a clinical syndrome characterized by increased blood pressure (systolic blood pressure (SBP)≥140 mm Hg/diastolic blood pressure (DBP)≥90 mm Hg) induced by environmental factors and genetic factors, which often leads to damage or dysfunction of other organs. Blood pressure can be ameliorated under the modulation of hypertensive risk factors, such as the lipid and glucose levels. The EPIC-Norfolk study suggested that 93% of the cardiovascular risk could be decreased by hemoglobin A1c (HbA1c) and cholesterol intervention, when body mass index (BMI), diet, physical activity, smoking activity were under control. On the other hand, genetic factors provide a promising future for the prediction of the prevalence of hypertension, since an increasing number of genes are considered hypertension-susceptible genes, including angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), and the apelin/ APJ system.^{1–4} Deeper understanding of the role of these genes in mediating hypertension or their correlation with hypertension may provide a promising strategy for hypertension prevention.

Apelin is an endogenous ligand of an orphan G protein-coupled receptor APJ. Its encoding apelin gene (APLN) is located on chromosome Xq25-26.1.⁵ The apelin/APJ system may play an important part in many

²China-Japan Union Hospital, Jilin University, Changchun, Jilin, China

*These two authors contributed equally to this study.

Corresponding author:

Jun Ding, China-Japan Union Hospital, Jilin University, 829 Xinmin Street, Changchun, 130021, Jilin, China. Email: jiall@jlu.edu.cn

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

¹NHC Key Laboratory of Radiobiology (Ministry of Health), Jilin University, P.R. China

physiological or pathophysiological conditions, including blood pressure,⁶ angiogenesis,⁷ energy metabolism,⁸ and cardiac contractility.9 The apelin/APJ system may play an important role in both vasoconstriction and vasodilation and, thus, regulating blood pressure. However, its detailed mechanism in regulating hypertension remains contradictory and elusive. Multiple studies investigated the association of apelin-APJ polymorphisms with the prevalence of hypertension in the population of various ethnicities. These single nucleotide polymorphism (SNP), loci include rs3115757, rs56204867, rs7119375, rs3761581, rs909656, rs5975126, rs10501367, rs11544374. rs2235306, and rs2235307 of apelin or APJ.^{4,10–19} And the results were debatable among different regions and genders.

Considering the limited studies of other apelin/APJ system SNPs, this study targeted rs3761581 and rs56204867. As for the apelin SNP locus rs3761581, seven studies were identified. One study was based on the population of Mexican-Mestizo ethnic origin and did not find any significant correlation of this SNP locus with the prevalence of hypertension (p=0.1707).¹⁰ Another study based on the Indian population failed to observe an association of rs3761581 with the hypertensive risk as well.¹¹ However, among the Chinese Han population, the results were conflicting. In the Southern Chinese population (Fujian), the T allele of rs3761581 was correlated with the higher prevalence of hypertension (odds ratio (OR)=1.949, 95% confidence interval (CI): 1.205-3.154, p=0.007 for males; OR=2.000, 95% CI: 1.327-3.013, p=0.001 for females).¹² Zhu et al. demonstrated the association of rs3761581 with hypertension as well (P=0.008 for males, P=0.009 for females).¹⁵ One study which recruited participants from Eastern China (Shanghai) reported an association of the T allele of this SNP locus in male participants with hypertension (p=0.0156), which was absent in female counterparts (p=0.3882).¹⁶ While among the Northern Chinese population (Heilongjiang), there was no significantly different hypertension risk between different genotypes (p=0.809 for male, p=0.684 for female).¹³ Although Li et al. included rs3761581 in their study, they did not discuss its association with hypertension since the data did not satisfy the Hardy-Weinberg Equilibrium (HWE).20

For rs56204867, seven studies were identified. The study based on Mexican-Mestizo ethnic origin demonstrated the lack of association of this SNP with hypertension (p=0.0769).¹⁰ In the Southern Chinese population (Fujian), the C allele was found to be associated with hypertension in males (OR=2.410, 95% CI: 1.490–3.891, p<0.001) and females (OR=2.052, 95% CI: 1.213–3.470, p=0.007).¹² Another study based on the Southern Chinese population also reported the association of rs56204867 and hypertension in males (p<0.001).¹⁵ One study based on Eastern China (Shanghai) population did not find a significant relationship of rs56204867 and hypertension in

both males (p=0.07) and females (p=0.4621).¹⁶ In the Northeastern Chinese population (Heilongjiang), one study demonstrated the significant association between rs56204867 and hypertension in both females (p=0.001) and males (p=0.001),²⁰ which was absent in another study (p=0.922 for males and p=0.251 for females).¹³

Considering the conflicting results of these studies regarding the association of apelin polymorphisms and hypertension in the Chinese population, this meta-analysis was performed to obtain a more comprehensive and precise result. Since meta-analysis of the association between apelin and hypertension has never been reported yet, our study is the first to focus on this correlation.

Materials and methods

Publication search and inclusion criteria

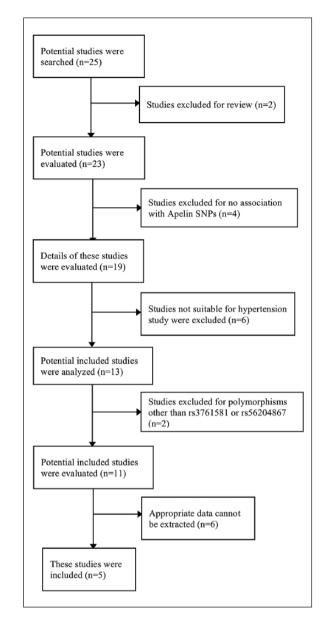
The online databases including PubMed, Web of Science, Embase, China Biological Medicine Database, China National Knowledge Infrastructure, and WanFang were used for the publication search. The search process was conducted by two authors independently. Although several studies written in Chinese were identified, those studies were excluded since the participants in those studies have been included in other published articles. The medical subject heading we used was "hypertension," "apelin or APLN," and "polymorphism or mutation or variant." The studies were included based on the following inclusion criteria: (a) the studies demonstrated the association of apelin or APLN polymorphisms with hypertension; (b) the hypertension diagnosis was SBP≥140 mm Hg, DBP≥90 mm Hg. The presence of secondary hypertension was excluded.

Data extraction

Based on the inclusion criteria and after HWE evaluation, three studies regarding rs3761581 and five studies about rs56204867 were included in this study. Data were extracted from these studies, including the author, publication year, region, the design of the study (whether casecontrol study or cross-sectional study), the sample size of hypertensive group and control group, the source of sample, and the number of genotypes or alleles in female and male participants.

Statistical analysis

The ORs and the corresponding 95% CI were used to evaluate the association of apelin polymorphism and hypertensive risk. The Review Manager 5.3 software (The Cochrane Collaboration, Oxford, UK) was used for meta-analysis. The random-effect model (DerSimonian and Laird's method) was applied for meta-analysis.²¹ Chi-squarebased Q-test was performed to evaluate the heterogeneity between these studies. The heterogeneity was considered significant when p < 0.10. I^2 was used for heterogeneity evaluation as well. The assessment of heterogeneity using l^2 statistics was based on following criteria: $l^2=$ 0-25%, no heterogeneity; $I^2=25-50\%$, moderate heterogeneity; 12=50-75%, large heterogeneity; 12=75-100%, extreme heterogeneity.²² The significance of the pooled OR was evaluated by the Z-test. The result with a p < 0.05was significant. The funnel plot was applied to evaluate the publication bias. The asymmetry of the funnel plot was assessed by Egger's test. The HWE was tested by Fisher's exact test. As for the sensitivity analysis, we deleted one study each time and investigated if there was any modulation of pooled ORs and heterogeneity. The Chi-square test was used for comparison of frequencies of mutated alleles between different groups. All the statistical analyses were performed through Review Manager 5.3, Stata 15.0 software (Stata Corporation, College Station, Texas, USA), and SPSS version 23.0 (SPSS, Inc., Chicago, Illinois, USA). All p values were two-sided.


Results

The flow of included studies

According to our search strategy, 25 potential studies were searched. Two review articles were excluded.23,24 Four studies not associated with apelin polymorphisms were excluded.^{25–28} Six studies not suitable for hypertension study were excluded.14,19,25,29-33 Two studies only included other apelin polymorphisms were excluded.^{18,19} Six studies were excluded, from which appropriate data cannot be extracted.^{4,10,11,15,34,35} Among excluded studies, although two studies based on the Indian population and Mexican-Mestizo ethnic origin were identified, these two studies were excluded because of limited sample size and low frequency of mutated alleles, the OR value of which cannot be estimated.^{10,11} The study of Zhu et al. was excluded since it was based on the same participants as the study of Huang et al.^{12,15} As for rs3761581, the study of Li et al. was excluded considering its dissatisfaction of HWE.20 All articles included possible confounding factors for hypertension, such as the BMI, age, low-density lipoprotein (LDL), and high-density lipoprotein (HDL). This flow of included studies was demonstrated in Figure 1.

Study characteristics

The characteristics of the included studies are shown in Table 1 and Table 2. In three studies regarding the rs3761581, the participants were from Southern, Eastern, and Northeastern China, respectively. Two of these studies were case-control studies and one was a cross-sectional study. Two were population-based and one was hospital-based. Among the five studies about rs56204867, two

Figure 1. The flow diagram of studies included for apelin polymorphisms and hypertensive risk meta-analysis. SNP: single nucleotide polymorphism.

studies included participants in Northeastern China, two studies in Eastern China and one study in Southern China. One study was a cross-sectional study, while others were case-control studies. Three were population-based, while two were hospital-based.

Description of data

Since the apelin (APLN) gene locates at the X chromosome, the data were analyzed separately after dividing into two groups by sex. For rs3761581, the frequency of the G allele was 36.2% in the female hypertension group and 38.4% in normal counterparts (p=0.075). The prevalence

First author	Year	Region	Study design	Sample size (EH/	Source of samples	Genot	ypes in fe	male	Allele: male	s in
				control)		TT	TG	GG	т	G
Huang ¹²	2016	Fujian Southern China	Cross- sectional	556/475	Population- based	220	305	108	246	152
Li ¹³	2016	Heilongjiang Northeastern China	Case- control	650/645	Population- based	289	245	75	410	276
Niu ¹⁶	2010	Shanghai Eastern China	Case- control	969/980	Hospital- based	408	401	155	625	360

Table I. The characteristics of the studies regarding the association of rs3761581 and hypertension.

EH: essential hypertension.

Table 2. The characteristics of the studies regarding the association of rs56204867 and hypertension.

First author	Year	Region	Study design	Sample size (EH/	Source of samples	Genor female	types in e		Allele: male	s in
				control)		AA	AG	GG	A	G
Huang ¹²	2016	Fujian Southern China	Cross- sectional	556/475	Population- based	242	283	108	241	157
Li ¹³	2016	Heilongjiang Northeastern China	Case- control	650/645	Population- based	280	260	69	455	231
Niu ¹⁶	2010	Shanghai Eastern China	Case- control	969/980	Hospital- based	617	246	101	744	241
Li ²⁰	2015	Heilongjiang Northeastern China	Case- control	1009/756	Hospital- based	347	385	78	646	309
Jia ¹⁷	2015	Jiangsu Eastern China	Case- control	222/250	Population- based	125	88	17	183	59

EH: essential hypertension.

of the TT/TG/GG genotype was 42.7%/40.5%/16.9% in hypertensive patients and 40.3%/46.2%/13.5% in normal participants. In male participants, the frequency of G allele in hypertensive participants and control group was 34.1% and 41.7%, respectively (p < 0.001). For rs56204867, the frequency of the G allele was 32.0% in female patients and 29.6% in normal counterparts (p=0.038). The prevalence of the AA/AG/GG genotype was 48.5%/38.8%/12.6% in hypertensive patients and 50.9%/38.9%/10.2% in normal participants. In male participants, the frequency of the G allele in hypertensive patients and control group was 32.3% and 28.6%, respectively (p=0.020).

Meta-analysis result

As for the genetic variant rs3761581 of apelin, 2175 hypertensive patients and 2100 normal participants were recruited. The HWE was tested and evaluated for the control group in included studies. No study was found to be deviated from the HWE (data not shown). As shown in Figure 2 and Table 3, the pooled OR of the distribution of G allelic frequency was 0.90 (95% CI: 0.82–1.00), regardless of sex. The results of heterogeneity comparison indicated that these studies were not significantly different (p=0.61, P=0%). The difference between the hypertension group and the control group was not significant as well (p=0.05). In female participants, the frequency of the G allele in hypertensive patients (36.2%) was not significantly different than that in normal counterparts (38.4%) (p=0.075). The pooled OR of the frequency of the G allele was 1.01 (95% CI: 0.89-1.14) (Figure 2 and Table 3). The heterogeneity comparison did not exhibit a significant difference between these studies (p=0.49, $I^2=0\%$). Moreover, as was indicated in the overall effect, the difference between the hypertension group and normal counterparts was not significant as well (p=0.89). Under the dominant model of inheritance, the pooled OR of GG+TG/TT value was 0.84 (95% CI: 0.56-1.25). Large heterogeneity was observed in this comparison (p=0.006, P=81%). There was no significant relationship between GG+TG/TT and the prevalence of hypertension (Z=0.86, p=0.39) (Figure 2 and Table 3). The recessive model of inheritance was also evaluated in female subjects. The result indicated the lack of significant association of GG/TT+TG and hypertension (pooled OR=1.34 95% CI: 0.73-2.48, Z=0.94 (p=0.35)), with high heterogeneity among studies (p=0.003, P=83%)

	Hyperten		Normoter			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 G vs T							
Wenquan Niu 2010	521	1442	550	1471	44.9%	0.95 [0.81, 1.10]	•
Guofeng Li 2016	334	978	337	926	28.8%	0.91 [0.75, 1.09]	•
Feng Huang 2016	362	939	311	725	26.2%	0.84 [0.69, 1.02]	-
Subtotal (95% CI)		3359		3122	100.0%	0.90 [0.82, 1.00]	•
Total events	1217		1198		.2		
Heterogeneity: Tau ²				= 0.61);	$I^{*} = 0\%$		
Test for overall effect	:: Z = 1.94 (P = 0.05)				
1.1.2 Female G vs T							
Wenguan Niu 2010	358	946	353	982	44.5%	1.08 [0.90, 1.31]	•
Guofena Li 2016	206	656	189	562	26.4%	0.90 [0.71, 1.15]	-
Feng Huang 2016	315	766	206	500	29.1%	1.00 [0.79, 1.25]	+
Subtotal (95% CI)		2368			100.0%	1.01 [0.89, 1.14]	•
Total events	879		748				
Heterogeneity: Tau ² :	= 0.00; Chi ²	= 1.41	df = 2 (P	= 0.49);	$I^2 = 0\%$		
Test for overall effect	: Z = 0.14 (P = 0.89))				
1.1.3 Female GG+TC		470	0.75	401		1 15 10 00 1 401	
Wenquan Niu 2010	281	473	275	491	35.5%	1.15 [0.89, 1.48]	
Guofeng Li 2016	167	328	153	281	32.8%	0.87 [0.63, 1.19]	
Feng Huang 2016 Subtotal (95% CI)	231	383 1184	182	250	31.7% 100.0%	0.57 [0.40, 0.80] 0.84 [0.56, 1.25]	
Total events	679	1104	610	1022	100.078	0.04 [0.50, 1.25]	\bullet
Heterogeneity: Tau ² :		2 - 10 3		- 0 006	$31 \cdot 1^2 = 81$	8	
Test for overall effect				- 0.000	<i>)</i> , 1 = 01	1/0	
			.,				
1.1.4 Female GG vs	TT+TG						
Wenquan Niu 2010	77	473	78	491	35.7%	1.03 [0.73, 1.45]	
Guofeng Li 2016	77 39	328	78 36	281	32.2%	1.03 [0.73, 1.45] 0.92 [0.57, 1.49]	
Guofeng Li 2016 Feng Huang 2016		328 383		281 250	32.2% 32.1%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30]	
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% Cl)	39 84	328	36 24	281 250	32.2%	0.92 [0.57, 1.49]	
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events	39 84 200	328 383 1184	36 24 138	281 250 1022	32.2% 32.1% 100.0%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48]	
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ²	39 84 200 = 0.24; Chi ²	328 383 1184 = 11.9	36 24 138 8, df = 2 (F	281 250 1022	32.2% 32.1% 100.0%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48]	∓ ◆
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events	39 84 200 = 0.24; Chi ²	328 383 1184 = 11.9	36 24 138 8, df = 2 (F	281 250 1022	32.2% 32.1% 100.0%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48]	∓ ◆
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ²	39 84 200 = 0.24; Chi ²	328 383 1184 = 11.9	36 24 138 8, df = 2 (F	281 250 1022	32.2% 32.1% 100.0%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48]	∓ ◆
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² Test for overall effect 1.1.5 Male G vs T	39 84 200 = 0.24; Chi ² t: Z = 0.94 (328 383 1184 = 11.9	36 24 138 8, df = 2 (F	281 250 1022 P = 0.003	32.2% 32.1% 100.0% 3); I ² = 83	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48]	* *
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² Test for overall effect 1.1.5 Male G vs T Wenquan Niu 2010	39 84 200 = 0.24; Chi ²	328 383 1184 P = 0.35	36 24 138 8, df = 2 (F	281 250 1022	32.2% 32.1% 100.0%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48] %	* *
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² Test for overall effect 1.1.5 Male G vs T	39 84 200 = 0.24; Chi ² t: Z = 0.94 (163	328 383 1184 (P = 0.35) 496	36 24 138 8, df = 2 (F 5) 197	281 250 1022 9 = 0.003	32.2% 32.1% 100.0% 3); I ² = 83 36.5%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48]	+ + +
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² Test for overall effect 1.1.5 Male G vs T Wenquan Niu 2010 Guofeng Li 2016	39 84 200 = 0.24; Chi ² t: Z = 0.94 (163 128	328 383 1184 (P = 0.35) 496 322	36 24 138 8, df = 2 (F 5) 197 148	281 250 1022 P = 0.003 489 364 225	32.2% 32.1% 100.0% 3); l ² = 83 36.5% 34.5%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48] % 0.73 [0.56, 0.94] 0.96 [0.71, 1.31]	
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² - Test for overall effect 1.1.5 Male G vs T Wenquan Niu 2010 Guofeng Li 2016 Feng Huang 2016	39 84 200 = 0.24; Chi ² t: Z = 0.94 (163 128	328 383 1184 (P = 0.35) 496 322 173	36 24 138 8, df = 2 (F 5) 197 148	281 250 1022 P = 0.003 489 364 225	32.2% 32.1% 100.0% 3); l ² = 83 36.5% 34.5% 29.1%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48] % 0.73 [0.56, 0.94] 0.96 [0.71, 1.31] 0.43 [0.28, 0.65]	
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² - Test for overall effect 1.1.5 Male G vs T Wenquan Niu 2010 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI)	39 84 200 = 0.24; Chi ² t: Z = 0.94 (163 128 47 338	328 383 1184 P = 0.35 P = 0.35 496 322 173 991	36 24 138 8, df = 2 (f 5) 197 148 105 450	281 250 1022 ? = 0.003 489 364 225 1078	32.2% 32.1% 100.0% 3); l ² = 83 36.5% 34.5% 29.1% 100.0%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48] % 0.73 [0.56, 0.94] 0.96 [0.71, 1.31] 0.43 [0.28, 0.65] 0.69 [0.46, 1.03]	
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² Test for overall effect 1.1.5 Male G vs T Wenquan Niu 2010 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events	39 84 200 = 0.24; Chi ² t: Z = 0.94 (163 128 47 338 = 0.10; Chi ²	328 383 1184 2 = 11.90 (P = 0.35 496 322 173 991 2 = 9.30,	36 24 138 8, df = 2 (F 197 148 105 450 df = 2 (P	281 250 1022 ? = 0.003 489 364 225 1078	32.2% 32.1% 100.0% 3); l ² = 83 36.5% 34.5% 29.1% 100.0%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48] % 0.73 [0.56, 0.94] 0.96 [0.71, 1.31] 0.43 [0.28, 0.65] 0.69 [0.46, 1.03]	* * * *
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² - Test for overall effect 1.1.5 Male G vs T Wenquan Niu 2010 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events	39 84 200 = 0.24; Chi ² t: Z = 0.94 (163 128 47 338 = 0.10; Chi ²	328 383 1184 2 = 11.90 (P = 0.35 496 322 173 991 2 = 9.30,	36 24 138 8, df = 2 (F 197 148 105 450 df = 2 (P	281 250 1022 ? = 0.003 489 364 225 1078	32.2% 32.1% 100.0% 3); l ² = 83 36.5% 34.5% 29.1% 100.0%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48] % 0.73 [0.56, 0.94] 0.96 [0.71, 1.31] 0.43 [0.28, 0.65] 0.69 [0.46, 1.03]	
Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² - Test for overall effect 1.1.5 Male G vs T Wenquan Niu 2010 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events	39 84 200 = 0.24; Chi ² t: Z = 0.94 (163 128 47 338 = 0.10; Chi ²	328 383 1184 2 = 11.90 (P = 0.35 496 322 173 991 2 = 9.30,	36 24 138 8, df = 2 (F 197 148 105 450 df = 2 (P	281 250 1022 ? = 0.003 489 364 225 1078	32.2% 32.1% 100.0% 3); l ² = 83 36.5% 34.5% 29.1% 100.0%	0.92 [0.57, 1.49] 2.65 [1.63, 4.30] 1.34 [0.73, 2.48] % 0.73 [0.56, 0.94] 0.96 [0.71, 1.31] 0.43 [0.28, 0.65] 0.69 [0.46, 1.03]	

Figure 2. Combined forest plots of hypertension associated with the apelin gene (APLN) single nucleotide polymorphism (SNP) rs3761581. Cl: confidence interval; EH: essential hypertension.

(Figure 2 and Table 3). For males, the overall comparison of the G allele and T allele indicated the lack of association of this variant with hypertension risk (pooled OR=0.69, 95% CI: 0.46–1.03, p=0.07) (Figure 2 and Table 3). The heterogeneity was significant as well (p=0.010, P=78%).

As for rs56204867, 3458 hypertensive patients and 3054 normal counterparts were included in this study. No study was found to be deviated from HWE (data not shown). The overall comparison between the G and A allele in predisposing hypertension showed no significant difference (pooled OR=1.09 95% CI: 0.86–1.37, p=0.49), with high heterogeneity (p<0.0001, P=85%) (Figure 3 and Table 4). In females, the pooled OR of the frequencies of the G allele was 1.05 (95% CI: 0.86–1.29). The heterogeneity among studies was high (p=0.01, P=70%) (Figure 3 and Table 4). Under the dominant model of inheritance, the pooled OR of the frequencies of GG+AG was 1.01 (95% CI: 0.77–1.34), with high heterogeneity (p=0.006, P=73%) (Figure 3 and Table 4). Under the recessive model of inheritance, the GG genotype was not highly associated

with the prevalence of hypertension (pooled OR=1.22 95% CI: 0.87–1.69), with moderate heterogeneity (p=0.09, P=50%) (Figure 3 and Table 4). In male participants, the frequency of G allele did not show significant correlation with hypertension (pooled OR=1.21 95% CI: 0.81–1.79). The result indicated an extreme heterogeneity among studies (p<0.0001, P=84%) (Figure 3 and Table 4).

Sensitivity analysis

In order to find the influence of an individual study on the pooled ORs, we omitted one study each time and investigated if there was any fluctuation of pooled ORs and heterogeneity. And we also used the fix-effect model and random-effect model to test the result of meta-analysis as well. Interestingly, for rs3761581, we found that when we omitted the result of study of Huang et al., although the overall pooled ORs did not vary significantly, the heterogeneity decreased dramatically (I^2 =45% in female GG+TG vs TT analysis, I^2 =0% in female GG vs TT+TG

rs3761581		Pooled OR (95% CI)	Z (þ)	l² (%)	þ Value for heterogeneity	Egger's test þ value
Models for females and males	G vs T	0.90 (0.82–1.00)	1.94 (0.05)	0	0.61	0.311
Models for females	G vs T	1.01 (0.89–1.14)	0.14 (0.89)	0	0.49	0.215
Dominant model	GG+TG vs TT	0.84 (0.56-1.25)	0.86 (0.39)	81	0.006	0.210
Recessive model	GG vs TG+TT	1.34 (0.73-2.48)	0.94 (0.35)	83	0.003	0.674
Models for males	G vs T	0.69 (0.46-1.03)	1.84 (0.07)	78	0.010	0.522

Table 3. Comparisons of rs3761581 in different models for hypertension risk.

Cl: confidence interval; OR: odds ratio.

Charles and Carls managed	Hyperter		Normoter			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M–H, Random, 95% Cl
2.1.1 G vs A							
Wenquan Niu 2010	322	1442	367	1471	21.4%	0.86 [0.73, 1.03]	-
inxin Li 2015	539	1470	311	1105	21.4%	1.48 [1.25, 1.75]	•
ian Jia 2015	84	330	97	372	16.0%	0.97 [0.69, 1.36]	
Guofeng Li 2016	313	978	316	926	20.8%	0.91 [0.75, 1.10]	-
Feng Huang 2016 Subtotal (95% CI)	416	991 5211	240	673 4547	20.4% 100.0%	1.31 [1.07, 1.60] 1.09 [0.86, 1.37]	•
Fotal events Heterogeneity: Tau ² : Fest for overall effect				< 0.000	01); I ² = 8	5%	
2.1.2 Female G vs A							
Wenguan Niu 2010	213	946	235	982	22.3%	0.92 [0.75, 1.14]	+
inxin Li 2015	341	922	200	698	22.3%	1.46 [1.18, 1.81]	-
ian Jia 2015	57	216	65	244	13.1%	0.99 [0.65, 1.49]	+
Guofeng Li 2016	205	656	193	562	20.9%	0.87 [0.68, 1.10]	
Feng Huang 2016	307	766	192	500	21.3%	1.07 [0.85, 1.35]	+
Subtotal (95% CI)	507	3506	100		100.0%	1.05 [0.86, 1.29]	
Total events	1123		885				
Heterogeneity: Tau ² :	= 0.04; Chi	² = 13.22	2, df = 4 (P	= 0.01)	; I ² = 70%	6	
Test for overall effect	t: Z = 0.50	(P = 0.62)	?)				
2.1.3 Female GG+A0	ī vs AA						
Venguan Niu 2010	166	473	181	491	22.7%	0.93 [0.71, 1.20]	+
inxin Li 2015	287	461	176	349	22.0%	1.62 [1.22, 2.15]	-
ian lia 2015	50	108	55	122	14.3%	1.05 [0.62, 1.77]	_ _
Guofeng Li 2016	168	328	161	281	20.7%	0.78 [0.57, 1.08]	
Feng Huang 2016	231	383	160	250	20.3%	0.85 [0.61, 1.19]	
Subtotal (95% CI)		1753			100.0%	1.01 [0.77, 1.34]	◆
Fotal events	902		733				
Heterogeneity: Tau ² : Fest for overall effect				= 0.006	5); I ² = 73	%	
1 4 Eemala CC ve	AA . AC						
2.1.4 Female GG vs		470		101	25.20/	0.00 (0.50, 1.35)	
Wenquan Niu 2010	47	473	54	491	25.3%	0.89 [0.59, 1.35]	-
Wenquan Niu 2010 Inxin Li 2015	47 54	461	24	349	21.2%	1.80 [1.09, 2.97]	
Wenquan Niu 2010 Iinxin Li 2015 Iian Jia 2015	47 54 7	461 108	24 10	349 122	21.2% 8.6%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12]	
Venquan Niu 2010 Iinxin Li 2015 Iian Jia 2015 Guofeng Li 2016	47 54 7 37	461 108 328	24 10 32	349 122 281	21.2% 8.6% 21.2%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64]	
Wenquan Niu 2010 Iinxin Li 2015 Iian Jia 2015 Guofeng Li 2016 Feng Huang 2016	47 54 7	461 108	24 10	349 122 281 250	21.2% 8.6% 21.2% 23.6%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64]	
Wenquan Niu 2010 Iinxin Li 2015 Iian Jia 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI)	47 54 7 37 76	461 108 328 383	24 10 32 32	349 122 281 250	21.2% 8.6% 21.2%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64]	
Wenquan Niu 2010 inxin Li 2015 ian Jia 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ²	47 54 7 37 76 221 = 0.07; Chi ²	461 108 328 383 1753 ² = 7.93,	24 10 32 32 152 df = 4 (P =	349 122 281 250 1493	21.2% 8.6% 21.2% 23.6% 100.0%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64]	
Wenquan Niu 2010 linxin Li 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Fotal events	47 54 7 37 76 221 = 0.07; Chi ²	461 108 328 383 1753 ² = 7.93,	24 10 32 32 152 df = 4 (P =	349 122 281 250 1493	21.2% 8.6% 21.2% 23.6% 100.0%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64]	
Wenquan Niu 2010 inxin Li 2015 ian Jia 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ²	47 54 7 37 76 221 = 0.07; Chi ²	461 108 328 383 1753 ² = 7.93,	24 10 32 32 152 df = 4 (P =	349 122 281 250 1493	21.2% 8.6% 21.2% 23.6% 100.0%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64]	
Wenquan Niu 2010 linxin Li 2015 Guofeng Li 2016 Geng Huang 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² Fost for overall effect	47 54 7 37 76 221 = 0.07; Chi ²	461 108 328 383 1753 ² = 7.93,	24 10 32 32 152 df = 4 (P =	349 122 281 250 1493	21.2% 8.6% 21.2% 23.6% 100.0%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64]	
Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² Fest for overall effect 2.1.5 Male G vs A	47 54 7 37 76 221 = 0.07; Chi ² :: Z = 1.16	461 108 328 383 1753 ² = 7.93, (P = 0.25	24 10 32 32 152 df = 4 (P =	349 122 281 250 1493 = 0.09);	21.2% 8.6% 21.2% 23.6% 100.0% $1^2 = 50\%$	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69]	
Wenquan Niu 2010 Iinxin Li 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² Fost for overall effect 2.1.5 Male G vs A Wenquan Niu 2010	47 54 7 37 76 221 = 0.07; Chi ³ t; Z = 1.16	$461 \\ 108 \\ 328 \\ 383 \\ 1753 \\ 2^{2} = 7.93, \\ (P = 0.25) \\ 496 \\ 328 \\ 496 \\ 328 $	24 10 32 32 152 df = 4 (P =	349 122 281 250 1493 = 0.09); 489	21.2% 8.6% 21.2% 23.6% 100.0% $I^2 = 50\%$ 21.7%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69]	
Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% Cl) Total events Heterogeneity: Tau ² : Test for overall effect 2.1.5 Male G vs A Wenquan Niu 2010 inxin Li 2015	47 54 7 37 76 = 0.07; Chi ³ :: Z = 1.16	461 108 328 383 1753 ² = 7.93, (P = 0.25 496 548	$24 \\ 10 \\ 32 \\ 32 \\ df = 4 (P + 1) \\ 132 \\ 111 \\ 132 \\ 111 \\ 111 \\ 100$	349 122 281 250 1493 = 0.09); 489 407	21.2% 8.6% 21.2% 23.6% 100.0% $I^2 = 50\%$ 21.7% 21.9%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69] 0.76 [0.57, 1.02] 1.51 [1.14, 1.99]	
Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² Fest for overall effect 2.1.5 Male G vs A Wenquan Niu 2010 inxin Li 2015 ian Jia 2015	47 54 7 37 76 221 = 0.07; Chi [*] t; Z = 1.16 109 198 27	461 108 328 383 1753 ² = 7.93, (P = 0.25 496 548 114	$\begin{array}{c} 24 \\ 10 \\ 32 \\ 32 \\ df = 4 \ (P \\ f \\ f \\ 111 \\ 32 \end{array}$	349 122 281 250 1493 = 0.09); 489 407 128	21.2% 8.6% 21.2% 23.6% 100.0% $I^2 = 50\%$ 21.7% 21.7% 21.9% 15.9%	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69] 0.76 [0.57, 1.02] 1.51 [1.14, 1.99] 0.93 [0.52, 1.68]	
Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² Fost for overall effect 2.1.5 Male G vs A Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016	47 54 7 37 76 221 = 0.07; Chi ⁺ t: Z = 1.16 109 198 27 108	461 108 328 383 1753 ² = 7.93, (P = 0.25 496 548 114 322	$24 \\ 10 \\ 32 \\ 32 \\ df = 4 (P + 1) \\ 111 \\ 32 \\ 123 \\ 123 \\ 123 \\ 123 \\ 100 $	349 122 281 250 1493 = 0.09); 489 407 128 364 173	$21.2\% \\ 8.6\% \\ 21.2\% \\ 23.6\% \\ 100.0\% \\ 1^2 = 50\% \\ 21.7\% \\ 21.9\% \\ 15.9\% \\ 21.2\% \\ 21.2\% \\ 15.9\% \\ 21.2\% \\ $	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69] 0.76 [0.57, 1.02] 1.51 [1.14, 1.99] 0.93 [0.52, 1.68] 0.99 [0.72, 1.36]	
Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016 Subtotal (95% Cl) Fotal events Heterogeneity: Tau ² - Test for overall effect 2.1.5 Male G vs A Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016 Feng Huang 2016	47 54 7 37 76 221 = 0.07; Chi ⁺ t: Z = 1.16 109 198 27 108	461 108 328 383 1753 ² = 7.93, (P = 0.25 496 548 114 322 225	$24 \\ 10 \\ 32 \\ 32 \\ df = 4 (P + 1) \\ 111 \\ 32 \\ 123 \\ 123 \\ 123 \\ 123 \\ 100 $	349 122 281 250 1493 = 0.09); 489 407 128 364 173	$\begin{array}{c} 21.2\% \\ 8.6\% \\ 21.2\% \\ 23.6\% \\ 100.0\% \\ l^2 = 50\% \\ \begin{array}{c} 21.7\% \\ 21.9\% \\ 15.9\% \\ 21.2\% \\ 19.2\% \end{array}$	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69] 0.76 [0.57, 1.02] 1.51 [1.14, 1.99] 0.93 [0.52, 1.68] 0.99 [0.72, 1.36] 2.45 [1.60, 3.74]	
Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² - Fest for overall effect 2.1.5 Male G vs A Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016 Seng Huang 2016 Subtotal (95% CI)	47 54 7 37 76 221 = 0.07; Chi' t; Z = 1.16 109 198 27 108 109 551	461 108 328 383 1753 2 = 7.93, (P = 0.25 496 548 114 322 225 1705	24 10 32 32 152 df = 4 (P 5) 132 111 32 123 48 446	349 122 281 250 1493 = 0.09); 489 407 128 364 173 1561	$\begin{array}{c} 21.2\% \\ 8.6\% \\ 21.2\% \\ 23.6\% \\ \textbf{100.0\%} \\ \textbf{1}^2 = 50\% \\ \begin{array}{c} 21.7\% \\ 21.9\% \\ \textbf{15.9\%} \\ 21.2\% \\ \textbf{19.2\%} \\ \textbf{100.0\%} \end{array}$	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69] 0.76 [0.57, 1.02] 1.51 [1.14, 1.99] 0.93 [0.52, 1.68] 0.99 [0.72, 1.36] 2.45 [1.60, 3.74] 1.21 [0.81, 1.79]	
Wenquan Niu 2010 inxin Li 2015 ian Jia 2015 Guofeng Li 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² Fest for overall effect 2.1.5 Male G vs A Wenquan Niu 2010 inxin Li 2015 Guofeng Li 2016 Seug Huang 2016 Subtotal (95% CI) Total events	47 54 7 37 76 221 = 0.07; Chi [*] t: Z = 1.16 109 198 27 108 109 198 27 108	461 108 328 383 1753 2 = 7.93, (P = 0.25 496 548 114 322 225 1705 2 = 24.84	24 10 32 32 152 df = 4 (P 5) 132 123 48 446 4, df = 4 (F	349 122 281 250 1493 = 0.09); 489 407 128 364 173 1561	$\begin{array}{c} 21.2\% \\ 8.6\% \\ 21.2\% \\ 23.6\% \\ \textbf{100.0\%} \\ \textbf{1}^2 = 50\% \\ \begin{array}{c} 21.7\% \\ 21.9\% \\ \textbf{15.9\%} \\ 21.2\% \\ \textbf{19.2\%} \\ \textbf{100.0\%} \end{array}$	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69] 0.76 [0.57, 1.02] 1.51 [1.14, 1.99] 0.93 [0.52, 1.68] 0.99 [0.72, 1.36] 2.45 [1.60, 3.74] 1.21 [0.81, 1.79]	
Wenquan Niu 2010 linxin Li 2015 ian Jia 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² - Fost for overall effect 2.1.5 Male G vs A Wenquan Niu 2010 linxin Li 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² -	47 54 7 37 76 221 = 0.07; Chi [*] t: Z = 1.16 109 198 27 108 109 198 27 108	461 108 328 383 1753 2 = 7.93, (P = 0.25 496 548 114 322 225 1705 2 = 24.84	24 10 32 32 152 df = 4 (P 5) 132 123 48 446 4, df = 4 (F	349 122 281 250 1493 = 0.09); 489 407 128 364 173 1561	$\begin{array}{c} 21.2\% \\ 8.6\% \\ 21.2\% \\ 23.6\% \\ \textbf{100.0\%} \\ \textbf{1}^2 = 50\% \\ \begin{array}{c} 21.7\% \\ 21.9\% \\ \textbf{15.9\%} \\ 21.2\% \\ \textbf{19.2\%} \\ \textbf{100.0\%} \end{array}$	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69] 0.76 [0.57, 1.02] 1.51 [1.14, 1.99] 0.93 [0.52, 1.68] 0.99 [0.72, 1.36] 2.45 [1.60, 3.74] 1.21 [0.81, 1.79]	
Wenquan Niu 2010 linxin Li 2015 ian Jia 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² - Fost for overall effect 2.1.5 Male G vs A Wenquan Niu 2010 linxin Li 2015 Guofeng Li 2016 Feng Huang 2016 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² -	47 54 7 37 76 221 = 0.07; Chi [*] t: Z = 1.16 109 198 27 108 109 198 27 108	461 108 328 383 1753 2 = 7.93, (P = 0.25 496 548 114 322 225 1705 2 = 24.84	24 10 32 32 152 df = 4 (P 5) 132 123 48 446 4, df = 4 (F	349 122 281 250 1493 = 0.09); 489 407 128 364 173 1561	$\begin{array}{c} 21.2\% \\ 8.6\% \\ 21.2\% \\ 23.6\% \\ \textbf{100.0\%} \\ \textbf{1}^2 = 50\% \\ \begin{array}{c} 21.7\% \\ 21.9\% \\ \textbf{15.9\%} \\ 21.2\% \\ \textbf{19.2\%} \\ \textbf{100.0\%} \end{array}$	1.80 [1.09, 2.97] 0.78 [0.28, 2.12] 0.99 [0.60, 1.64] 1.69 [1.08, 2.64] 1.22 [0.87, 1.69] 0.76 [0.57, 1.02] 1.51 [1.14, 1.99] 0.93 [0.52, 1.68] 0.99 [0.72, 1.36] 2.45 [1.60, 3.74] 1.21 [0.81, 1.79]	D1 0.1 1 10 100 Decreased EH risk Increased EH risk

Figure 3. Combined forest plots of hypertension associated with the apelin gene (APLN) single nucleotide polymorphism (SNP) rs56204867. CI: confidence interval; EH: essential hypertension.

rs56204687		Pooled OR (95% Cl)	Z (p)	l² (%)	p Value for heterogeneity	Egger's test þ value
Models for females and males	G vs A	1.09 (0.86–1.37)	0.69 (0.49)	85	<0.0001	0.808
Models for females	G vs A	1.05 (0.86-1.29)	0.50 (0.62)	70	0.01	0.723
Dominant model	GG+AG vs AA	1.01 (0.77–1.34)	0.09 (0.93)	73	0.006	0.808
Recessive model	GG vs AG+AA	1.22 (0.87-1.69)	1.16 (0.25)	50	0.09	0.763
Models for males	G vs A	1.21 (0.81–1.79)	0.94 (0.35)	84	<0.0001	0.758

Table 4. Comparisons of rs56204867 in different models for hypertension risk.

CI: confidence interval; OR: odds ratio.

	Hyperten	sives	Normoter	isives		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 G vs T							
Wenquan Niu 2010	521	1442	550	1471	60.9%	0.95 [0.81, 1.10]	
Guofeng Li 2016	334	978	337	926	39.1%	0.91 [0.75, 1.09]	+
Feng Huang 2016 Omitted	362	939	311	725	0.0%	0.84 [0.69, 1.02]	
Subtotal (95% CI)		2420		2397	100.0%	0.93 [0.83, 1.05]	•
Total events	855		887				
Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 1			(P = 0.72)	$ _{1^{2}} = 0$	6		
1.1.2 Female G vs T							
Wenquan Niu 2010	358	946	353	982	59.2%	1.08 [0.90, 1.31]	•
Guofeng Li 2016	206	656	189	562	40.8%	0.90 [0.71, 1.15]	+
Feng Huang 2016 Omitted	315	766	206	500	0.0%	1.00 [0.79, 1.25]	
Subtotal (95% CI)		1602		1544	100.0%	1.01 [0.84, 1.20]	•
Total events	564		542				
Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 0			(P = 0.24)); I ² = 28	8%		
1.1.3 Female GG+TG vs TT							L
Wenquan Niu 2010	281	473	275	491	56.0%	1.15 [0.89, 1.48]	
Guofeng Li 2016	167	328	153	281	44.0%	0.87 [0.63, 1.19]	
Feng Huang 2016 Omitted Subtotal (95% CI)	231	383 801	182	250 772	0.0% 100.0%	0.57 [0.40, 0.80] 1.02 [0.77, 1.34]	+
Total events	448		428				
Heterogeneity: Tau ² = 0.02; Test for overall effect: Z = 0			(P = 0.18)); $I^2 = 45$	%		
1.1.4 Female GG vs TT+TG							
Wenguan Niu 2010	77	473	78	491	66.5%	1.03 [0.73, 1.45]	+
Guofeng Li 2016	39	328	36	281	33.5%	0.92 [0.57, 1.49]	_ _
Feng Huang 2016 Omitted	84	383	24	250	0.0%	2.65 [1.63, 4.30]	
Subtotal (95% CI)		801		772	100.0%	0.99 [0.75, 1.31]	◆
Total events	116		114				
Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 0			(P = 0.71)	$ _{1}^{2} = 09$	6		
1.1.5 Male G vs T					54.2%	0.73 [0.56, 0.94]	-
1.1.5 Male G vs T Wenguan Niu 2010	163	496	197	489			
Wenquan Niu 2010	163 128	496 322	197 148	489 364			
Wenquan Niu 2010 Guofeng Li 2016	163 128 47	496 322 173	197 148 105	489 364 225	45.8%	0.96 [0.71, 1.31]	
Wenquan Niu 2010	128	322	148	364 225	45.8%		•
Wenquan Niu 2010 Guofeng Li 2016 Feng Huang 2016 Omitted	128	322 173	148	364 225	45.8% 0.0%	0.96 [0.71, 1.31] 0.43 [0.28, 0.65]	•
Wenquan Niu 2010 Guofeng Li 2016 Feng Huang 2016 Omitted Subtotal (95% CI)	128 47 291 Chi ² = 1.93	322 173 818 1, df = 1	148 105 345	364 225 853	45.8% 0.0% 100.0 %	0.96 [0.71, 1.31] 0.43 [0.28, 0.65]	•
Wenquan Niu 2010 Guofeng Li 2016 Feng Huang 2016 Omitted Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02;	128 47 291 Chi ² = 1.93	322 173 818 1, df = 1	148 105 345	364 225 853	45.8% 0.0% 100.0 %	0.96 [0.71, 1.31] 0.43 [0.28, 0.65]	•
Wenquan Niu 2010 Guofeng Li 2016 Feng Huang 2016 Omitted Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.02;	128 47 291 Chi ² = 1.93	322 173 818 1, df = 1	148 105 345	364 225 853	45.8% 0.0% 100.0 %	0.96 [0.71, 1.31] 0.43 [0.28, 0.65]	

Figure 4. Combined forest plots of hypertension associated with the apelin gene (APLN) single nucleotide polymorphism (SNP) rs3761581 after omitting the study of Huang et al.¹² CI: confidence interval; EH: essential hypertension.

analysis and P=48% in male G vs T analysis) (Figure 4).¹² We found that this study was based on the Fujian population in Southern China, which might be genetically different from participants in other studies. This study also included subjects with a history of hypertension and who were using antihypertensive drugs. More importantly, the age of hypertensive patients was significantly higher than normal counterparts (p < 0.05 in both females and males), which may lead to a higher mutation possibility and higher frequency of the G allele in hypertensive patients. While the age disparity between the patients and control group in other studies was not significant (p=0.850 for males and p=0.271 for females in Li et al.'s study,¹³ p=0.724 for males and p=0.106 for females in Niu et al.'s study).¹⁶ For rs56204867, omitting Li et al.'s study, could decrease the heterogeneity among studies without significant influence

Feng Huang 2016 416 Subtotal (95% CI) 1135 Data events 1135 Heterogeneity: Tau ² = 0.03; Chi ² = Test for overall effect: $Z = 0.03$ (P = 2.1.2 Female G vs A Wenquan Niu 2010 Wenquan Niu 2010 213 Jinxin Li 2015 Omitted 341 ian jia 2015 57 Guofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% CI) Total events Total events 782 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P = 2.1.3 Female GG+AG vs AA Wenquan Niu 2010 Wenquan Niu 2010 166 Feng Huang 2016 287 Guofeng Li 2015 50 Guofeng Li 2016 168 Feng Huang 2016 213 Subtotal (95% CI) 155 Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Inxin Li 2015 Omitted 37 Feng Huang 2016 76	1442 1470 330 978 991 3741 = 0.98) 946 922 216 656 2584 • 1.69, df = = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)	235 200 65 193 192 685 = 3 (P = 0 181 176 55 161 160 557	1471 1105 372 926 673 3442 0.02); 1 ² 982 698 244 562 500 2288 0.64); 1 ² 491 3499 122 281 250 1144	28.6% 0.0% 17.7% 27.2% 26.4% 100.0% = 71% 34.8% 0.0% 9.0% 27.0% 29.2% 100.0% 38.9% 0.0% 26.2% 24.8% 100.0%	M-H, Random, 95% Cl 0.86 [0.73, 1.03] 1.48 [1.25, 1.75] 0.97 [0.69, 1.36] 0.91 [0.75, 1.10] 1.31 [1.07, 1.60] 1.00 [0.82, 1.22] 0.92 [0.75, 1.14] 1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19] 0.88 [0.75, 1.04]	M-H, Random, 95% CI
Wenquan Niu 2010 322 inxin Li 2015 Omitted 539 ian Jia 2015 84 Suofeng Li 2016 313 reng Huang 2016 416 Subtotal (95% CI) 50 fortal events 1135 Heterogeneity: Tau ² = 0.03; Chl ² = 21.2 Female G vs A Venquan Niu 2010 213 Inxin Li 2015 Omitted 341 ian jia 2015 57 Guofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% CI) 70 Fotal events 782 Heterogeneity: Tau ² = 0.00; Chl ² = Fest for overall effect: Z = 0.73 (P = 2.1.3 Female GG+AG vs AA Wenquan Niu 2010 166 inxin Li 2015 Omitted 287 ian ja 2015 50 Guofeng Li 2016 168 Foral events 615 Feterogeneity: Tau ² = 0.00; Chl ² = Fest for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 inxin Li 2015 Omitted 37 Events 615	1470 330 978 991 3741 = 10.38, df = 0.98) 946 922 216 656 2584 = 1.69, df = = 0.471 473 461 108 328 383 1292 = 1.13, df = = 0.13)	311 97 316 240 1020 f = 3 (P = 235 200 65 193 192 685 = 3 (P = 0 181 176 55 161 160 557	1105 372 926 673 3442 0.02); 1 ² 982 698 244 562 500 2288 0.64); 1 ² 491 349 122 281 250 1144	0.0% 17.7% 27.2% 26.4% 100.0% = 71% 34.8% 0.0% 9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	1.48 [1.25, 1.75] 0.97 [0.69, 1.36] 0.91 [0.75, 1.10] 1.31 [1.07, 1.60] 1.00 [0.82, 1.22] 0.92 [0.75, 1.14] 1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.95 [0.84, 1.08]	
inxin Li 2015 Omitted 539 ian jia 2015 84 cuofeng Li 2016 313 reng Huang 2016 416 Subtotal (95% CI) 135 feterogeneity: Tau ² = 0.03; Chi ² = Fest for overall effect: Z = 0.03 (P = 2.1.2 Female G vs A Venquan Niu 2010 213 inxin Li 2015 Omitted 341 341 ian jia 2015 57 57 Cuofeng Li 2016 205 205 reng Huang 2016 307 Subtotal (95% CI) Fotal events 782 4eterogeneity: Tau ² = 0.00; Chi ² = Fest for overall effect: Z = 0.73 (P = 2.1.3 Female GG + AG vs AA Wenquan Niu 2010 166 168 erong Li 2015 50 50 Cuofeng Li 2015 50 50 Guofeng Li 2016 168 15 Feterogeneity: Tau ² = 0.00; Chi ² = 15 50 Cuofeng Li 2015 015 50 Guofeng Li 2016 15 54 Subtotal (95% CI) 57 50 Cuofeng Li 2015 76 54 Lan Jia 2015 7	1470 330 978 991 3741 = 10.38, df = 0.98) 946 922 216 656 2584 = 1.69, df = = 0.471 473 461 108 328 383 1292 = 1.13, df = = 0.13)	311 97 316 240 1020 f = 3 (P = 235 200 65 193 192 685 = 3 (P = 0 181 176 55 161 160 557	1105 372 926 673 3442 0.02); 1 ² 982 698 244 562 500 2288 0.64); 1 ² 491 349 122 281 250 1144	0.0% 17.7% 27.2% 26.4% 100.0% = 71% 34.8% 0.0% 9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	1.48 [1.25, 1.75] 0.97 [0.69, 1.36] 0.91 [0.75, 1.10] 1.31 [1.07, 1.60] 1.00 [0.82, 1.22] 0.92 [0.75, 1.14] 1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.95 [0.84, 1.08]	
lian Jia 2015 84 GuoGeng Li 2016 313 Feng Huang 2016 416 Subtotal (95% CI) 1135 Total events 1135 Heterogeneity: Tau ² = 0.03; Ch ² = 2 Ztaf events 1135 Heterogeneity: Tau ² = 0.03; Ch ² = 2 Ztaf Evende G vs A Wenquan Niu 2010 213 Iinxin Li 2015 Omitted 341 Iian Jia 2015 57 Guofeng Li 2016 205 Subtotal (95% CI) 70 Total events 782 Heterogeneity: Tau ² = 0.00; Ch ² = 7 Test for overall effect: Z = 0.73 (P = 2 Zt.3 Female GG +AG vs AA Wenquan Niu 2010 166 Inixin Li 2015 Omitted 287 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) 153 Heterogeneity: Tau ² = 0.00; Ch ² = Test for overall effect: Z = 1.53 (P = Zt.4 Female GG vs AA+AG Wenquan Niu 2010 47 Inxin Li 2015 Omitted 37 Feughuang 2016 76	330 978 991 3741 = 10.38, df = 0.98) 946 922 216 656 2584 = 1.69, df = = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)	97 316 240 1020 f = 3 (P = 1) 235 200 65 193 192 685 193 192 685 193 192 685 193 192 1811 1760 555 1611 160 557	372 926 673 3 442 0.02); 1 ² 982 698 244 500 2288 0.64); 1 ² 491 349 349 22 81 250 1 144	17.7% 27.2% 26.4% 100.0% = 71% 34.8% 0.0% 9.0% 27.0% 29.2% 100.0% 38.9% 0.0% 26.2% 24.8% 100.0%	0.97 [0.69, 1.36] 0.91 [0.75, 1.10] 1.31 [1.07, 1.60] 1.00 [0.82, 1.22] 0.92 [0.75, 1.14] 1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Guofeng Li 2016 313 Feng Huang 2016 416 Subtotal (95% CI) Total events Total events 1135 Heterogeneity: Tau ² = 0.03; Chi ² = Test for overall effect: Z = 0.03 (P = 2.1.2 Female G vs A Wenquan Niu 2010 213 Jinxin Li 2015 Omitted 341 341 Jian Jia 2015 57 Guofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% CI) 782 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P = 2.1.3 Female GG+AG vs AA Wenquan Niu 2010 166 Jian jia 2015 50 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) Total events 615 Total events 615 Subteterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jian Jia 2015 7 Guofeng Li 2015 74 Guofeng Li 2016 37 Feng Huang 2015 7 Guofeng Li 2016 37 </td <td>978 991 3741 = 10.38, df = 0.98) 946 922 216 656 766 2584 = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)</td> <td>316 240 1020 f = 3 (P = 235 200 65 193 192 685 = 3 (P = 0 181 176 55 161 160 557</td> <td>926 673 3442 0.02); ² 982 698 244 560 2288 0.64); ² 491 349 122 281 250 1144</td> <td>27.2% 26.4% 100.0% = 71% 34.8% 0.0% 9.0% 29.2% 100.0% = 0% 38.9% 0.0% 26.2% 24.8% 100.0%</td> <td>0.91 [0.75, 1.10] 1.31 [1.07, 1.60] 1.00 [0.82, 1.22] 0.92 [0.75, 1.14] 1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]</td> <td></td>	978 991 3741 = 10.38, df = 0.98) 946 922 216 656 766 2584 = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)	316 240 1020 f = 3 (P = 235 200 65 193 192 685 = 3 (P = 0 181 176 55 161 160 557	926 673 3442 0.02); ² 982 698 244 560 2288 0.64); ² 491 349 122 281 250 1144	27.2% 26.4% 100.0% = 71% 34.8% 0.0% 9.0% 29.2% 100.0% = 0% 38.9% 0.0% 26.2% 24.8% 100.0%	0.91 [0.75, 1.10] 1.31 [1.07, 1.60] 1.00 [0.82, 1.22] 0.92 [0.75, 1.14] 1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Feng Huang 2016 416 Subtotal (95% CI) 1135 Total events 1135 Heterogeneity: Tau ² = 0.03; Chi ² = Test for overall effect: $Z = 0.03$ (P = 2.1.2 Female G vs A Wenquan Niu 2010 Wenquan Niu 2010 213 Jinxin Li 2015 Omitted 341 Jian Jia 2015 57 Guofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% CI) Total events Total events 782 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P = 2.1.3 Female GG+AG vs AA Wenquan Niu 2010 166 Wenquan Niu 2010 166 168 Feng Huang 2016 281 155 Subtotal (95% CI) 105 154 Total events 615 155 Heterogeneity: Tau ² = 0.00; Chi ² = 153 (P = Test for overall effect: Z = 1.53 (P = 21.4 Female GG vs AA+AG Wenquan Niu 2010 47 37 Jinxin Li 2015 Omitted 37 54 Jan Jia 2015 7 50 Quofeng Li 2016 37 </td <td>991 3741 = 10.38, df = 0.98) 946 922 216 656 2584 = 1.69, df = = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)</td> <td>240 1020 f = 3 (P = 235 200 65 193 192 685 193 192 685 193 192 685 193 192 685 193 192 55 161 160 557</td> <td>673 3442 0.02); 1² 982 698 244 562 500 2288 0.64); 1² 491 349 122 281 250 1144</td> <td>26.4% 100.0% = 71% 34.8% 0.0% 9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%</td> <td>1.31 [1.07, 1.60] 1.00 [0.82, 1.22] 0.92 [0.75, 1.14] 1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]</td> <td></td>	991 3741 = 10.38, df = 0.98) 946 922 216 656 2584 = 1.69, df = = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)	240 1020 f = 3 (P = 235 200 65 193 192 685 193 192 685 193 192 685 193 192 685 193 192 55 161 160 557	673 3442 0.02); 1 ² 982 698 244 562 500 2288 0.64); 1 ² 491 349 122 281 250 1144	26.4% 100.0% = 71% 34.8% 0.0% 9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	1.31 [1.07, 1.60] 1.00 [0.82, 1.22] 0.92 [0.75, 1.14] 1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Subiotal (95% CI) Total events 1135 Total events 1135 Heterogeneity: Tau ² = 0.03; Ch ² = Test for overall effect: Z = 0.03 (P = Z.1.2 Female G vs A Wenquan Niu 2010 213 Jinxin Li 2015 Omitted 341 Jian jia 2015 57 Guofeng Li 2016 205 780 Yenguan Niu 2010 103 Subtotal (95% CI) Total events 782 Heterogeneity: Tau ² = 0.00; Ch ² = Test for overall effect: Z = 0.73 (P = Z.1.3 Female GG + AG vs AA Wenquan Niu 2010 166 Jinxin Li 2015 Omitted 287 Jian Jia 2015 50 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) Total events 615 Heterogeneity: Tau ² = 0.00; Ch ² = Test for overall effect: Z = 1.53 (P = Z.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 54 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events 167 Heterogeneity: Tau ² = 0.05; Ch ² = 17 <	3741 = 10.38, df = 0.98) 946 922 216 656 656 2584 = 1.69, df = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)	1020 $f = 3 (P = 1)$ 235 200 65 193 192 685 193 192 685 193 192 181 176 55 161 160 557	3442 0.02); 1 ² 982 698 244 562 500 2288 0.64); 1 ² 491 349 122 281 250 1144	100.0% = 71% 34.8% 0.0% 9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 26.2% 24.8% 100.0%	1.00 [0.82, 1.22] 0.92 [0.75, 1.14] 1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Heterogeneity: Tau ² = 0.03 ; Chi ² = Test for overall effect: Z = 0.03 (P = 2.1.2 Female G vs A Wenquan Niu 2010 213 Jian Jia 2015 57 Guofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% Cl) 7 Total events 782 Heterogeneity: Tau ² = 0.00 ; Chi ² = 7 Z.1.3 Female GG+AG vs AA 287 Wenquan Niu 2010 166 Jian Jia 2015 50 Guofeng Li 2016 287 Jian Jia 2015 50 Guofeng Li 2016 168 Feng Huang 2016 215 Subtotal (95% Cl) 15 Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jian Jia 2015 7 Guofeng Li 2015 7 Guofeng Li 2016 37 Feng Huang 2015 7 Guofeng Li 2016 37 Feng Huang 2015 76 Subtotal	= 0.98) 946 922 216 656 766 2584 = 1.69, df = = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)	f = 3 (P = 235 200 65 193 192 685 = 3 (P = 0 181 176 55 161 160 557	982 698 244 560 2288 0.64); I ² 491 349 122 281 250 1144	34.8% 0.0% 9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.88, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Jinxin Li 2015 Omitted 341 Jian Jia 2015 57 Guofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% CI) Total events 782 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P = 2.1.3 Female GG+AG vs AA Wenquan Niu 2010 166 Jinxin Li 2015 Omitted 287 Jian Jia 2015 500 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 54 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 37 Feng Huang 2016 76 Subtotal (95% CI)	922 216 656 2584 • 1.69, df = = 0.47) 473 461 108 328 383 1292 • 1.13, df = = 0.13)	200 65 193 192 685 = 3 (P = 0 181 176 55 161 160 557	698 244 562 500 2288 0.64); I ² 491 349 122 281 250 1144	0.0% 9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.88, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Jinxin Li 2015 Omitted 341 Jian Jia 2015 57 Guofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% CI) 70 Total events 782 Heterogeneity: Tau ² = 0.00; Chi ² = 73 (P = Z.1.3 Female GG+AG vs AA 70 Wenquan Niu 2010 166 Jinxin Li 2015 Omitted 287 Jian Jia 2015 50 Guofeng Li 2016 168 Guofeng Li 2016 168 Guofeng Li 2016 168 Subtotal (95% CI) 70 Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 54 Jian Jia 2015 76 Subtotal (95% CI) 76 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) 70 Total events 167 Heterogeneity: Tau ²	922 216 656 2584 • 1.69, df = = 0.47) 473 461 108 328 383 1292 • 1.13, df = = 0.13)	200 65 193 192 685 = 3 (P = 0 181 176 55 161 160 557	698 244 562 500 2288 0.64); I ² 491 349 122 281 250 1144	0.0% 9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.88, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Jian Jia 2015 57 Guofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% CI) 782 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P = Zet.1.3 Female GG+AG vs AA Wenquan Niu 2010 166 Jian Jia 2015 50 Guofeng Li 2016 188 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) Total events 615 Total events 615 Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 54 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² =	216 656 766 2584 • 1.69, df = = 0.47) 473 461 108 328 383 1292 • 1.13, df = = 0.13)	65 193 192 = 3 (P = 0 181 176 55 161 160 557	244 562 500 2288 0.64); I ² 491 349 122 281 250 1144	9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	1.46 [1.18, 1.81] 0.99 [0.65, 1.49] 0.87 [0.88, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Jan Jia 2015 57 Guofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% CI) 782 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P = 2.1.3 Female GC+AG vs AA Wenquan Niu 2010 166 Wenquan Niu 2010 166 168 Foug Huang 2016 231 Subtotal (95% CI) Total events 615 158 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 37 59 50 Subtotal (95% CI) 50 50 50 Cuofeng Li 2015 7 Guofeng Li 2016 37 Feng Huang 2015 7 50 50 Subtotal (95% CI) 50 50 50 Cuofeng Li 2016 37 76 50 Subtotal (95% CI) 50 76 50 Total events 167 167 167 Heterogeneity: Tau ² = 0.05	216 656 766 2584 • 1.69, df = = 0.47) 473 461 108 328 383 1292 • 1.13, df = = 0.13)	65 193 192 = 3 (P = 0 181 176 55 161 160 557	244 562 500 2288 0.64); I ² 491 349 122 281 250 1144	9.0% 27.0% 29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	0.99 [0.65, 1.49] 0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Cuofeng Li 2016 205 Feng Huang 2016 307 Subtotal (95% CI) Total events Total events 782 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P Z.1.3 Female CG+AG vs AA Wenquan Niu 2010 Wenquan Niu 2010 166 Jinxin Li 2015 Omitted 287 Subtotal (95% CI) 105 Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = 153 (P Reterogeneity: Tau ² = 0.00; Chi ² = 153 (P Z.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 37 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) 105 Total events 167 Hearg 2016 76 Subtotal (95% CI) 167 Hearg 2016 76 Subtotal (95% CI) 167 Total events 167 Hearg 2016 76 Subtotal (95% CI) 167 Tetal events	766 2584 = 1.69, df = = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)	193 192 685 = 3 (P = 0 181 176 55 161 160 557	500 2288 0.64); I ² 491 349 122 281 250 1144	29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	0.87 [0.68, 1.10] 1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Feng Huang 2016 307 Subtotal (95% CI) Total events 782 Total events 782 Heterogeneity: Tau ² = 0.00; Chl ² = Test for overall effect: Z = 0.73 (P = 2.1.3 Female GG+AG vs AA Wenquan Niu 2010 166 jinxin Li 2015 Omitted 287 jian Jia 2015 50 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) Total events Total events 615 Heterogeneity: Tau ² = 0.00; Chl ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jian Jia 2015 76 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events Total events 167 Heterogeneity: Tau ² = 0.05; Chl ² = Test for overall effect: Z = 0.53 (P =	766 2584 = 1.69, df = = 0.47) 473 461 108 328 383 1292 = 1.13, df = = 0.13)	192 = 3 (P = 0 181 176 55 161 160 557	500 2288 0.64); I ² 491 349 122 281 250 1144	29.2% 100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	1.07 [0.85, 1.35] 0.95 [0.84, 1.08] 0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Subiotal (95% CI) Total events 782 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P = 2.1.3 Female GC+AG vs AA Wenquan Niu 2010 166 Jinxin Li 2015 Omitted 287 Jian Jia 2015 50 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) Total events Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P =	2584 1.69, df = 0.47) 473 461 108 328 383 1292 5.1.13, df = = 0.13)	685 = 3 (P = 0 181 176 55 161 160 557	2288 0.64); l ² 491 349 122 281 250 1144	100.0% = 0% 38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P = 2.1.3 Female GG+AG vs AA Wenquan Niu 2010 166 jinxin Li 2015 Omitted 287 jian jia 2015 50 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) 701 Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 jian jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P =	473 461 108 328 383 1292 : 1.13, df = = 0.13)	= 3 (P = 0 181 176 55 161 160 557	491 349 122 281 250 1144	38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	0.93 [0.71, 1.20] 1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 0.73 (P = 2.1.3 Female GG+AG vs AA Wenquan Niu 2010 166 jinxin Li 2015 Omitted 287 jian jia 2015 50 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) 701 Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 jian jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P =	473 461 108 328 383 1292 : 1.13, df = = 0.13)	= 3 (P = 0 181 176 55 161 160 557	491 349 122 281 250 1144	38.9% 0.0% 10.0% 26.2% 24.8% 100.0%	1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Wenquan Niu 2010 166 Jinxin Li 2015 Omitted 287 Jian Jia 2015 50 Guofeng Li 2016 188 Feng Huang 2016 231 Subtotal (95% CI) Total events Total events 615 Heterogeneity: Tau ² = 0.00; Chl ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events 167 Heterogeneity: Tau ² = 0.05; Chl ² = Test for overall effect: Z = 0.53 (P = Test for overall effect: Z = 0.53 (P =	461 108 328 383 1292 : 1.13, df = = 0.13)	176 55 161 160 557	349 122 281 250 1144	0.0% 10.0% 26.2% 24.8% 100.0%	1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
linxin Li 2015 Omitted 287 lian jia 2015 50 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) 50 Total events 615 Heterogeneity: Tau ² = 0.00; Chl ² = 7 Prest for overall effect: Z = 1.53 (P • 2 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 linxin Li 2015 Omitted 54 lian jia 2015 7 5 Subtotal (95% CI) 50 16 Total events 167 16 Heterogeneity: Tau ² = 0.05; Chl ² = 167 16 Fetorgeneity: Tau ² = 0.05; Chl ² = 167 16	461 108 328 383 1292 : 1.13, df = = 0.13)	176 55 161 160 557	349 122 281 250 1144	0.0% 10.0% 26.2% 24.8% 100.0%	1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Jinxin Li 2015 Omitted 287 Jian Jia 2015 50 Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) Total events Total events 615 Heterogeneity: Tau ² = 0.00; Chl ² = Total events 615 Atternation of the events 617 Subtotal (95% CI) 47 Jinxin Li 2015 Omitted 54 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events Total events 167 Heterogeneity: Tau ² = 0.05; Chl ² = Test for overall effect: Z = 0.53 (P =	108 328 383 1292 = 1.13, df = = 0.13)	55 161 160 557	122 281 250 1144	10.0% 26.2% 24.8% 100.0%	1.62 [1.22, 2.15] 1.05 [0.62, 1.77] 0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	
Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) 311 Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = 153 Test for overall effect: Z = 1.53 (P 2 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jian Jia 2015 7 7 Guofeng Li 2016 37 7 Subtotal (95% CI) Total events 167 Total events 167 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P	328 383 1292 = 1.13, df = = 0.13)	161 160 557	281 250 1 144	26.2% 24.8% 100.0 %	0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	•
Guofeng Li 2016 168 Feng Huang 2016 231 Subtotal (95% CI) 311 Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = Z.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P = 167	383 1292 = 1.13, df = = 0.13)	160 557	250 1 144	24.8% 100.0%	0.78 [0.57, 1.08] 0.85 [0.61, 1.19]	•
Feng Huang 2016 231 Subtotal (95% CI) Color Total events 615 Heterogeneity: Tau ² = 0.00; Chl ² = Test for overall effect: Z = 1.53 (P = Z.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 54 Jina Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) Total events 167 Heterogeneity: Tau ² = 0.05; Chl ² = Test for overall effect: Z = 0.53 (P =	1292 = 1.13, df = = 0.13)	557	1144	100.0%	0.85 [0.61, 1.19]	•
Total events 615 Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P = 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 54 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P =	= 1.13, df = = 0.13)				0.00 [0.13, 1.04]	
Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 1.53 (P 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 54 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P	= 0.13)).77); I ² =	= 0%		
Test for overall effect: Z = 1.53 (P 2.1.4 Female GG vs AA+AG Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 54 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% Cl) 167 Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P	= 0.13)	= 5 (r = 0		= 0%		
Wenquan Niu 2010 47 Jinxin Li 2015 Omitted 54 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% Cl) 54 Total events 167 Heterogeneity: Tau ² = 0.05; Chl ² = Test for overall effect: Z = 0.53 (P =						
Jinxin Li 2015 Omitted 54 Jian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% CI) 76 Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = 7 Test for overall effect: Z = 0.53 (P 7						
lian Jia 2015 7 Guofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% Cl) Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P	473	54	491	32.9%	0.89 [0.59, 1.35]	
Cuofeng Li 2016 37 Feng Huang 2016 76 Subtotal (95% Cl) 76 Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P =	461	24	349	0.0%	1.80 [1.09, 2.97]	
Feng Huang 2016 76 Subtotal (95% CI) 107 Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P =	108	10	122	10.0%	0.78 [0.28, 2.12]	
Subtotal (95% CI) Total events 167 Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P =	328	32	281	26.8%	0.99 [0.60, 1.64]	-+-
Heterogeneity: Tau ² = 0.05; Chi ² = Test for overall effect: Z = 0.53 (P =	383 1292	32	250 1144	30.4% 100.0%	1.69 [1.08, 2.64] 1.10 [0.78, 1.55]	
Test for overall effect: Z = 0.53 (P =		128				
2.1.5 Male G vs A		= 3 (P = 0).16); I ² :	= 41%		
Wenquan Niu 2010 109	496	132	489	27.3%	0.76 [0.57, 1.02]	-
Jinxin Li 2015 Omitted 198	548	111	407	0.0%	1.51 [1.14, 1.99]	
Jian Jia 2015 27	114	32	128	21.2%	0.93 [0.52, 1.68]	
Guofeng Li 2016 108	322	123	364	26.8%	0.99 [0.72, 1.36]	+
Feng Huang 2016 109	225	48	173	24.7%	2.45 [1.60, 3.74]	
Subtotal (95% CI)	1157		1154	100.0%	1.14 [0.69, 1.87]	+
Total events 353		335				
Heterogeneity: Tau ² = 0.21; Chi ² = Test for overall effect: Z = 0.51 (P =		f = 3 (P =	0.0001)	; I ² = 85%	i i i i i i i i i i i i i i i i i i i	
					0.01	1 0,1 1 10 100

Figure 5. Combined forest plots of hypertension associated with the apelin gene (APLN) single nucleotide polymorphism (SNP) rs56204867 after omitting the study of Li et al.²⁰ CI: confidence interval; EH: essential hypertension.

on pooled ORs as well (P=0% in female G vs A analysis, P=0% in female GG+AG vs AA analysis) (Figure 5). We noticed that Li et al. included antihypertensive drug users in the hypertension group and adjusted hypertension diagnosis by adding 15 and 10 mm Hg to the SBP and DBP, respectively.²⁰ Hence, the hypertensive group in this study may not be representative enough.

Publication bias diagnostics

The funnel plots were used to evaluate the publication bias (Figure 6). Then, the Egger's test was used to analyze the funnel plot asymmetry (Table 3 and Table 4). As was indicated in the result, no publication bias was found (all p > 0.05).

Discussion

As an important ligand for APJ receptor, a G protein-coupled receptor, apelin (APLN) could regulate its downstream molecules and plays an important part in the occurrence and development of obesity, type 2 diabetes mellitus, hypertension, and other cardiovascular diseases.⁵ The combination of apelin and APJ could stimulate its downstream Amp-activated protein kinase (AMPK) and PI3K/Akt signaling pathway, which induce regulators such as endothelial nitric oxide synthase (eNOS) and perproliferator-activated oxisome Receptor Gamma Coactivator $1-\alpha$ (PGC1- α), to regulate the process of intestinal glucose absorption, mitochondrial biogenesis, and fatty acid oxidation.8

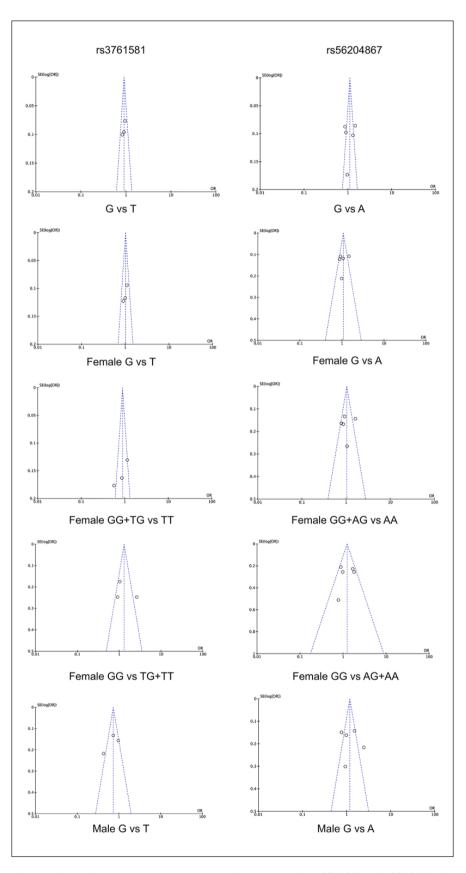


Figure 6. Combined funnel plots of studies regarding association between apelin rs3761581, rs56204867 polymorphisms and hypertension risk.

It has been suggested that the apelin/APJ system could decrease blood pressure through nitric oxide (NO)-dependent pathway.36 Moreover, apelin could activate its receptor APJ and increase ACE2 promoter activity. This upregulation of ACE2 expression could accelerate the hydrolysis of angiotensin II (Ang-II) in vitro.^{37,38} However, Apelin may also promote vasoconstriction and the elevation of blood pressure through directly activating the APJ on vascular smooth muscle cells (VSMCs) and phosphorylating myosin light chain (MLC).39 Therefore, this gene is considered essential in controlling the prevalence and development of hypertension. This study concentrated on its two polymorphisms, rs3761581 and rs56204867, which are located in the promoter region of APLN. It is reasonable to think that this SNP locus may be correlated with the recognition and combination between transcription factors and the promoter region of APLN, and thus, influences the transcription and translation of this gene. Under the circumstances of mutation, variable expression of APLN may result in modulation of phenotypes, including blood pressure.

Our study included five studies in total, and is the first meta-analysis focusing on the association of apelin polymorphism and the prevalence of hypertension. For rs3761581, after integrating the data of both female and male, different alleles were not significantly associated with hypertension risk. Considering the localization of APLN on the X chromosome, the data was divided into a female subgroup and a male subgroup for further investigation. Our results revealed that the T allele of rs3761581 was not strongly correlated with a higher prevalence of hypertension in the female subgroup. We did not find a significant association of the ratios of GG+TG/TT, GG/GT+TT and the hypertensive risk in the dominant and recessive models of inheritance, respectively. In the male subgroup, there was no significant correlation of the frequency of the G allele with hypertension risk as well. Interestingly, we found the study of Huang et al. increased the heterogeneity among studies, which may be due to significant age disparity between patients and the control group. Higher age in the hypertensive group may lead to an increased possibility of mutation. Different regions of China and disparity in the recruitment of hypertension patients might be other primary factors leading to the high heterogeneity.

For rs56204867, the overall comparison of the G and A allele was not significantly correlated with the prevalence of hypertension. The frequency of the G allele was not highly associated with hypertension risk in female and male subgroups, respectively. The ratios of GG+AG/AA or GG/AG+AA did not show any high correlation with hypertension risk under the dominant and recessive models, respectively. The sensitivity analysis indicated that the study of Li et al. increased heterogeneity greatly.²⁰ We thought that the adjustment of the hypertension definition for hypertensive drug users and different participant recruitment criteria may be the reasons. Different regions

of China and ethnic groups may be another leading factor as well.

For the studies based on Indian population and Mexican-Mestizo ethnic origin, the frequency of the mutated genotype or allele was significantly lower than that in Chinese population. For example, the study of Esteban et al. demonstrated that the frequencies of the rs3761581 G allele were 3.4% in female patients and 5.5% in normal counterparts, which was significantly lower than those in the Chinese population (both p < 0.001). For rs56204867, the frequencies of the G allele were 2.9% and 5.5% in female patients and control group, respectively (both p < 0.001).¹⁰ The study of Gupta et al. reported that the frequencies of the G allele were 5.1% in female patients and 6.0% in female normal participants, 7.5% in male patients and 0.0% in male normal subjects (all p < 0.001when compared with Chinese population).¹¹ Since these two studies were based on a limited sample size with a low distribution level of mutated alleles, the association of the polymorphisms and hypertension remained elusive. The disparity of the genetic background of different populations in the worldwide may lead to different effects of apelin polymorphisms in predicting hypertension. Therefore, larger sample-size studies worldwide are still needed for a comprehensive evaluation.

Limitations

This study has some limitations. Two studies based on the Indian population and Mexican-Mestizo ethnic origin were not included in this meta-analysis considering the limited sample size and low frequency of mutation. Thus, this study is restricted to the Chinese population. The studies and sample size were limited. Further studies in China and in the worldwide are warranted for a more concise and comprehensive analysis.

Conclusion

In conclusion, this current meta-analysis revealed that there was no correlation between apelin polymorphisms, rs3761581 and rs56204867, and the prevalence of hypertension in China.

Acknowledgements

The authors are grateful to the staff at the NHC Key Laboratory of Radiobiology (Ministry of Health).

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by the National Natural Science Foundation of China (NSFC) grants (grant number 31500682).

ORCID iDs

Tianyi Wang D https://orcid.org/0000-0002-0453-5331 Lili Jia D https://orcid.org/0000-0002-1305-5436

References

- Yi L, Gu YH, Wang XL, et al. Association of ACE, ACE2 and UTS2 polymorphisms with essential hypertension in Han and Dongxiang populations from north-western China. *J Int Med Res* 2006; 34: 272–283.
- Niu W, Qi Y, Hou S, et al. Correlation of angiotensin-converting enzyme 2 gene polymorphisms with stage 2 hypertension in Han Chinese. *Transl Res* 2007; 150: 374–380.
- Zhao Q, Hixson JE, Rao DC, et al. Genetic variants in the apelin system and blood pressure responses to dietary sodium interventions: A family-based association study. J Hypertens 2010; 28: 756–763.
- 4. Li WW, Niu WQ, Zhang Y, et al. Family-based analysis of apelin and AGTRL1 gene polymorphisms with hypertension in Han Chinese. *J Hypertens* 2009; 27: 1194–1201.
- Wysocka MB, Pietraszek-Gremplewicz K and Nowak D. The role of apelin in cardiovascular diseases, obesity and cancer. *Front Physiol* 2018; 9: 557.
- Tatemoto K, Takayama K, Zou MX, et al. The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. *Regul Pept* 2001; 99: 87–92.
- Zhang L, Takara K, Yamakawa D, et al. Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy. *Cancer Sci* 2016; 107: 36–44.
- Bertrand C, Valet P and Castan-Laurell I. Apelin and energy metabolism. *Front Physiol* 2015; 6: 115.
- 9. Szokodi I, Tavi P, Foldes G, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. *Circ Res* 2002; 91: 434–440.
- Esteban-Martinez RL, Perez-Razo JC, Vargas-Alarcon G, et al. Polymorphisms of APLN-APLNR system are associated with essential hypertension in Mexican-Mestizo individuals. *Exp Mol Pathol* 2016; 101: 105–109.
- Gupta MD, Girish MP, Shah D, et al. Biochemical and genetic role of apelin in essential hypertension and acute coronary syndrome. *Int J Cardiol* 2016; 223: 374–378.
- Huang F, Zhu P, Huang Q, et al. Associations between gene polymorphisms of the apelin-APJ system and the risk of hypertension. *Blood Press* 2016; 25: 257–262.
- Li G, Sun X, Zhao D, et al. A promoter polymorphism in APJ gene is significantly associated with blood pressure changes and hypertension risk in Chinese women. *Oncotarget* 2016; 7: 86257–86265.
- Jin W, Su X, Xu M, et al. Interactive association of five candidate polymorphisms in Apelin/APJ pathway with coronary artery disease among Chinese hypertensive patients. *PLoS One* 2012; 7: e51123.
- Zhu P, Lin F, Huang F, et al. Apelin and APLN single nucleotide polymorphisms and combined hypertension and central retinal artery stenosis in a Chinese population. *Clin Exp Hypertens* 2015; 37: 280–287.

- Niu W, Wu S, Zhang Y, et al. Validation of genetic association in apelin-AGTRL1 system with hypertension in a larger Han Chinese population. *J Hypertens* 2010; 28: 1854–1861.
- Jia J, Men C, Tang KT, et al. Apelin polymorphism predicts blood pressure response to losartan in older Chinese women with essential hypertension. *Genet Mol Res* 2015; 14: 6561–6568.
- Wu XD, Zhang N, Liang M, et al. Gender-specific association between Apelin/APJ gene polymorphisms and hypertension risk in Southeast China. *Gene* 2018; 669: 63–68.
- Zhang R, Lu J, Hu C, et al. Associations of common variants at APLN and hypertension in Chinese subjects with and without diabetes. *Exp Diabetes Res* 2012; 2012: 917496.
- Li J, Feng M, Wang Y, et al. The relationship between three X-linked genes and the risk for hypertension among northeastern Han Chinese. *J Renin Angiotensin Aldosterone Syst* 2015; 16: 1321–1328.
- 21. DerSimonian R and Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986; 7: 177–188.
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ* 2003; 327: 557–560.
- Cao J, Li H and Chen L. Targeting drugs to APJ receptor: The prospect of treatment of hypertension and other cardiovascular diseases. *Curr Drug Targets* 2015; 16: 148–155.
- Wu D, He L and Chen L. Apelin/APJ system: A promising therapy target for hypertension. *Mol Biol Rep* 2014; 41: 6691–6703.
- Jin G, Chen Z, Zhang J, et al. Association of brain natriuretic peptide gene polymorphisms with chronic obstructive pulmonary disease complicated with pulmonary hypertension and its mechanism. *Biosci Rep* 2018; 38: BSR20180905.
- Liu R, Zhao H, Wang Y, et al. The contributory role of angiotensin receptor-like 1 gene multiple polymorphisms in hypertension among northeastern Han Chinese. *PLoS One* 2014; 9: e86095.
- Kapitsinou PP, Rajendran G, Astleford L, et al. The endothelial prolyl-4-hydroxylase domain 2/hypoxia-inducible factor 2 axis regulates pulmonary artery pressure in mice. *Mol Cell Biol* 2016; 36: 1584–1594.
- Huang J, Chen S, Lu X, et al. Polymorphisms of ACE2 are associated with blood pressure response to cold pressor test: The GenSalt study. *Am J Hypertens* 2012; 25: 937–942.
- Cai X, Bai B, Zhang R, et al. Apelin receptor homodimeroligomers revealed by single-molecule imaging and novel G protein-dependent signaling. *Sci Rep* 2017; 7: 40335.
- Akcilar R, Yumun G, Bayat Z, et al. APJ receptor A445C gene polymorphism in Turkish patients with coronary artery disease. *Int J Clin Exp Med* 2015; 8: 18793–18799.
- Hashemi M, Rezaei H, Eskandari-Nasab E, et al. Association between the apelin rs2235306 gene polymorphism and metabolic syndrome. *Turk J Med Sci* 2014; 44: 775–780.
- Montasser ME, Gu D, Chen J, et al. Interactions of genetic variants with physical activity are associated with blood pressure in Chinese: The GenSalt study. *Am J Hypertens* 2011; 24: 1035–1040.
- Kelly TN, Li C, Hixson JE, et al. Resequencing study identifies rare renin-angiotensin-aldosterone system variants associated with blood pressure salt-sensitivity: The GenSalt Study. *Am J Hypertens* 2017; 30: 495–501.

- 34. Falcone C, Bozzini S, Schirinzi S, et al. APJ polymorphisms in coronary artery disease patients with and without hypertension. *Mol Med Rep* 2012; 5: 321–325.
- 35. Nowzari Z, Masoumi M, Nazari-Robati M, et al. Association of polymorphisms of leptin, leptin receptor and apelin receptor genes with susceptibility to coronary artery disease and hypertension. *Life Sci* 2018; 207: 166–171.
- Jia YX, Lu ZF, Zhang J, et al. Apelin activates L-arginine/ nitric oxide synthase/nitric oxide pathway in rat aortas. *Peptides* 2007; 28: 2023–2029.
- Sato T, Suzuki T, Watanabe H, et al. Apelin is a positive regulator of ACE2 in failing hearts. *J Clin Invest* 2013; 123: 5203–5211.
- Wang W, Bodiga S, Das SK, et al. Role of ACE2 in diastolic and systolic heart failure. *Heart Fail Rev* 2012; 17: 683–691.
- Han X, Zhang DL, Yin DX, et al. Apelin-13 deteriorates hypertension in rats after damage of the vascular endothelium by ADMA. *Can J Physiol Pharmacol* 2013; 91: 708–714.