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Abstract: The emergence of methicillin-resistant Staphylococcus aureus (MRSA) comprises a global
threat to humans and animals. Here, we report and characterize the MRSA t304/ST6 variant
which, to our knowledge, represents the first case found in bovine clinical mastitis. In general,
the MRSA t304/ST6 variant is rarely described in livestock, contrary to humans where it is widely
recognized. Phenotypic and genotypic resistance profiling showed that the bovine-MRSA t304/ST6
isolate expressed low susceptibility toward cefoxitin (MICcefoxitin = 16 µg/mL) and carried the mecA
resistance gene in the SCCmec IVa. The bovine-MRSA t304/ST6 isolate carried a plasmid similar
to that which has been frequently observed among human-MRSA t304/ST6 isolates in Denmark
(GenBank accession no. NZ_CP047022). In addition, a Staphylococcus prophage 3 (φSA3) was
detected, encoding an immune evasion cluster (IEC) of putative virulence genes associated with
human host-specificity (sea, sak, and scn). Taken together, these findings suggest that the MRSA
t304/ST6 found in this study represents a recent host-jump event, with human to cow transmission.
This study emphasizes the importance of and the need for performance of antimicrobial resistance
surveillance among bovine mastitis pathogens, including S. aureus and MRSA.

Keywords: Staphylococcus aureus; bovine mastitis; antimicrobial resistance (AMR); methicillin-
resistant Staphylococcus aureus (MRSA); antimicrobial susceptibility testing (AST); minimum inhibitory
concentration (MIC); whole-genome sequencing (WGS)

1. Introduction

Staphylococcus aureus causes severe infections in both humans and animals and is a
major cause of bovine mastitis [1]. Internationally, treatment of bovine mastitis caused
by S. aureus relies on β-lactams (e.g., penicillins and cephalosporins) [2,3]. Nevertheless,
some countries, such as Denmark, recommend only narrow-spectrum penicillin as the
drug of first choice [4,5]. Accordingly, the increasing occurrence of methicillin-resistant
S. aureus (MRSA), that is resistant to all penicillins and cephalosporins, is of concern. To
enable strategies to combat antimicrobial resistance (AMR), it is crucial to surveil the
development of resistant bacteria, including bovine mastitis pathogens, such as S. aureus.
Surveillance creates data on the prevalence, distribution, and co-factors of AMR, thus
enabling analysis on the correlations between AMR and, e.g., antibiotic consumption,
inter-host transmissions, and so on. Therefore, many countries have established AMR
surveillance programs. In Denmark, however, the national AMR surveillance program does
not include mastitis pathogens. Systematic screening for MRSA among dairy cows is carried
out, but the procedure is based on nasal swab samples. Hence, even though mastitis is one
of the diseases causing the most antibiotic consumption in adult cattle we know very little
on the occurrence of AMR in bovine mastitis [6,7]. As such, knowledge on AMR among
Danish mastitis pathogens relies mainly on research performance. One such research
study on 24 S. aureus isolates from bovine clinical mastitis collected in 2018–2019, found a
single isolate resistant towards cefoxitin (2nd-generation cephalosporin), suggesting it was
an MRSA [8]. The current paper presents a molecular follow-up study on that cefoxitin-
resistant S. aureus isolate, based on whole-genome sequencing (WGS) analysis. Hence, the
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first objective of the present study was to clarify if the isolate was truly an MRSA through
genotypic resistance profiling. The second objective was to characterize the genotype by
Staphylococcus aureus Protein A (spa) typing and multi-locus sequence typing (MLST). The
genotype was further characterized with a special focus on mobile genetic elements (MGEs)
and virulence genes.

2. Results
2.1. Resistance Profiling

The cefoxitin-resistant S. aureus isolate was discovered and tested for antimicrobial
susceptibility toward 14 agents as part of a previous study [8]. The isolate was originally
found in mixed culture with E. faecalis.

The minimum inhibitory concentration (MIC) values for each agent are presented in
Table 1, as they were not previously provided. The cefoxitin-resistant S. aureus isolate was
found resistant towards cefoxitin (MIC = 16 µg/mL) and penicillin (MIC > 16 µg/mL). The
MIC values for the isolate were low for the remaining 12 agents tested.

Table 1. MIC values of cefoxitin-resistant S. aureus isolate from a case of bovine clinical mastitis.

Agent Test Range
(µg/mL)

MIC Value
(µg/mL)

(t)ECOFF
(µg/mL)

Cefoxitin (FOX) 0.5–32 16 4
Chloramphenicol (CHL) 2–64 8 16

Ciprofloxacin (CIP) 0.125–8 0.25 1
Erythromycin (ERY) 0.25–16 0.5 1

Florfenicol (FFN) 1–64 8 (8)
Gentamicin (GEN) 0.25–16 ≤0.25 2

Penicillin (PEN) 0.06–16 >16 0.125 *
Spectinomycin (SPE) 16–256 64 (128)
Streptomycin (STR) 4–64 8 16

Sulphamethoxazole (SMX) 32–512 64 (128)
Tetracycline (TET) 0.5–32 1 1

Tiamulin (TIA) 0.25–32 1 (2)
Trimethoprim (TMP) 0.5–32 2 2

TMP + SMX (STX) 0.25–16 ≤0.25 (0.25)
Epidemiological Cut-Off (ECOFF) values provided in brackets are tentative (t)ECOFFs [9]. * ECOFF value adapted
from Benzylpenicillin.

The cefoxitin-resistant S. aureus isolate was whole-genome sequenced to confirm if it
was an MRSA (assembly metrics are given in Table S1). For this analysis, the assembled
genome was screened for the presence of resistance genes.

Two resistance genes were found, blaZ and mecA, both conferring β-lactam resistance
(Table S2). The presence of the mecA gene confirmed that the cefoxitin-resistant S. aureus
isolate was an MRSA. Both resistance genes were found with > 99% identity and 100%
coverage in the blast toward the corresponding reference genes in the ResFinder database.
Additionally, Staphylococcal cassette chromosome mec (SCCmec) typing revealed that the
mecA gene was an element of the SCCmec type Iva.

2.2. Genotypic Characterization of Cefoxitin-Resistant S. aureus Isolate

Upon MRSA confirmation based on resistance profiling, additional characteristics of
the isolate were explored. Performance of spa typing showed that the isolate belonged
to t304, and MLST revealed that it was a ST6. Accordingly, in the following sections, the
cefoxitin-resistant S. aureus isolate will be referred to as the bovine-MRSA t304/ST6 isolate.

Investigation of present virulence genes in the bovine-MRSA t304/ST6 isolate was
based on the VirulenceFinder and VFDB databases. The analysis revealed a total number
of 73 putative virulence genes, which are summarized in Table S3. These putative vir-
ulence genes indicated different virulence factors of the bovine-MRSA t304/ST6 isolate;
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for instance, host immune evasion is shown by the presence of several genes encoding
for leukotoxins. Examples of such found putative genes were lukE and lukD (encoding
LukED), hlgA, hlgB, and hlgC (encoding γ-Hemoylsin (Hlg)), and the lukF-PV subunit F
of the Panton-Valentine Leukocidin (PVL). Additional putative virulence genes involved
in immune evasion found were sea, sak, and scn forming an immune evasion cluster (IEC)
(Table S3). Using PHASTER, the identified IEC was located at a Staphylococcus prophage 3
(φSA3) (GenBank accession no. NC_048644.1) along with the β-hemolysin gene (hlb). Fur-
thermore, a putative virulence gene of the superantigen von Willebrand binding protein
(vWbp) was found.

Finally, application of MobileElementFinder together with PlasmidFinder revealed
that the bovine-MRSA t304/ST6 isolate carried a plasmid containing the rep16 and rep5
plasmid replicon genes and the blaZ resistance gene.

3. Discussion

The present study comprises a molecular follow-up study on a cefoxitin-resistant
S. aureus isolate from bovine clinical mastitis discovered in a previous study [8]. The results
from molecular characterization based on WGS analysis showed that the cefoxitin-resistant
isolate was indeed an MRSA, that it belonged to the variant t304/ST6, and that it carried
several MGEs and putative virulence genes.

The MRSA verification was based on the detection of the mecA gene in the SCCmec type
IVa. From spa typing and MLST analysis, it was found that the MRSA isolate was a t304/ST6,
which is an MRSA variant rarely described in animals. To our knowledge, the present study
represents the first description of an MRSA t304/ST6 isolated from bovine clinical mastitis.
However, the t304/ST6 variant has been previously described once in bovine mastitis
but in a case of methicillin-susceptible Staphylococcus aureus (MSSA) [10,11]. Contrary,
the t304/ST6 variant is generally considered a community-associated (CA) MRSA, which
seems to be more described- and disseminated among humans [11,12]. In Denmark, the
MRSA t304/ST6 variant was first detected in 2011 where it caused a long-term outbreak in a
neonatal intensive care unit in Copenhagen [13]. A recent study presumes that this variant
originates from the Middle East and has been introduced to the Danish community by
human refugees [11]. Indeed, the MRSA t304/ST6 variant has shown success at spreading
in human populations, as the occurrence of this variant has increased during the last
decade in several northern European countries, including Denmark [11,14]. Overall, in
Denmark, the number of new human MRSA cases has been increasing up to 2017. In
2017, only six years after its introduction, the t304/ST6 variant was the second most
common MRSA variant, while the livestock associated (LA)-MRSA ST398 remained the
most widespread [14]. However, despite the rise in new human MRSA cases, Denmark is
generally considered a low prevalence country regarding MRSA. This is also in accordance
with the findings from the national systematic screening of MRSA among dairy cattle in
Denmark [15]. However, as the current MRSA screening relies on nasal swabs, data on
MRSA occurrence from other sources of the cows (e.g., the udder) is currently missing
or scarce.

The dominant LA-MRSA ST398 variant is primarily associated with pig farming
and has gone through species host-jump events (i.e., bacterial adaption to different host
species) [16,17]. Mobile genetic elements (e.g., plasmids and phages) are demonstrated
to play a crucial role in regard to host-jump activities. This is because MGEs are often
reservoirs of virulence and resistance genes, influencing the pathogenic features of how the
bacteria causes host infection. In addition, MGEs are capable of easy movement within-
and across bacterial genomes. Thereby, MGEs cause gene gain and loss, and they can
subsequently lead to genetic adaption to new niches [18]. Evolutionary studies of S. aureus
strains have revealed that some MGEs and virulence genes are host-specific [19,20]. To
date, several of such bovine-specific virulence factors are described, for instance some
leukotoxins, which are associated with lytic activity against white blood cells. The vWbp
and the LukMF leukotoxin are examples, which are both involved in immune evasion, and
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comprise some of the best characterized virulence genes with bovine host-specificity [19,20].
In the present study, we found a putative virulence gene corresponding to vWbp (Table S3)
but no genes encoding the LukMF leukotoxin (lukM or lukF). Putative virulence genes
of LukED (encoded by lukE and lukD) and Hlg (encoded by hlgA, hlgB, and hlgC) was
however found (Table S3). These leukotoxins have been previously observed among bovine
S. aureus strains [20,21] but are presumably associated with human infection [22]. The PVL
leukotoxin (encoded by lukF-PV and lukS-PV) is one of the best studied S. aureus virulence
factors, which is also commonly associated with CA-MRSA [23,24]. In the present study, a
putative virulence gene of the subunit F of PVL (lukF-PV) was found, which could indicate
a recent gene loss of the subunit S (lukS-PV). Nonetheless, due to the missing lukS-PV gene,
the bovine-MRSA t304/ST6 in this study would be classified as PVL-negative. This finding
correlates with results from a recent study by Bartels and associates covering human-MRSA
t304/ST6 isolates from northern European countries, mainly Denmark, which found that
95% of all human-MRSA t304/ST6 were PVL-negative [11]. In the same study, 94% of
the human-MRSA t304/ST6 carried the mecA resistance gene in the SCCmec IVa. The
same SCCmec IVa was also demonstrated for the present bovine-MRSA t304/ST6 isolate.
Furthermore, Bartels and associates identified a novel plasmid (NCBI Accession number
NZ_CP047022) carrying two plasmid replication genes (rep16 and rep5), and the blaZ
resistance gene in 79% of the human-MRSA t304/ST6 isolates. This plasmid was also
detected in the present bovine-MRSA t304/ST6 isolate.

Altogether, these findings imply a common origin of the MRSA t304/ST6 variant.
In addition, they suggest that the bovine-MRSA t304/ST6 isolate had human origin and
was previously transmitted to the cow through a recent host-jump event. This hypothesis
is supported further by the discovery of a ΦSa3, which was carrying an IEC of putative
virulence genes (sea, sak, and scn) associated with human host-specificity [19,24]. Moreover,
the scn gene is generally included as a marker for human adaption in the current test-setup
for detection of MRSA among humans in Denmark [14]. Transmission of MRSA between
humans and cows was previously suspected. For instance, in Sweden, an MRSA outbreak at
a dairy herd persisted for at least two years and was assumingly due to initial introduction
by the farmer [25].

The present study covers a single MRSA t304/ST6 isolate from a cow with clinical
mastitis, having visual clinical symptoms on two glands of the udder. The milk samples
from these glands both contained E. faecalis, one in pure culture and one in mixed culture
together with the described MRSA t304/ST6 isolate. One can never fully eliminate the
possibility of the current finding being due to a human contamination of the milk or udder.
Such contamination could occur during milking, milk sampling, or laboratory handling.
However, the milk was sampled aseptically and processed in a veterinary clinic and at a
professional quality-assured lab (Center for Diagnostics, Technical University of Denmark
(CfD, DTU)) only. Furthermore, the finding of two milk samples without contamination
and from a cow with visual clinical signs in both glands suggests that the bacteria arise from
the cow and not from human contamination. Moreover, the presence of the bovine-specific
vWbp further contributes to opposing the possibility of human contamination of the milk
sample [20].

The WHO One Health approach highlights the importance of considering health of
humans and animals together and as interlinked [26]. This also applies when studying
the occurrence and development of AMR, as AMR traits may easily transfer between
host species through MGEs and/or host-jump events. Therefore, it is crucial not only to
monitor AMR among pathogens in humans but in animals as well. The bovine-MRSA
t304/ST6 from the present study was originally identified as part of a previous study
covering AST and AMR occurrence among 24 S. aureus isolates from bovine clinical mastitis
in Denmark [8]. The isolates in that study represented a randomized population, as they
originated from milk samples collected from different dairy herds by different veterinarians
and were submitted for diagnostic analysis at CfD, DTU during 2018–2019 as part of a larger
screening project and without any selection criteria. The present study confirms the single
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found cefoxitin-resistant isolate to be an MRSA, which means that 1/24 S. aureus isolates
were MRSA positive in the previous study [8]. Consequently, one may speculate if the
occurrence of MRSA from bovine clinical mastitis in Denmark is currently underreported.

In conclusion, we here report the first finding and description of the CA-MRSA
t304/ST6 variant in bovine clinical mastitis. Overall, the genotypic characterization revealed
the presence of MGEs and virulence genes that have been previously associated with
S. aureus and MRSA human host-specificity. However, a putative virulence gene of vWbp,
which is generally linked to bovine host-specificity [20], was detected as well. Altogether,
findings from this study may demonstrate a previous host-jump case, with human to cow
transmission, and successful niche adaption to bovine hosts. Based on the current results,
we emphasize the importance of performing AMR surveillance on mastitis pathogens,
including S. aureus and MRSA.

4. Materials and Methods
4.1. Isolate Identification and Antimicrobial Susceptibility Testing

The cefoxitin-resistant S. aureus isolate was identified as part of a large national
research study on antimicrobial resistance that was conducted in 2018–2019 in collaboration
with 11 veterinary clinics [8]. In brief, veterinarians collected milk samples from cows with
clinical mastitis. The number of milk samples collected from each cow differed according
to how many glands on which clinical symptoms appeared. After conducting their own in-
house diagnostics, the veterinary clinics provided milk samples to CfD, DTU for laboratory
examination and performance of AST. When obtained at CfD, DTU the milk samples were
cultured on blood agar (5% calf blood, SSI Diagnostica A/S, Hillerød, Denmark) and
incubated overnight at 37 ◦C, then subcultured on blood agar and incubated overnight
again. Pure subcultures were identified by matrix-assisted laser desorption/ionization
time of flight mass spectroscopy (MALDI-TOF MS) [27]. Isolates from all samples with
one or two pathogen species were stored at −80 ◦C in LB bouillon with 15% glycerol for
further analysis. All samples containing more than two pathogen species were discharged
as contaminated [28].

A subset of the identified pathogens, including S. aureus, were selected for AST.
The MICs were determined by broth dilution method using SensiTitre (SensiTitre; TREK
Diagnostic Systems). The MIC panel used, DKVP, comprised the panel routinely applied
at CfD, DTU for AST performance of veterinary Gram-positive bacteria [29]. The panel
contained 14 agents which were either relevant for veterinary usage or for one-health
surveillance purposes, respectively. The test agents and corresponding test ranges are
provided in Table 1. The obtained MIC values were interpreted by usage of epidemiological
cutoff values (ECOFFs) set by EUCAST [9] given in Table 1. In total, 24 S. aureus isolates
were MIC-tested.

4.2. Whole-Genome Sequencing and Bioinformatic Analyses

The cefoxitin resistant S. aureus isolate was collected in 2019 and was investigated for
being an MRSA as follows. DNA extraction, purification, and whole-genome sequencing
was outsourced to Novogene (Novogene (Cambridge, UK) Co., Ltd.). Briefly, DNA was
extracted by usage of an AllPrep DNA/RNA kit (Qiagen, Hilden, Germany) and subse-
quently paired-end sequenced applying Illumina’s NovaSeq 6000 platform with a read
length of 2 × 150 bp.

Quality assessment of the raw reads was analyzed in FastQC (v.0.11.9). Assembly was
carried out using the SPAdes pipeline (v.3.13.1) with the command line “-k 21,33,55,77–
careful” [30]. The quality of the assembled genome was examined by QUAST (v.5.0.2) [31].
Prokka (v. 1.14.6) was used for gene annotation [32]. For subtyping and identification
of genomic content mainly services of the Center for Genomic Epidemiology (cge), DTU
was applied, in every case, with default thresholds. Subtyping involved spa typing by
SPAtyper (v1.0) [33], MLST classification by MLST (v. 2.0) [34], and SCCmec identification
by SCCmecFinder (v.1.2) [35]. Detection of MGEs was based on MobileElementFinder
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(v. 1.0.3) [36], PlasmidFinder (v. 2.0) [37], and PHASTER [38]. Finally, the prevalence of pu-
tative resistance and virulence genes was explored using the Abricate package [39] together
with the Resfinder [40] and VFDB [41] databases, as well as VirulenceFinder (v. 2.0) [42,43].
Thresholds were set to 80% for identify and coverage, respectively. Furthermore, the
genome was blasted against the plasmid sequence (NCBI Accession number NZ_CP047022)
using blastn.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11101393/s1, Table S1: Assembly metrics of MRSA
t304/ST6 genome, Table S2: Presence of resistance genes in a MRSA t304/ST6 isolate from a case of
bovine clinical mastitis, Table S3: Presence of putative virulence genes in a MRSA t304/ST6 isolate
from a case of bovine clinical mastitis.
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