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SUMMARY

It is imperative to optimally utilize virtues and obviate defects of fully automated analysis and expert
knowledge in new paradigms of healthcare. We present a deep learning-based semiautomated workflow
(RAINMAN) with 12,809 follow-up scans among 2,172 patients with treated nasopharyngeal carcinoma
from three centers (ChiCTR.org.cn, Chi-CTR2200056595). A boost of diagnostic performance and reduced
workload was observed in RAINMAN compared with the original manual interpretations (internal vs.
external: sensitivity, 2.5% [p = 0.500] vs. 3.2% [p = 0.031]; specificity, 2.9% [p < 0.001] vs. 0.3% [p =
0.302]; workload reduction, 79.3% vs. 76.2%). The workflow also yielded a triaging performance of
83.6%, with increases of 1.5% in sensitivity (p = 1.000) and 0.6%–1.3% (all p < 0.05) in specificity
compared to three radiologists in the reader study. The semiautomated workflow shows its unique supe-
riority in reducing radiologist’s workload by eliminating negative scans while retaining the diagnostic per-
formance of radiologists.

INTRODUCTION

Long-term surveillance in disease control is pivotal in managing cancer patients.1,2 Nasopharyngeal carcinoma (NPC), a cancer that prevails

across East and Southeast Asia,3 has a 5-year overall survival (OS) of 87.4%, and a locoregional recurrence rate of 7.4%–15.0%.4–6 The annual

proceeding of head and neck (H&N) magnetic resonance (MR) imaging has been a dominant follow-up scheme in monitoring locoregional

disease control in NPC.7,8 However, the interpretation of overwhelming imaging data involves the consumption of time and labor by relatively

scarce radiologists.9 Moreover, owing to histological and structural changes induced by radiation and disturbance of personal subjective

judgment, even experienced radiologists may inevitably neglect some occult and atypical recurrence or waver for benign changes, resulting

in mis- and missed diagnoses.10,11 False-positive scans can bring about superfluous procedures, placing both psychological and economic

burdens on well-healed patients.10,11 Although double reading has slightly improved radiologist performance, it undeniably aggravates in-

efficiency and potentially increases false-positive results.12 Therefore, a triaging workflow to eliminate the true negatives for which radiologist

assessment is unnecessary and to distinguish the scans showing high likelihood of recurrence is needed.

An accumulation of advancements in deep learning (DL) engineered for computer-aided detection (CAD) in medical imaging have

repeatedly been considered to save time and even improve radiologists’ performance in the assessment of cancer screening.13–20

Among them, especially many studies have introduced successful CAD tool for identifying breast cancer. They have reported workload

reduction of 19.3%–72.5% at CAD tool on digital breast examinations.16,17 However, a major drawback of some of these studies is that

the radiologist still needs to evaluate all examinations, and thus the workload is not alleviated. Recently, inspiring work has evaluated
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value of DL in triaging medical images, whereby ‘‘high suspicious negative’’ examinations are remitted and the remaining examinations

are further reviewed manually.18–20 Although sizable reductions in the radiologist workload would be achieved, damaged sensitivity

might come with it. A fully automated model surely frees up all radiologists, but computer-human collaboration that well balances

the advantages of fully automated analysis and manual reading would be more feasible and promising. The strength of DL is the

potential capacity of an assisted DL-based CAD tool to conserve resources and reduce oversights in the surveillance process among

cancer survivors with treated NPC. Although there have been several studies assessing the stand-alone performance of CAD tool in

detecting primary NPC tumor,21–24 however, to date, there are no studies investigating DL-powered triaging approach in optimizing

surveillance in survivors with cured NPC.

Here, we present a semiautomated triaging workflow (RAIN + MANual reading, RAINMAN) in a simulation analysis from a multicenter

study (Figure 1). The RAINMANworkflow triages massive follow-up scans into three tiers as the detector first dismisses the majority of normal

scans (no radiologist workstream) and singles out the high-confidence positives for enhanced assessment (enhanced assessment work-

stream), leaving the equivocal remainders for manual read. We envision that this computer-human collaboration will simplify surveillance

among cancer patients.

RESULTS

Patient and scan characteristics

A total of 2,172 patients (mean age, 45.2G 10.3 years [standard deviation, SD]; 1,592men) were enrolled in this study between September 10,

2007, and May 20, 2021 (Figure 2). Among them, 1,050 patients had confirmed recurrences. Clinical characteristics are listed in Table 1.

A total of 12,809 follow-up H&N MR scans were collected. Routine follow-up comprised annual MR inspection (mean interval, 8.0 G

4.2 months [SD]) for monitoring locoregional disease reactivation (Table S1). A total of 8.2% (1,050 of 12,809) of MR scans were confirmed

to have recurrence (Table S2).

Retrospective study results

The RAIN model had an area under the receiver operating characteristic curve (ROC-AUC) of 0.982 (95% confidential interval [CI] 0.974–

0.990) on tuning cohort (Figure S1). In the validation cohorts, the RAIN obtained ROC-AUCs of 0.990 (95% CI 0.984–0.995) internally and

0.958 (95% CI 0.950–0.966) externally (Figure 3). Further analysis for the performance of the RAIN model in binary classification task is avail-

able in Table S3.

We determined a rule-out threshold that maintains undamaged sensitivity with the 80% lowest RAIN scores and an alert threshold that

maintains undamaged specificity with the 3% highest RAIN scores on tuning cohort (Figure 4). Alternative choices of triage threshold are avail-

able in Table S4.

When 100% of the scans were manually read, the original radiologists (according to documented radiologic reports) obtained an

ROC-AUC of 0.927 (95% CI 0.891–0.962), with a sensitivity of 88.6% (95% CI 81.4–95.8) and a specificity of 96.7% (95% CI 95.4–98.0) within

internal validation cohort (Figure 3 and Table 2). In the internal validation cohort, 88.3% of unequivocal negatives were substituted by

RAIN (no radiologist workstream), resulting in a workload reduction of 79.3% and manual reading of the rest (20.7% equivocal scans) (Figure 3

and Table 2). In the enhanced assessment workstream, there were 34.2% scan-detected recurrences preselected by the RAIN detector. This

triage-driven, semiautomated analysis would thus result both in a performance boost (ROC-AUC 0.954 [95% CI 0.922–0.985]; sensitivity 91.1%

Priority

Highest Lowest
Sensitivity
Specificity
Scans

RAIN score
and ranking

RAIN score
rule-out

RAIN score
alert

Enhanced assessment;
C % (Highest RAIN scores)

Recurrence Confirmation Manual reading
(Experts cross-checked)

Nonrecurrence

No radiologist workstream;
A % (Lowest RAIN scores)

Equivocal assessment;
B % (Mediate RAIN scores)

Unread
scans

(1) Follow-up MR scans from
patients with CR of NPC

(2) RAIN model
(Fully automated)

(3) Scan-level prabability
(0–1)

(4) Overall probabilities

(5) Sectionalization(6) Triage substitution(7) Triage-driven approach(8) Optimized workflow
(Semiautomated)

A B

Figure 1. Study overview

(A) Study flow chart.

(B) Proposed workflow for preselecting follow-up H&NMR scans among patients with CR of NPC. Abbreviations: H&N, head and neck; MR, magnetic resonance;

CR, complete remission; NPC, nasopharyngeal carcinoma; RAIN, Artificial Intelligence for detecting Recurrent Nasopharyngeal carcinoma.
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[95% CI 84.7–97.5; p = 0.500]; specificity 99.6% [95% CI 99.1–100.0; p < 0.001]) and 79.3% labor saving by helping radiologists to concentrate

on equivocal scans while leaving unequivocal negatives for fully automated analysis (Figure 3A and Table 2).

In the external validation cohort, the RAIN detector preselected 29.8% positives and eliminated 81.3% negatives. Thus, the simulated

application of the RAINMAN workflow resulted in a workload reduction of 76.2%, a promotion in ROC-AUC of 0.935 (95% CI 0.912–0.957),

and a sensitivity of 88.5% (95% CI 83.9–93.1) for recurrence detection when compared to radiologists (original radiologists: ROC-AUC:

0.917 [95% CI 0.892–0.942], sensitivity: 85.3% [95% CI 80.3–90.4]). The semiautomated triaging strategy also resulted in an inferior specificity

of 98.4% (95% CI 98.0–98.9) to that of radiologists (98.1% [95% CI 97.6–98.6]) (Figure 3B and Table 2).

Reader study results

The generalizability of RAIN was strengthened in a real-world screening cohort. The RAIN yielded an ROC-AUCof 0.969 (95%CI 0.960–0.979),

with sensitivity of 91.0% (95% CI 84.0–8.1) and specificity of 91.7% (95% CI 90.4–93.0) in identifying scans with recurrence (Figure 5A and

Table 2). Further analysis for the performance of the RAIN model in binary classification task is available in Table S3.

9,169 patients with NPC
from the SYSUCC

Excluded
(1) Aged < 18 years old
(2) Diagnosed without histology
(3) De novo distant metastasis
(4) Previous therapy
(5) Incomplete treatment
(6) PR/SD/Unknown after treatment
(7) Irregular follow-up MR
(8) With other malignancy

792 rNPC and 683 non-rNPC

Excluded
Poor MR image quality

7,967 scans from 1,475 patients

Training Cohort
6,374 scans from 1,181 patients

Tuning Cohort
815 scans from 147 patients

Internal Validation Cohort
778 scans from 147 patients

RAIN + MANual reading (RAINMAN workflow)

External Validation Cohort
472 scans from 85 patients 

from the ACHGMU

External Validation Cohort
2,597 scans from 364 patients 

from the CHUCAS

Reader Study
1,776 scans from 248 patients 

from the SYSUCC

Experts-labelled MR Random Allocation

Figure 2. Study population flow chart

Abbreviations: NPC, nasopharyngeal carcinoma; PR, partial remission; SD, stable disease; rNPC, recurrent nasopharyngeal carcinoma; non-rNPC, non-recurrent

nasopharyngeal carcinoma; MR, magnetic resonance; SYSUCC, Sun Yat-sen University Cancer Center; CHUCAS, Cancer Hospital of The University of Chinese

Academy of Sciences; ACHGMU, The Affiliated Cancer Hospital of Guangzhou Medical University.

ll
OPEN ACCESS

iScience 26, 108347, December 15, 2023 3

iScience
Article



Table 1. Patient characteristics

Training (n = 1,181) Tuning (n = 147)

Internal validation

(n = 147)

External validation

(n = 449) Reader study (n = 248)

rNPC

(n = 634)

non-rNPC

(n = 547)

rNPC

(n = 79)

non-rNPC

(n = 68)

rNPC

(n = 79)

non-rNPC

(n = 68)

rNPC

(n = 191)

non-rNPC

(n = 258)

rNPC

(n = 67)

non-rNPC

(n = 181)

Sex

Male 481 (75.9) 394 (72.0) 57 (72.2) 48 (70.6) 60 (75.9) 52 (76.5) 142 (74.3) 176 (68.2) 46 (68.7) 136 (75.1)

Female 153 (24.1) 153 (28.0) 22 (27.8) 20 (29.4) 19 (24.1) 16 (23.5) 49 (25.7) 82 (31.8) 21 (31.3) 45 (24.9)

Age (y) 45.1 G 10.3 43.2 G 10.0 47.8 G 10.2 45.1 G 8.5 46.9 G 10.0 42.7 G 9.2 50.6 G 10.2 46.6 G 10.4 44.7 G 10.9 42.9 G 9.8

WHO

pathological

type

NKSCC 613 (96.7) 542 (99.1) 78 (98.7) 67 (98.5) 72 (97.5) 67 (98.5) 169 (88.5) 250 (96.9) 66 (98.5) 180 (99.4)

KSCC 21 (3.3) 5 (0.9) 1 (1.3) 1 (1.5) 2 (2.5) 1 (1.5) 22 (11.5) 8 (3.1) 1 (1.5) 1 (0.6)

Clinical T

stagea

cT1 31 (4.9) 131 (23.9) 1 (1.3) 16 (23.5) 4 (5.1) 17 (25.0) 14 (7.3) 41 (15.9) 5 (7.4) 14 (7.7)

cT2 113 (17.8) 97 (17.7) 11 (13.9) 12 (17.6) 14 (17.7) 11 (16.2) 23 (12.1) 51 (19.8) 6 (9.0) 38 (21.0)

cT3 359 (56.6) 273 (49.9) 48 (60.8) 35 (51.5) 49 (62.0) 29 (42.6) 77 (40.3) 120 (46.5) 38 (56.7) 102 (56.4)

cT4 131 (20.7) 46 (8.4) 19 (24.0) 5 (7.4) 12 (15.2) 11 (16.2) 77 (40.3) 46 (17.8) 18 (26.9) 27 (14.9)

Clinical N

stagea

cN0 31 (4.9) 97 (17.7) 3 (3.8) 8 (11.8) 3 (3.8) 7 (10.3) 15 (7.9) 33 (12.8) 4 (6.0) 12 (6.6)

cN1 234 (36.9) 253 (46.3) 28 (35.4) 33 (48.5) 23 (29.1) 35 (51.5) 81 (42.4) 107 (41.5) 21 (31.3) 69 (38.1)

cN2 275 (43.4) 158 (28.9) 36 (45.6) 22 (32.4) 38 (48.1) 21 (30.9) 74 (38.7) 110 (42.6) 27 (40.3) 83 (45.9)

cN3 94 (14.8) 39 (7.1) 12 (15.2) 5 (7.3) 15 (19.0) 5 (7.3) 21 (11.0) 8 (3.1) 15 (22.4) 17 (9.4)

Clinical stagea

I 4 (0.6) 37 (6.8) 0 (0.0) 3 (4.4) 0 (0.0) 3 (4.5) 1 (0.5) 7 (2.7) 1 (1.5) 2 (1.1)

II 65 (10.3) 115 (21.0) 9 (11.4) 15 (22.1) 7 (8.8) 16 (23.5) 16 (8.4) 45 (17.4) 3 (4.5) 25 (13.8)

III 358 (56.5) 312 (57.0) 40 (50.6) 41 (60.3) 48 (60.8) 33 (48.5) 80 (41.9) 154 (59.7) 33 (49.3) 113 (62.4)

IV 207 (32.6) 83 (15.2) 30 (38.0) 9 (13.2) 24 (30.4) 16 (23.5) 94 (49.2) 52 (20.2) 30 (44.8) 41 (22.7)

Pre-EBV DNA

(copies/ml)

Available 41,370 G

214,841

42,959 G

214,221

12,034 G

31,208

16,484 G

41,815

66,684 G

230,918

33,318 G

121,711

NA 7,601 G

51,914

1,785 G

4,204

12,700 G

42,962

NA 136 (21.5) 7 (1.3) 10 (12.7) 2 (2.9) 9 (11.4) 0 (0.0) 191 (100.0) 185 (71.7) 1 (1.5) 4 (2.2)

Chemotherapy

Yes 556 (87.7) 452 (82.6) 72 (91.1) 61 (89.7) 74 (93.7) 60 (88.2) 188 (98.4) 253 (98.1) 62 (92.6) 161 (89.0)

No 78 (12.3) 95 (17.4) 7 (8.9) 7 (10.3) 5 (6.3) 8 (11.8) 3 (1.6) 5 (1.9) 5 (7.4) 20 (11.0)

Radiotherapy

technique

IMRT 563 (88.8) 546 (99.8) 71 (89.9) 68 (100.0) 69 (87.3) 68 (100.0) 169 (88.5) 258 (100.0) 67 (100.0) 181 (100.0)

3D-CRT 2 (0.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

2D-CRT 69 (10.9) 1 (0.2) 8 (10.1) 0 (0.0) 10 (12.7) 0 (0.0) 22 (11.5) 0 (0.0) 0 (0.0) 0 (0.0)

Dose to

PTVnx (cGy)

6,972 G

120

6,962 G

101

6,985 G

143

6,954 G

96

6,977 G 115 6,953 G 89 6,879 G

277

6,984 G

104

6,995 G 58 6,977 G 96

Dose to

PTVnd (cGy)

6,102 G

1,693

5,994 G

1,792

6,102 G

1,629

6,173 G

1,578

6,224 G

1,496

6,099 G

1,747

6,261 G

977

6,380 G

955

6,666 G

858

6,435 G 1,220

(Continued on next page)
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The RAIN detector preselected 10.4% positives and eliminated 86.8% negatives. Accordingly, the RAINMAN workflow resulted in a work-

load reduction of 83.6% scans. The ROC-AUC increased by 0.011–0.012, and the sensitivity increased by 1.5%–3.2%, while the specificity

increased by 0.3%–2.9% among readers (Figure 5A and Table 2). Judgments per radiologist and the simulated workflow are presented in

confusion matrices in Figure S2. There was a moderate degree of agreement among all combination pairs of readers with or without

RAIN (Figure 5B).

DISCUSSION

We developed and validated a triage-driven, semiautomated workflow with a good balance between the strengths and limitations of a fully

automated analysis and manual reading. In a simulation study among large populations across varying recurrence rates 3.8%–10.2%,

RAINMAN was competent in freeing radiologists from examining 81.3%–88.3% true-negative scans and in preselecting 10.4%–34.2%

high-confident positives for enhanced assessment. Also, a boost in diagnostic performance was observed (sensitivity 1.5%–3.2%; specificity

0.3%–2.9%). Notably, this diagnosis refinement process motivated by human-computer cooperation can be extrapolated to any validated DL

algorithm, any cancer and even noncancerous disease imaging, and any medical institution.

Although good harvests have been reaped in the field of CAD,9,15,25–27 there will likely always be a need for a ‘‘human-in-the-loop’’

when complicated situations, especially those requiring an absolutely correct judgment (e.g., diagnosis in cancer or recurrence), are

encountered.28–30 Our simulated triage workflow, which builds on a convolutional neural network (CNN)-based tool and triage-driven

approach, has several potential implications for managing cancer patients. Foremost, the uniqueness of RAIN in profiling risk probability

longitudinally and dynamically conforms to the clinical setting. With simultaneously comprehensive iterating cues from both the present

scan and prior scan(s), our model is able to eliminate the interference of histological and structural changes induced by radiation. Addi-

tionally, despite the diverse scanning protocols and scanner vendors between or within centers, the generalization and robustness of RAIN

have been validated in a multicenter observational study. Inspired by promising and recent advancements in human-computer interac-

tions,16–18,29,30 we used the underlying risk prediction score generated by the DL algorithm for more prudent judgment. By deliberately

leveraging the previous well-verified triage-driven approach,29 this DL-based triage and radiologists-made decision assistance is more

interpretable and transparent to the current clinical situation in reducing workloads while matching the diagnostic performance of

radiologists.

Second, the high cure rate and certain recurrence rate of the studied cancer type (mostly recurrence free) in this work accord with

resource-constrained scenarios.4–6 Most routine follow-up MR scans among these patients with complete remission (CR) of NPC show sta-

ble histological and structural changes induced by radiation that may not require manual review. Thus, approaches to shunt these normal

scans to reduce radiologist workload are needed. The automated shunt is able to dismiss a large portion (76.2%–83.6%) of the follow-up

scans as recurrence free for no radiologist assessment which significantly improves workflow specificity and efficiency. Notably, this first-sift

prescreening would cause a larger workload reduction in a realistic population with a lower recurrence rate than retrospectively collected

populations. This result implies that the clinical utility of semiautomated workflow hinges on the cohort composition. With clinical re-

sources becoming increasingly scarce with accumulating imaging data (mostly normal) and a relative decrease in experienced radiologists,

our proposed workflow could sift out safe patients, facilitating more reasonable medical resource allocation. Obviating single-human

Table 1. Continued

Training (n = 1,181) Tuning (n = 147)

Internal validation

(n = 147)

External validation

(n = 449) Reader study (n = 248)

rNPC

(n = 634)

non-rNPC

(n = 547)

rNPC

(n = 79)

non-rNPC

(n = 68)

rNPC

(n = 79)

non-rNPC

(n = 68)

rNPC

(n = 191)

non-rNPC

(n = 258)

rNPC

(n = 67)

non-rNPC

(n = 181)

Post-EBV DNA

(copies/ml)

Available 224.7 G

2647.0

1.5 G 25.1 1.2 G 8.1 1.9 G 13.7 665.3 G

2701.0

41.2 G

253.4

28.1 G

95.5

3.7 G 15.7 6.7 G 51.3 13.5 G 112.2

NA 191 (30.1) 124 (22.7) 30 (38.0) 17 (25.0) 26 (32.9) 14 (20.6) 145 (75.9) 221 (85.7) 2 (3.0) 28 (15.5)

Follow-up

interval

(month)

6.0 G 3.4 8.5 G 4.7 6.0 G 3.6 8.4 G 4.8 6.2 G 3.9 8.4 G 4.4 6.2 G 4.6 6.6 G 3.2 5.9 G 3.3 7.8 G 3.8

Data are n (%) or mean G standard deviation.

Abbreviations: rNPC, recurrent nasopharyngeal carcinoma; non-rNPC, non-recurrent nasopharyngeal carcinoma; WHO, World Health Organization; NKSCC,

non-keratinizing squamous cell carcinoma; KSCC, keratinizing squamous cell carcinoma; EBV DNA, Epstein-Barr virus deoxyribonucleic acid; Pre-EBV DNA, pre-

treatment plasma EBV DNA level; NA, not applicable; IMRT, intensity-modulated radiation therapy; 3D-CRT, three-dimensional conformal radiation therapy;

2D-CRT, two-dimensional conventional radiation therapy; PTVnx, primary tumor volume of nasopharynx; PTVnd, primary tumor volume of metastatic neck lymph

node(s); Post-EBV DNA, posttreatment (3–6 months after radiation therapy) plasma EBV DNA level.
aThe 8th edition of the American Joint Committee on Cancer (AJCC) guidelines was used for tumor, metastatic lymph node(s), and distant metastasis staging.
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assessment in normal scans (both time and discussion) potentially allows radiologists to focus on complicated and atypical scans that need

human interpretations.

Last but surprisingly, we found that the DL-motivated examination triage was able to preselect a subset with high risk. Accordingly, the

sensitivity in detecting recurrenceswasmarkedly improved by complementary human-computer cooperation. Undeniably, owing to histolog-

ical and structural changes induced by radiation, disturbance of subjective judgment, and heavy workload, clinicians may inevitably neglect

some occult and atypical recurrence ormistake them for benign ‘‘mimickers.’’10,11 Thus, a few individualsmight end upwith recurrence that, in

hindsight, could have been detected on previous scans.31 The impartial judgment provided by the DL method may potentially reduce omis-

sions in recurrence wavered by subjective influences. If the proposed workflow is implemented in clinical scenarios, there would be not only a

reduction in the number of scan-detected recurrences but also an expected shift toward downstaging recurrence in the future.

In conclusion, our study shows that leveraging risk scores predicted byDLmodel and existing heuristics of radiologist decision-making in a

triage-based approach that triages scans into mutually exclusive tiers could potentially reduce radiologist workload by over half and impar-

tially present positives with high confidence. The described triage-driven approach offers a logical mode for status-wise clinical adoption and

performance testing in management among cancer patients.

Limitations of the study

Several limitations should be noted in our work. A limitation of our study was that, while our model was built and evaluated on diverse and

clinically representative cases from three expert cancer-care centers (diverse follow-up intervals, imaging protocols, and scanner vendors), the

subjects were all from China.3 Additional cohorts with diversities in populations, races, and recurrence rates are required to confirm its

Figure 3. Performances of RAINMAN and original radiologists on retrospective validation cohorts

(A ) Performances of RAINMAN and original radiologists on internal validation cohort.

(B) Performances of RAINMAN and original radiologists on external validation cohort.

Abbreviations: ROC-AUC, area under curve the receiver operating characteristic curve; RAIN, Artificial Intelligence for detecting Recurrent Nasopharyngeal

carcinoma; RAINMAN, RAIN + MANual reading. See also Table S3.
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Figure 4. Generation of the rule-out and alert thresholds through triage substitution scheme on tuning cohort

The red rectangle in (A) indicates a stage retaining the undamaged sensitivity with maximum workload substitution. The red rectangle in (B) indicates a stage

retaining undamaged specificity. Abbreviation: RAIN, Artificial Intelligence for detecting Recurrent Nasopharyngeal carcinoma. See also Table S4.
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Table 2. Diagnostic performance and workload reduction simulation for radiologist(s) and RAINMAN workflow in retrospective and reader study

RAIN (%) [95% CI] Manual read (%) [95% CI] RAINMAN (%) [95% CI] D change (%) p value

Retrospective study

Internal validation cohort

Original radiologists

ROC-AUC 0.990 (0.984–0.995) 0.927 (0.891–0.962) 0.954 (0.922–0.985) +0.027 0.004

Sensitivity 97.5 (77/79) [93.9–100.0] 88.6 (70/79) [81.4–95.8] 91.1(72/79) [84.7–97.5] +2.5 0.500

Specificity 92.4 (646/669) [90.5–94.4] 96.7 (676/699) [95.4–98.0] 99.6 (696/699) [99.1–100.0] +2.9 <0.001

Recurrence alert 97.5 (77/79) 0.0 (0/79) 34.2(27/79) NA NA

Non-recurrence elimination 92.4 (646/669) 0.0 (0/699) 88.3(617/699) NA NA

Workload reduction 100.0 (778/778) 0.0 (0/778) 79.3(617/778) NA NA

External validation cohort

Original radiologists

ROC-AUC 0.958 (0.950–0.966) 0.917 (0.892–0.942) 0.935 (0.912–0.957) +0.018 0.007

Sensitivity 97.4 (186/191) [95.1–99.7] 85.3(163/191) [80.3–90.4] 88.5 (169/191) [83.9–93.1] +3.2 0.031

Specificity 86.4 (2,484/2,875)

[85.1–87.6]

98.1(2,820/2,875)

[97.6–98.6]

98.4 (2,830/2,875)

[98.0–98.9]

+0.3 0.302

Recurrence alert 97.4 (186/191) 0.0 (0/191) 29.8 (57/191) NA NA

Non-recurrence elimination 86.4 (2,484/2,875) 0.0 (0/2,875) 81.3(2,337/2,875) NA NA

Workload reduction 100.0 (3,066/3,066) 0.0 (0/3,066) 76.2(2,337/3,066) NA NA

Reader study

Radiologist 1

ROC-AUC 0.969 (0.960–0.979) 0.908 (0.863–0.953) 0.923(0.880–0.966) +0.015 0.053

Sensitivity 91.0 (61/67) [84.0–98.1] 83.6 (56/67) [74.5–92.7] 85.1(57/67) [76.3–93.8] +1.5 1.000

Specificity 91.7 (1,529/1,667)

[90.4–93.0]

98.1(1,676/1,709)

[97.4–98.7]

99.4 (1,701/1,709)

[99.2–99.9]

+1.3 <0.001

Recurrence alert 91.0 (61/67) 0.0 (0/67) 10.4 (7/67) NA NA

Non-recurrence elimination 91.7 (1,529/1,667) 0.0 (0/1,709) 86.8 (1,484/1,709) NA NA

Workload reduction 100.0 (1,776/1,776) 0.0 (0/1,776) 83.6 (1,484/1,776) NA NA

Radiologist 2

ROC-AUC 0.969 (0.960–0.979) 0.934 (0.895–0.974) 0.946 (0.909–0.983) +0.012 0.137

Sensitivity 91.0 (61/67) [84.0–98.1] 88.1(59/67) [80.1–96.0] 89.6 (60/67) [82.0–97.1] +1.5 1.000

Specificity 91.7 (1,529/1,667)

[90.4–93.0]

98.8 (1,689/1,709)

[98.3–99.3]

99.6 (1,702/1,709)

[99.3–99.9]

+0.8 0.007

Recurrence alert 91.0 (61/67) 0.0 (0/67) 10.4 (7/67) NA NA

Non-recurrence elimination 91.7 (1,529/1,667) 0.0 (0/1,709) 86.8 (1,484/1,709) NA NA

Workload reduction 100.0 (1,776/1,776) 0.0 (0/1,776) 83.6 (1,484/1,776) NA NA

Radiologist 3

ROC-AUC 0.969 (0.960–0.979) 0.950 (0.916–0.985) 0.961(0.929–0.992) +0.011 0.170

Sensitivity 91.0 (61/67) [84.0–98.1] 91.0 (61/67) [84.0–98.1] 92.5 (62/67) [86.1–99.0] +1.5 1.000

Specificity 91.7 (1,529/1,667)

[90.4–93.0]

99.0 (1,692/1,709)

[98.5–99.5]

99.6 (1,702/1,709)

[99.3–99.9]

+0.6 0.031

Recurrence alert 91.0 (61/67) 0.0 (0/67) 10.4 (7/67) NA NA

Non-recurrence elimination 91.7 (1,529/1,667) 0.0 (0/1,709) 86.8 (1,484/1,709) NA NA

Workload reduction 100.0 (1,776/1,776) 0.0 (0/1,776) 83.6 (1,484/1,776) NA NA

Mean radiologist

ROC-AUC 0.969 (0.960–0.979) 0.931(0.891–0.971) 0.943(0.906–0.980) +0.012 –

(Continued on next page)
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performance. Another limitation was that cases of partial remission (PR) of the tumor (3.0%–13.0%)4–6 were not considered in this study. Third,

because of the unreachable sites of some recurring disease, not all cases were diagnosed with histology. However, we examined nonpatho-

logically confirmed recurrences according to strict criteria. Besides, certain occult recurrencemay occur before clinical diagnostic recurrence.

The date of recurrence is unlikely to correspond exactly to when the scan was acquired. A final limitation was that the thresholds for the DL

algorithm were derived in our setting, and the results from other centers could be different.
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Figure 5. Performances of RAIN, readers, and simulated RAINMAN, and the degree of agreement for readers and simulated RAINMAN based on

reader study

(A) Performances of RAIN, readers, and simulated RAINMAN.

(B) Degree of agreement for readers and simulated RAINMAN. Abbreviations: RAIN, Artificial Intelligence for detecting Recurrent Nasopharyngeal carcinoma;

ROC-AUC, area under curve the receiver operating characteristic curve; RAINMAN, RAIN + MANual reading. See also Figure S2 and Table S3.

ll
OPEN ACCESS

iScience 26, 108347, December 15, 2023 11

iScience
Article

http://refhub.elsevier.com/S2589-0042(23)02424-0/sref1
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref1
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref2
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref2
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref2
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref2
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref2
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref3
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref3
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref3
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref4
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref4
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref4
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref4
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref4
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref4
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref4
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref4
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref5
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref5
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref5
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref5
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref5
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref5
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref5
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref5
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref5
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref6
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref6
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref6
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref6
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref6
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref6
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref6
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref7
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref7
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref7
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref7
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref7
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref7
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref7
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref8
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref8
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref8
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref8
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref8
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref8
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref8
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref9
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref9
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref9
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref9
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref9
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref9
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref10
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref10
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref10
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref10
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref10
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref10
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref11
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref11
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref12
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref12
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref12
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref12
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref13
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref13
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref13
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref13
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref13
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref13
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref14
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref15
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref15
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref15
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref15
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref15
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref15
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref15
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref16
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref16
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref16
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref16
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref17
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref17
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref17
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref17
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref17
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref17
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref17
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref17
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref18
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref18
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref18
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref18
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref18
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref18
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref18
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref18
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref19
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref19
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref19
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref19
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref19
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref20
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref20
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref20
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref20
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref20
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref21
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref21
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref21
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref21
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref21
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref21
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref22
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref22
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref22
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref22
http://refhub.elsevier.com/S2589-0042(23)02424-0/sref22


23. Wong, L.M., King, A.D., Ai, Q.Y.H., Lam,
W.K.J., Poon, D.M.C., Ma, B.B.Y., Chan,
K.C.A., and Mo, F.K.F. (2021). Convolutional
neural network for discriminating
nasopharyngeal carcinoma and benign
hyperplasia on MRI. Eur. Radiol. 31,
3856–3863.

24. Ke, L., Deng, Y., Xia, W., Qiang, M., Chen, X.,
Liu, K., Jing, B., He, C., Xie, C., Guo, X., et al.
(2020). Development of a self-constrained 3D
DenseNet model in automatic detection and
segmentation of nasopharyngeal carcinoma
using magnetic resonance images. Oral
Oncol. 110, 104862.

25. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J.,
Swetter, S.M., Blau, H.M., and Thrun, S.
(2017). Dermatologist-level classification of
skin cancer with deep neural networks.
Nature 542, 115–118.

26. Yun, T.J., Choi, J.W., Han, M., Jung, W.S.,
Choi, S.H., Yoo, R.-E., and Hwang, I.P. (2023).
Deep learning based automatic detection
algorithm for acute intracranial haemorrhage:
a pivotal randomized clinical trial. NPJ Digit.
Med. 6, 61.

27. Kim, Y., Lee, K.J., Sunwoo, L., Choi, D., Nam,
C.-M., Cho, J., Kim, J., Bae, Y.J., Yoo, R.-E.,
Choi, B.S., et al. (2019). Deep Learning in
Diagnosis of Maxillary Sinusitis Using
Conventional Radiography. Invest. Radiol.
54, 7–15.

28. Labus, S., Altmann, M.M., Huisman, H., Tong,
A., Penzkofer, T., Choi, M.H., Shabunin, I.,
Winkel, D.J., Xing, P., Szolar, D.H., et al.
(2023). A concurrent, deep learning-based
computer-aided detection system for
prostate multiparametric MRI: a performance
study involving experienced and less-

experienced radiologists. Eur. Radiol.
33, 64–76.

29. Gehrung, M., Crispin-Ortuzar, M., Berman,
A.G., O’Donovan, M., Fitzgerald, R.C., and
Markowetz, F. (2021). Triage-driven diagnosis
of Barrett’s esophagus for early detection of
esophageal adenocarcinoma using deep
learning. Nat. Med. 27, 833–841.

30. Tschandl, P., Rinner, C., Apalla, Z.,
Argenziano, G., Codella, N., Halpern, A.,
Janda, M., Lallas, A., Longo, C., Malvehy, J.,
et al. (2020). Human-computer collaboration
for skin cancer recognition. Nat. Med. 26,
1229–1234.

31. Yala, A., Mikhael, P.G., Lehman, C., Lin, G.,
Strand, F.,Wan, Y.-L., Hughes, K., Satuluru, S.,
Kim, T., Banerjee, I., et al. (2022). Optimizing
risk-based breast cancer screening policies
with reinforcement learning. Nat. Med. 28,
136–143.

32. Amin, M.B., Greene, F.L., Edge, S.B.,
Compton, C.C., Gershenwald, J.E.,
Brookland, R.K., Meyer, L., Gress, D.M., Byrd,
D.R., and Winchester, D.P. (2017). The Eighth
Edition AJCC Cancer Staging Manual:
Continuing to build a bridge from a
population-based to a more ‘‘personalized’’
approach to cancer staging. CA A Cancer J.
Clin. 67, 93–99.

33. Therasse, P., Arbuck, S.G., Eisenhauer, E.A.,
Wanders, J., Kaplan, R.S., Rubinstein, L.,
Verweij, J., Van Glabbeke, M., van Oosterom,
A.T., Christian, M.C., and Gwyther, S.G.
(2000). New Guidelines to Evaluate the
Response to Treatment in Solid Tumors.
J. Natl. Cancer Inst. 92, 205–216.

34. Ng, S.-H., Chang, J.T.-C., Chan, S.-C., Ko,
S.-F., Wang, H.-M., Liao, C.-T., Chang, Y.-C.,
and Yen, T.-C. (2004). Nodal metastases of

nasopharyngeal carcinoma: patterns of
disease on MRI and FDG PET. Eur. J. Nucl.
Med. Mol. Imag. 31, 1073–1080.

35. Ng, S.-H., Chan, S.-C., Yen, T.-C., Liao, C.-T.,
Chang, J.T.-C., Ko, S.-F., Wang, H.-M., Lin,
C.-Y., Chang, K.-P., and Lin, Y.-C. (2010).
Comprehensive imaging of residual/
recurrent nasopharyngeal carcinoma using
whole-body MRI at 3 T compared with FDG-
PET-CT. Eur. Radiol. 20, 2229–2240.

36. Chong, V.F., and Fan, Y.F. (1997). Detection
of recurrent nasopharyngeal carcinoma: MR
imaging versus CT. Radiology 202, 463–470.

37. Avants, B.B., Tustison, N.J., Song, G., Cook,
P.A., Klein, A., and Gee, J.C. (2011). A
reproducible evaluation of ANTs similarity
metric performance in brain image
registration. Neuroimage 54, 2033–2044.

38. He, K., Zhang, X., Ren, S., and Sun, J. (2016).
Deep Residual Learning for Image
Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR) (IEEE), pp. 770–778.

39. Dosovitskiy, A., Beyer, L., Kolesnikov, A.,
Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G.,
Gelly, S., et al. (2021). An Image Is Worth
16x16 Words: Transformers for Image
Recognition at Scale.

40. Ben-Baruch, E., Ridnik, T., Zamir, N., Noy, A.,
Friedman, I., Protter, M., and Zelnik-Manor, L.
(2021). Asymmetric Loss for Multi-Label
Classification.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information about the methods and requests for data or scripts should be directed to and will be fulfilled by the lead contact, Chao-

Feng Li (lichaofeng@sysucc.org.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� De-identified patient standardized data have been deposited at the Research Data Deposit public platform (No. RDDA2023643426),

and DOIs are listed in the key resources table. They are available upon request if access is granted. To request access, contact Sun Yat-

sen University Cancer Center.
� All original code has been deposited at the Github and is publicly available as of the date of publication. DOIs are listed in the key

resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request

(lichaofeng@sysucc.org.cn).

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient cohorts

In this multicentre retrospective study, patients with CR of non-disseminated NPC after radical (chemo)radiotherapy and followed annual

H&N MR scans within 5 years between September 2007 and December 2021 were recruited from three hospitals in China and followed

up until June 31, 2022.

Patients who met the following inclusion criteria were enrolled in this study: (i) agedR18 years with pathologically confirmed NPC at the

initial diagnosis; (ii) restaged to I-IVa (T1-4N0-3M0) according to the American Joint Committee on Cancer (AJCC) 8th edition staging classifi-

cation system32; (iii) treated with radical radiotherapy (RT) G neoadjuvant or concurrent chemotherapy; (iv) imaging confirmation of CR of

gross tumor at the primary site and metastatic lymph nodes in the cervical region within 6 months post RT33; (v) pretreatment, posttreatment

and regular follow-up (at least annual) head and neck (H&N) magnetic resonance (MR) examinations; and (vi) high-resolution H&N follow-up

MR images. Patients who met any of the following exclusion criteria were excluded from this study: (i) distant metastasis at first diagnosis; (ii)

did not receive radical RT or had an interruption of RT > 7 days; (iii) absence or had pretreatment or follow-upMR images of insufficient quality

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Horos DICOM VIEWER (version 3.3.6) Horos https://www.horosproject.org

RadiAnt DICOM VIEWER (version 5.0.1) RadiAnt https://www.radiantviewer.cn

Python (version 3.6.10) Python software www.python.org

ANTsPy ANTsPy https://antspyx.readthedocs.io/en/latest/

registration.html

ResNet18 (He et al., 2016) https://openaccess.thecvf.com/content_cvpr_2016/

papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Transformer (Dosovitskiy et al., 2021) https://openreview.net/pdf?id=YicbFdNTTy

R (version 3.5.1) R software https://www.r-project.org

SPSS (version 26.0.0.0) IBM corporation https://www.ibm.com/analytics

GraphPad Prism (version 9.0.2) GraphPad Software https://www.graphpad.com

Other

Research Data Deposit Sun Yat-sen University Cancer Center https://www.researchdata.org.cn

Source code Github https://github.com/yydashu/RAIN

AJCC TNM staging system (Amin et al., 2017) https://link.springer.com/book/9783319406176
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to obtain measurements (i.e., motion artifacts); (iv) unknown efficacy evaluation or partial remission (PR) or stable disease (SD) beyond

6 months after RT33; (v) irregular follow-up surveys; or (vi) other malignancies or previous antitumour therapy.

Between September 10, 2007, and April 14, 2020, 792 eligible patients (1092 male) with CR of NPC who underwent annual follow-up MR

surveys were collected from the Sun Yat-sen University Cancer Center (SYSUCC) and served as the training, tuning and internal validation

cohorts. For external validation, 364 eligible patients (261 male) between July 20, 2009, and November 24, 2020, from Cancer Hospital of

The University of Chinese Academy of Sciences (CHUCAS), and 85 eligible patients (57 male) between September 6, 2011, and September

4, 2020, from The Affiliated Cancer Hospital of Guangzhou Medical University (ACHGMU) were collected. From January to December 2021,

248 eligible cases (182 male) in SYSUCC were consecutively collected for comparing performances of RAIN model and three radiologists in

the reader study. The institutional review boards of each center approved this study and waived the requirement for informed consent owing

to the retrospective nature of this study.

METHOD DETAILS

Data collection

A semiautomated workflow (RAINMAN) was constructed post hoc based on a retrospective, observational study (ChiCTR.org.cn, Chi-

CTR2200056595) in three centers (SYSUCC; CHUCAS; ACHGMU). The study flowchart is presented in Figure 1.

Therapeutic regimens and follow-up

All included patients received radical two-dimensional conventional RT (2D-CRT), three-dimensional conformal RT (3D-CRT) or intensity-

modulated radiation therapy (IMRT) to the primary tumor in the nasopharynx andmetastatic lymph node(s) in the cervical region, if necessary

(66.0 Gy or greater in 30–35 fractions, with five daily fractions per week for 6–7 weeks). Platinum-based concurrent chemoradiotherapy

(CCRT) G neoadjuvant chemotherapy (NACT) was implemented at the physician’s discretion depending on the patient’s physical status

and the stage of disease.

After treatment, patients were assessed every 3months during the first 3 years, every 6 months during the next 2 years, and annually there-

after. The routine follow-up H&N MR scans were acquired at regular intervals within 5 years, generally at 3–24 months, depending on the

oncologists’ preference and survivors’ compliance.

Clinical classification

A rotating panel of four experts (two radiologists and two oncologists) specialized in NPC evaluated patients’ clinical information and all

scans. All patients underwent H&N MR within 6 months after definitive treatment to establish a new baseline for future comparisons.

CR was achieved in all eligible patients. CR was defined as absence of any disease, including both the primary tumor at the nasopharynx

and the metastatic cervical lymph node(s), on MR images.

During 5-year follow-up period, patients were classified as recurrent nasopharyngeal carcinoma (rNPC) cases (biopsy-, functional imaging-,

or radiological confirmed recurrence in local, regional or locoregional sites) or nonrecurrent nasopharyngeal carcinoma (non-rNPC) cases

(remained in CR for 5 years starting from the completion date of the initial treatment).

In cases of rNPC, for lesions that were accessible, the diagnosis was based on the positive histopathological results frombiopsy. For lesions

that were not accessible, the diagnoses were made based on radiologic images. For cases with available functional imaging 18F-fluorodeox-

yglucose positron emission tomography and computed tomography (18F-FDG PET/CT) imaging, the clinical diagnosis was made in

consensus by two nuclear medicine physicians (each with 5 years of experience in PET/CT) referring to the five-point scale proposed by

Ng et al..34,35 In patients with a clinical diagnosis based on MR images, pre, posttreatment and ‘‘suspected recurrence’’ MR scans for each

patient were independently reviewed by a rotating panel of four board-certified experts (two radiologists and two oncologists) from the

SYSUCC referring to radiologic criteria for rNPC proposed by Chong et al.36

In cases of non-rNPC, patients remained CR without evidence of recurrence within a 5-year follow-up period.

MR scanning protocol

The follow-upH&NMR examinations were performed on a 1.0-, 1.5-, or 3.0-TMRI unit (SYSUCC: T1-weighted fast spin echo [FSE] images and

contrast-enhanced [CE] T1-weighted FSE images on the axial and sagittal planes, CE T1-weighted fat suppressed [FS] images on the coronal

plane, and T2-weighted FSE images on the axial plane; CHUCAS & ACHGMU: T1-weighted FSE images on the axial and sagittal planes, CE

T1-weighted FS images on the axial and coronal planes, and T2-weighted FS images on the axial plane) (Table S5). All H&NMR images were

stored in Digital Imaging and Communications in Medicine (DICOM) format in the imaging database. All MR sequences on different planes

are available for radiologists’ review.

MR scan labeling

The H&N MR scans and clinical information (sex, age, primary tumor, first-course of treatment, follow-up data) were retrieved from the Hos-

pital Information System (HIS) in three centers and processed in SYSUCC. All scans with clinical information were evaluated at the individual

level by a rotating panel of four board-certified experts (two radiologists and two oncologists) specialized in NPC following the review process
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depicted in Figure S3. A follow-up H&NMR scan was labeled positive or negative for recurrence (Table S6). The image labels were finalized

only when experts reached a consensus.

MR registration and network architectures

Axial CE T1-weighted imaging (T1-WI) images were collected from the first posttreatment scan identified with radiologic CR until scan with

recurrence or the last scanwithout recurrencewithin a 5-year follow-up period. Rigid registration between images was performed using voxel-

based advanced normalization tools.37 The current and two previous axial CE T1-WI images were set as target images, and source images,

respectively. All images were resampled to a spatial resolution of 0.5 mm 3 0.5 mm36mm.

The input of themodel is formed by the threemost recent scans, which include the current and two previous scans. If there were fewer than

three timepoints, we padded the input with the current scan to reach three. The two-dimension (2D) image slices of the same position in the

time-series MR images are superimposed to construct a three-channel image. The input three-channel image consists of 30 slices, covering

the structures of the head and neck. Tomeet the input requirements of themodel, all MR images were sampled using bilinear interpolation to

a size of 448 3 448 pixels. The input data shape is (3, 30, 448, 448). The imaging features were extracted and fused by an end-to-end archi-

tecture that intergrated by the ResNet1838 (feature extraction module) and Transformer39 (feature fusion module) (Figure S4). The generated

featuremapswere divided into feature patches and further projected into the embedding space by the fully connected layer. The Transformer

mined the correlations between spatiotemporal feature information and outputted a probability of recurrence likelihood (RAIN score).

We utilized PyTorchwith 2GPUs to trainmodel. The parameter settings were summarized in Table S7. The ‘Adam’ optimizer optimized the

asymmetric loss40 with minibatch size of 6 and the initial learning rate of 1 3 10�5. The probability margin, positive and negative focusing

parameters of asymmetric loss were 0.1, 1 and 1.44, respectively. The RandomAffine (rotation, scaler, translation)41 augmented images during

training. The ImageNet pre-trained weights initialized the ResNet18.

Establishment of triage-driven semiautomated workflow

The RAIN score was a decimal number between 0 and 1, where 1 represented the highest level of suspicion. The score on the scan level was

defined by the maximum of the image-level prediction scores.

Two thresholds are set to triage scans into three tiers (Figure 1B): scans scored below ‘the rule-out threshold’ were considered high-con-

fidence negative (tier 1) in the ‘no radiologist workstream’; scans scored above ‘the alert threshold’ were considered high-confidence positive

(tier 2) in the ‘enhanced assessment workstream’; scans with scores in between were considered equivocal cases (tier 3) in the ‘manual read

workstream’.

We used a cumulative substitution scheme to generate two thresholds on the tuning cohort while retaining the accuracy of the original full

manual review according to documented radiologic reports (sensitivity: 87.3%; specificity: 97.5%). Scans were sorted from lowest to highest

RAIN score. To set ‘the rule-out threshold’, we determined the maximum deciles of negatives (scans without recurrence) that can be

substituted by full automated review by RAINwhile retaining undamaged sensitivity to that of original radiologists. To set ‘the alert threshold’,

we determined the maximum percentiles of positives (scans with recurrence) that were preselected by full automated review by RAIN while

retaining undamaged specificity to that of original radiologists.

Reader study

A reader study including 248 eligible cases collected between January 1 and December 31, 2021, was conducted to compare the diagnostic

performance of RAINMAN with that of three radiologists (with 30, 19, and 8 years of experience) in SYSUCC. Readers were independent and

not involved in labeling the scans. The original radiological interpretations, later recognized labels and case-identified information were

removed from scans. The follow-up H&N MR scans were presented in chronological order. Readers reported a judgment of recurrence or

nonrecurrence in every single scan (Figure S3). Then, the workflow was simulated in the reader study and compared with the readers in terms

of differential diagnostic performance.

QUANTIFICATION AND STATISTICAL ANALYSIS

Categorical variables are presented as frequencies and percentages. Quantitative statistics are presented as the mean G SD. The receiver

operating characteristic (ROC) curves were created by plotting the proportion of true positives (sensitivity) against the proportion of false

positives (1-specificity) by varying the predictive probability threshold.We used the ROC-AUC to show the diagnostic ability in differentiating

recurrence scans. A larger ROC-AUC indicated better diagnostic performance. The ROC-AUCs were compared by Delong’s test. The

threshold value for dichotomy was set by leveraging the Youden method on the ROC curve in the tuning cohort. The diagnostic sensitivity,

specificity, positive predictive value (PPV), and negative predictive value (NPV) for identifying targets were evaluated and compared by using

the McNemar test, and the 95% CI was calculated using the Clopper-Pearson method. Cohen’s kappa agreement analysis was performed on

readers and the simulated semiautomated workflow in the reader study.

Statistical analyses were performed using Python (version 3.6.10), R software (version 3.5.1), SPSS statistical software (version 26.0.0.0) and

GraphPad Prism software (version 9.0.2). A two-sided p < 0.05 was considered significant.

ll
OPEN ACCESS

iScience 26, 108347, December 15, 2023 15

iScience
Article



ADDITIONAL RESOURCES

This semiautomated workflow (RAINMAN) was constructed post hoc based on a retrospective, observational study (ChiCTR.org.cn, Chi-

CTR2200056595) in three centers fromChina (Sun Yat-sen University Cancer Center, Guangzhou; Cancer Hospital of The University of Chinese

Academy of Sciences, Hangzhou; The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou). The Institutional Review

Board of Sun Yat-sen University Cancer Center approved this study (B2021-333-01) and performed according to the Helsinki declaration.

The requirement for informed consent were waived because of the retrospective and observational design.
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