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Abstract
Background: The chronic unpredictable mild stress (CUMS) model has long been 
considered the best model for exploring the pathophysiological mechanisms underly-
ing depression. However, there are no widely recognised standards for strategies for 
modeling and for behavioral testing. The present study aimed to optimize the proto-
cols for food deprivation and the sucrose preference test (SPT) for the CUMS model.
Methods: We first evaluated the effects of different long periods of food depriva-
tion on the body weight of Sprague Dawley (SD) rats by testing food deprivation for 
24 hours (8:00-8:00+), food deprivation for 12 hours during the daytime (8:00-20:00) 
and food deprivation for 12 hours at night (20:00-8:00+). Next, we established a SD 
rat CUMS model with 15 different stimulations, and used body weight measurement, 
SPT, forced swim test (FST), open field test (OFT) and Morris water maze (MWM) test 
to verify the success of the modeling. In the SPT, consumption of sucrose and pure 
water within 1 and 12 hours was measured.
Results: Twelve hours of food deprivation during the daytime (8:00-20:00) had no 
effect on body weight, while 12 hours of food deprivation at night (20:00-8:00+) 
and 24 hours of food deprivation (8:00-8:00+) significantly reduced the mean body 
weight of the SD rats. When SPT was used to verify the successful establishment of 
the CUMS rat model, sucrose consumption measured within 12 hours was less vari-
able than that measured within 1 hour.
Conclusions: Twelve hours of food deprivation in the daytime (8:00-20:00) may be 
considered a mild stimulus for the establishment of a CUMS rat model. Measuring 
sucrose consumption over 12 hours is recommended for SPT.
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1  | INTRODUC TION

Depression is a chronic heterogeneous mental disease associated with 
high prevalence, recurrence, and mortality, with serious implications for 
human physical and mental health.1-4 The World Health Organization 
has predicted that by 2020 it will become the second leading cause of 
disability worldwide and by 2030 major depressive disorders (MDDs) 
will represent the main cost in healthcare spending.5,6 Although prog-
ress has been made in the research and treatment of depression in re-
cent years, the exact pathogenesis of this disease is still not clear, and 
experimental results from animal models are not in good agreement 
with those of clinical trials.7 Therefore, the establishment of appropri-
ate animal models of depression is of great importance.

Current animal models of depression are mainly divided into three 
categories: stress models, surgical models, and chemical drug-induced 
models.8-10 The most commonly used animal model is the chronic un-
predictable mild stress (CUMS) model, which is the only model which 
manifests high surface, structural, and predictive validity.11,12 However, 
the CUMS model has been questioned for its poor repeatability, most 
likely due to variation in stimulus modes, intensity and frequency.13 
Establishment of the CUMS model generally consists of two stages. 
The first stage is the exposure of the animals to noxious stimuli such 
as a tilted cage or food/water deprivation for long periods; and the 
second stage is the use of behavioral tests to screen the animals exhib-
iting depression-like behavior.14,15 The use of food deprivation as one 
of the stimuli for inducing depression has been questioned in previous 
reports because it results in significant weight loss independently of 
other stimuli used in the CUMS model.16,17 One of the behavioral tests, 
the sucrose preference test (SPT), often differs in its duration, and this 
can affect the experimental results. Hence, identifying the best time 
frame for the SPT, that will not impact negatively on the experimental 
outcome, is very important.

In SPT, the consumption of sucrose and pure water within 1 hour, 
immediately after 24 hours of food and water deprivation, is calcu-
lated. In order to rapidly quench their thirst after 24 hours of food 
and water deprivation, rats usually consume whatever liquid they 
come across, regardless of whether it contains sucrose or is pure 
water. Thus, a 1 hour test may be too short to record any decline in 
sucrose preference in rats in a depression-like state.

In this study, we compared the effects of 24 and 12 hours of food 
deprivation on the body weight of Sprague Dawley (SD) rats. In ad-
dition, given the distinctive circadian rhythm of rats, we further ana-
lyzed the results of 12 hours of food deprivation during the daytime 
(8:00-20:00) and at night (20:00-8:00+). For the SPT, consumption of 
sucrose and pure water within 1 and 12 hours was measured.

2  | MATERIAL S AND METHODS

2.1 | Animals and treatment

Twenty adult male SD rats (230-250 g) were used to investigate the 
effect of food deprivation on body weight. Another thirty adult male 

SD rats (230-250 g) were used to establish a CUMS rat model and to 
optimize the SPT method. All rats were purchased from the Laboratory 
Animal Center of Chongqing Medical University (SCXK (Yu) 2018-
0003), housed in a single cage with a 12 hour light/12 hour dark cycle, 
and fed with food and water ad libitum (SYXK (Yu) 2018-0003). All 
animals were housed in the laboratory for 1 week prior to experiments 
to acclimatize to the environment. Experimental manipulations were 
approved by the Ethics Committee of Chongqing Medical University.

2.2 | CUMS paradigm

The schedule for establishing CUMS was conducted according to 
previously published methods,18 but with minor modifications, and 
is presented in Table 1. The stress stimuli included tilting of the cage, 
food/water deprivation, a wet cage, crowding, hot water swimming, 
cold water swimming, no bedding in the cage, restraint, tail clamping, 
inverted light/dark cycle, hot water in the cage box, strobe lighting, 
forced swimming, and alternating periods of light and darkness. SD 
rats in the CUMS group were subjected to stimulation twice a day 
for 4 weeks. The rats were not exposed to the same stressor for two 
consecutive days.

2.3 | Scheme of food deprivation

Twenty SD rats were randomly divided into four groups of five rats 
each, comprising a normal control group, a 24 hour food deprivation 
group (8:00-8:00+), a 12 hour daytime food deprivation group (8:00-
20:00) and 12 hour nighttime food deprivation group (20:00-8:00+). 
The rats were made to fast every Tuesday for 5 weeks.

2.4 | Body weight measurement

The body weight of each rat was measured with an electronic bal-
ance at 9:00 am every Monday. Weight gain was calculated as the 
ratio of the weekly weight gain to the initial body weight.

2.5 | Sucrose preference test

Sucrose preference is defined as follows: sucrose preference per-
centage (%) = sucrose solution consumption (g)/(sucrose solution 
consumption [g] + water consumption [g]) × 100%. All rats under-
went adaptive training from day 1 to day 4, with two bottles of pure 
water available on days 1 and 2, two bottles of 1% sucrose on day 3, 
and one bottle of pure water and one bottle of 1% sucrose on day 
4. Next, after 12 hours of food and water deprivation, each rat was 
given 200 mL of pure water and 200 mL of 1% sucrose solution. The 
quantities of pure water and sucrose consumed were recorded after 
1 hour and again after 12 hours. The SPT manipulation procedure is 
shown in Figure 1.
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2.6 | Behavioral experiments

2.6.1 | Forced swim test

Rats were put individually in a transparent plexiglass cylinder (20 cm 
diameter × 50 cm high) filled with water (23-25℃) to a depth of 30 cm. 
Immobility time was measured over a period of 5 minutes after 1 min-
ute of adaptable swimming. Rats that floated without swimming to 
keep their heads above the water were judged to be immobile.

2.6.2 | Open field test

After being placed in the center of a 100 cm × 100 cm × 40 cm black 
square cage, the rats freely explored the environment for 5.5 minutes, 
with the first 30 seconds used to adapt to the environment. Between 
each test, the inner wall and the bottom surface of the square box were 
cleaned with 75% alcohol to eliminate the odor from the previous rat. 

The movements of the rats were recorded by a camera mounted above 
the center of the field. Smart 2.0 software was used to analyze the time 
spent in the center of the open field box and the total distance moved 
during the 5.5 minute test. Open field test (OFT) was performed on 
days 0 and 28 to assess the impact of CUMS on locomotor activity.

2.6.3 | Morris water maze test

A Morris water maze (MWM) is a black open circular pool with a 
diameter of 180 cm and a height of 60 cm. The pool was filled with 
24 ± 1°C water, and an escape platform was placed 1.5 cm below 
the surface of the water during training. Black ink was then added to 
the water and stirred in order to obscure the platform. The pool was 
divided into four quadrants with the platform being placed in the 
center of the third quadrant.

Learning trials to test the rats' ability to navigate the maze were 
conducted over 7 days. On the first day (day 1), rats were dropped 

TA B L E  1   Chronic unpredictable mild stress protocols conducted in this study

Stressor Details

Food deprivation Rats were subjected to 12 h of food deprivation starting from 8:00 am

Water deprivation Rats were subjected to 12 h of water deprivation starting from 8:00 am

Restraint Rats were individually restrained for 4 h inside plastic cylinders

Crowding Rats were placed in a 29 cm × 18 cm × 16 cm cage, five/cage

Strobe light Rats were subjected to 12 h of strobe light stress starting from 8:00 pm

Wet cage Rats were immersed in 200 mL water in 100 g sawdust bedding for 24 h

Inversion of light/dark cycle Rats were subjected to 24 h of reversed light/dark cycle (8:00 am lights off, 8:00 pm lights on)

No padding Rats were placed in cages without padding for 24 h

Hot water into the cage box Rats were exposed to 40℃ water at 15 cm depth for 10 min

Tilted cage Rats were subjected to cage tilting (45°) along the vertical axis for 24 h

Cold water swimming Rats were placed in a cylindrical clear plastic tank filled with 4℃ water for 5 min

Hot water swimming Rats were placed in a cylindrical clear plastic tank filled with 45℃ water for 5 min

Tail clamping Rats were endured tail pinch 1cm apart from the end of the tail for 1 min

Alternate light and dark Rats were subjected to light on and off every 1 h for 12 h from 8:00 am

Forced swimming Rats were placed in a cylindrical clear plastic tank filled with 20℃ water for 5 min

F I G U R E  1   Time schedule for sucrose preference test. ①, ②, ③, and ④ represent different durations of food and water deprivation and 
time points at which sucrose preference was performed
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from any quadrant into a platformless pool for 60 seconds to adapt 
to the environment. From days 2 to 6, each rat was placed into the 
water and expected to find the platform within 60 seconds. When 
a rat failed to find the hidden platform within 60 seconds, it was 
guided gently onto the platform and made to stay on it for 15 sec-
onds. Each rat was trained 4 times daily with 30 minute intervals 
between successive training sessions. On day 7, the platform was re-
moved and each rat was put into the water on the side opposite the 
original platform quadrant for a free 60 second probe. The escape 
latency, ie the time taken for the rat to find the platform (days 2-6), 
was recorded by a tracking-system as a measure of spatial learning 
and memory ability.

2.7 | Statistical analysis

Statistical analysis was performed with SPSS18.0 software. Data are 
presented as mean ± SE. Differences between the control and CUMS 
groups in body weight, and SPT and MWM data were assessed using 
repeated measures ANOVA; for other parameters, differences were 
assessed using a two-sample Student's t test or a non-parametric 
Mann-Whitney test. All tests were two-tailed. A P-value of less than 
.05 was considered statistically significant. All analyses and graph 
generation were performed with GraphPad Prism 8.0 software.

3  | RESULTS

3.1 | The effects of food deprivation and CUMS on 
body weight in SD rats

As shown in Figure 2A, after 5 weeks, the mean body weight of the 
12 hour daytime food deprivation (8:00-20:00) group of rats was not 
significantly different from that of the control group (F(1,8) = 0.372, 
P = .559). However, the body weights of the 12 hour nighttime food 
deprivation (20:00-8:00+) group and of the 24 hour food deprivation 
(8:00-8:00+) group were significantly lower than the control group 
(F(1,8) = 6.322, P = .036; F(1,8) = 5.373, P = .049). Therefore, the 
12 hour daytime food deprivation (8:00-20:00) group was selected 

to establish the CUMS rat model. As shown in Figure 2B, after being 
exposed to stressors for 4 weeks, the results of repeated measures 
ANOVA showed that body weight gain in the CUMS group was persis-
tently significantly lower than in the control group (F(1,14) = 70.490, 
P < .0005). This first became evident by the end of week 2.

3.2 | Behaviorial tests

After conducting sucrose preference and OFTs at the baseline stage, 
two rats with low activity and intolerance to sucrose were elimi-
nated, and the remaining 28 normal rats were randomly divided into 
two groups: a control group (n = 8) and a CUMS group (n = 20) for the 
subsequent experiments. After 4 weeks of stress, 8 out of 20 rats 
with depression-like tendencies were selected for the final behav-
ioral comparison with the control group (n = 8). The corresponding 
results are summarized below.

3.2.1 | The effect of CUMS on anhedonia in the 
SD rats

As shown in Figure 3A, when the sucrose preference percentages 
of normal rats tested after 1 hour or after 12 hours were compared, 
greater data deviation was seen after 1 hour. This suggested that 
the accuracy and reproducibility of the sucrose preference percent-
age value was higher after 12 hours than that after 1 hour. In further 
tests with the CUMS rat model (Figure 3B), tested weekly from week 
0 to week 4, repeated measures ANOVA showed that rats in the 
CUMS group had significantly lower sucrose preference percent-
ages than the rats in the control group (F(1,14) = 7.583, P = .016).

3.2.2 | The effect of CUMS on the despair state of 
SD rats

As shown in Figure 4A, after 4 weeks of stimulation, the immobility 
time of the CUMS group in the forced swim test (FST) significantly 
increased compared with the control group (t = 2.151, P = .0494).

F I G U R E  2   Effects of food deprivation and chronic unpredictable mild stress (CUMS) on rat body weight. A, Effects of 12 and 24 h of 
food deprivation on body weight in rats. 12 h of food deprivation in the daytime (8:00-20:00) had no effect on body weight (P > .05), while 
24 and 12 h of food deprivation at night (20:00-8:00+) for 5 wk significantly decreased body weight (P < .05). B, Effects of CUMS on body 
weight in rats. Results are presented as the mean ± SEM (n = 8), *P < .05, **P < .01, ***P < .001, CUMS group compared with the control 
group
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3.2.3 | The effect of CUMS on the locomotor 
activity of SD rats

After 4 weeks of stimulation, the total distance moved and the cen-
tral distance percentage in OFT was significantly reduced in the 
CUMS group compared with the control group (z = −2.209, P = .027; 
Figure 4B) (t = −3.385, P = .0044; Figure 4C).

3.2.4 | The effect of CUMS on learning and memory 
in SD rats

Figure 4D shows that the escape latency of both groups declined 
gradually over 5 consecutive days of the MWM test. The CUMS rats 
seemed to spend slightly more time finding the hidden platform than 
the control rats, and repeated measures ANOVA confirmed that the 

rats in the CUMS group had a longer escape latency than the control 
group (F(1,14) = 6.733, P = .021).

4  | DISCUSSION

Research into dynamic changes during depression in human beings 
is constrained by methodological and ethical issues. Hence, estab-
lishing relevant animal models has become a common investigation 
strategy.19 The most appropriate depression model of CUMS, first 
proposed by Willner et al in 1987, is a stress rat/mouse model in 
which the reward reflex activity is damaged.20 Obvious anxiety, 
motility agitation, slow response, decreased learning and memory 
ability are clinically observed in patients with depression, with each 
episode lasting for at least two weeks. These symptoms also mani-
fest in the CUMS animal models.

F I G U R E  3   Effect of chronic unpredictable mild stress (CUMS) on the sucrose preference percentage in rats. A, Sucrose preference 
measured within 1 h (blue) and within 12 h (red). B, Sucrose consumption within 12 h was examined in rats after 4 wk of treatment with 
CUMS. CUMS exposure decreased the sucrose preference in rats. Results are presented as the mean ± SEM (n = 8), *P < .05, CUMS group 
compared with the control group

F I G U R E  4   Forced swim test (FST), open field test (OFT) and Morris water maze (MWM) tests in chronic unpredictable mild stress 
(CUMS)-induced rat. A, The immobility time in FST. B, The total distance moved in OFT. C, The central distance percentage in OFT. D, The 
time to find the platform (indicated as escape latency time) in the MWM test probe trial. CUMS exposure decreased the total distance 
moved and central zone distance percentage in OFT and increased immobility and escape latency times in FST and MWM, respectively. 
Results are presented as the mean ± SEM (n = 8), *P < .05, **P < .01, ***P < .001, CUMS group compared with the control group
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Decreased appetite is one of common symptoms of depressed 
animals so that weight loss is often used as one of the auxiliary in-
dicators of depression. However, many reports have argued that it 
may not be a wholly satisfactory indicator, because weight loss could 
be the consequence of food deprivation alone rather than the com-
bined effect of various stimuli during the CUMS modeling process. 
Any one of a variety of chronic mild stimuli may contribute, more or 
less, to weight loss in depressed animals. Out of 91 related reports 
in the literature (Table 2), 70 employed 24 hours of food deprivation. 

Our results show that 24 hours (8:00-8:00+) of food deprivation 
significantly reduced the body weight of the rats. Furthermore, 11 
out of the 91 reports listed in Table 2 recommended 12 hours of 
food deprivation. However, no specific circadian period (daytime or 
night) for the 12 hour deprivation period was clearly indicated. In 
this study, we observed that 12 hours of food deprivation during the 
daytime (8:00-20:00) did not affect the weight of the rats, but food 
deprivation for 12 hours at night (20:00-8:00+) and for 24 hours sig-
nificantly decreased their body weight. This is probably due to the 
distinctive circadian rhythm of the rats which makes them more ac-
tive, and therefore more likely to eat, at night.

In this study, 15 types of mild stressors were selected to induce 
depression in the SD rats. A classic test for anhedonia (the core symp-
tom of depression) is the SPT.21 Of the 74 reports in the literature that 
described methodologies involving SPT, most of the researchers mea-
sured sucrose and pure water consumption within 1 hour immediately 
after 24 hours of food and water deprivation (Table 3). Under normal 
physiological conditions, the water intake of rats is 10-12 mL/100 g/d, 
which means that the quantity water drunk in each hour is small. Rats 
experiencing 24 hours of food and water deprivation would be in a 
state of desperate thirst, and so would drink whichever of sucrose 
solution or pure water they found first. Since rats eat and drink more 
at night, as mentioned above, measuring the consumption of sucrose 
and pure water ad libitum between 20:00 and 8:00+ could more accu-
rately reveal the mood of rats. In the CUMS verification protocol, SPT 
is usually performed immediately after food and water deprivation. In 
this study, 12 hours of food and water deprivation (8:00-20:00) were 
followed by SPT measured over 12 hours from 20:00 to 8:00+.

The immobility time in the FST is thought to reflect the be-
havioral despair state of rats, so it is often used to determine 
whether the rats are depressed. OFT is used to assess locomo-
tor activity and spontaneous exploration in a novel environ-
ment.22 The MWM test, an experiment in which rats or mice 
are forced to swim and learn to seek hidden platforms in the 
water, is mainly used to test the learning and memory ability 
of experimental animals for spatial location and sense of direc-
tion.23-25 In this study, the immobility time of the CUMS group 
was longer than that of the control group, indicating that CUMS 
induced a depression-like state in the rats. Moreover, on OFT, 
the total distance moved and the percentage of distance moved 
in the central area were decreased in the CUMS group, indicat-
ing that the curiosity and preference for spontaneous activities 
of the rats were decreased. In addition, the time spent by the 
CUMS group in finding the platform in the MWM test was lon-
ger than the time spent by the control group, indicating that ex-
posure to stressful stimuli damaged the cognitive ability of the 
rats. Overall, the 15 mild stimuli in the present study induced 
a behavioral despair state (immobility) as well as a significant 
reduction in body weight, exploration ability, learning and mem-
ory ability and the sucrose preference rate of the rats, which 
collectively are similar to the anhedonia in clinical patients with 
MDD. Our results indicate that a rat model of depression was 
successfully established in the current study.

TA B L E  2   Durations of food deprivation from 91 published 
reports in the past 3 y

Duration (h) No. reports
Percentage 
(%)

24 7019,26-94 76.9

48 495-98 4.4

40 199 1.1

23 1100 1.1

20 1101 1.1

17 1102 1.1

15 1103 1.1

16 1104 1.1

12 11105-115 12.1

TA B L E  3   Variation in SPT protocols from 74 reports published in 
the past 3 y (the default concentration of sucrose is 1%)

Duration of 
food and water 
deprivation (h)

Duration of exposure to sucrose 
and pure water after deprivation 
(h) No. reports

24 150-64,110,116-118 19

2465-67,119 4

322,68,120-122 5

269,104 2

1270 1

23 171-81,100,123,124 14

20 2111 1

182,83 2

2499 1

18 16,125-127 4

15 2103 1

12 184-85,112,128,129 5

319,86,87 3

1288,113,114 3

289 1

2490 1

491-92,115 3

693,94 2

4 1130,131 2

Abbreviation: SPT, sucrose preference test.
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There are about 20 stressors that are used in the CUMS model. 
However, this study only focused on food deprivation and SPT since 
they are frequently questioned or challenged in the literature. Future 
research will test other CUMS stressors, such as a safe and effective 
intensity of tail clamping.

5  | CONCLUSION

In summary, we suggest that 12 hours of food deprivation during the 
daytime (8:00-20:00) is a mild stimulus for the establishment of CUMS 
rat model, because it did not directly affect body weight, which is 
considered to be an indicator of the success of the depression animal 
model. Sucrose consumption over 12 hours is recommended for SPT.
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