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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Optomapping is a fast two-photon optogenetic technique that charts brainmicrocircuits at�100 times the speed of traditional

patching methods.

- In mouse visual cortex, optomapping verified canonical pyramidal circuits but found surprising excitation patterns in basket
and Martinotti cells, concentrated in layers 5 and 2/3.

- Excitatory inputs distribute log normally, with a handful of strong synapses among mostly weaker ones, extending this
principle from excitatory to inhibitory neurons.

- Short-term synaptic changes that influence information transfer surprisingly depend on cortical layer in addition to target cell.

- This work sheds light on cortical circuit structure and synaptic dynamics, offering a faster approach to mapping microcircuits
at synaptic resolution.
ll www.cell.com/the-innovation
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Synapse-specific connectivity and dynamics determine microcircuit func-
tion but are challenging to explore with classic paired recordings due to their
low throughput. We therefore implemented optomapping, a�100-fold faster
two-photon optogeneticmethod. Inmouse primary visual cortex (V1), we op-
tomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyra-
midal, basket, andMartinotti cells. Across these cell types, log-normal distri-
bution of synaptic efficacies emerged as a principle. For pyramidal cells,
optomapping reproduced the canonical circuit but unexpectedly uncovered
that the excitation of basket cells concentrated to layer 5 and that of Marti-
notti cells dominated in layer 2/3. The excitation of basket cells was stron-
ger and reached farther than the excitation of pyramidal cells, which may
promote stability. Short-term plasticity surprisingly depended on cortical
layer in addition to target cell. Finally, optomapping revealed an overrepre-
sentation of shared inputs for interconnected layer-6 pyramidal cells.
Thus, by resolving the throughput problem, optomapping uncovered hitherto
unappreciated principles of V1 structure.
INTRODUCTION
Information processing in the brain is determined by patterns of synaptic

connectivity and short-term plasticity.1–3 Classically, canonical circuits are
organized as columnar pathways across cortical layers.4–6 However, there is a
relative paucity of information on connectivity and short-term plasticity with
target-cell specificity.7–9

Yet, the rules that govern plasticity and connectivity patterns are specific
to synapse type.7-9 For instance, the same neocortical pyramidal cell (PC)
axon produces short-term depressing or facilitating synapses depending
on target cell type.10,11 Synapse-type-specific patterning is anticipated, as
different neuronal classes play distinct functional roles, e.g., mediating
excitation or inhibition.12–14

Cortical microcircuits are furthermore populated by recurring inhibitory con-
nectivity motifs. For instance, basket cells (BCs)12–14 mediate fast-onset periso-
matic inhibition of PCs,15 whereasMartinotti cells (MCs)12–14 provide slow-onset
inhibition of PC apical dendrites.15,16 BCs and MCs thereby critically determine
PC computations.

Cortical connections must thus be explored with synapse-type specificity,7–9

which has long been achieved with multiple patch-clamp recordings. In rodent
primary visual cortex (V1) networks, multiple patch has revealed, e.g., non-
random fine structure,17 functional specificity,18,19 and excitatory/inhibitory spec-
ificity,20,21 even with human comparison.20

Multiple patch, however, suffers fromsampling shortcomings since results are
gathered across cells, acute slices, and animals.17,18,20–22 Findings may thus
arise frompooling data across experiments. For example, high-order connectivity
patterns are deduced by sampling across paired recordings.17,23,24 Similarly, log-
normal distribution of synaptic weights17,25 may emerge as an artifact of cross-
cell sampling, which is important since log normality has been linked to functions
such as feature preference.18,19

Furthermore, because multiple patch is prohibitively slow, it is generally not
feasible to measure connectivity or plasticity across the entire thickness of a
given cortical area, which has limited what kinds of queries neuroscientists
can explore. There has thus been a long-standing need for synapse-specific ap-
proaches with considerably higher throughput.7,26

Two-photon (2P) optogenetics, which can reliably activate individual neu-
rons with high spatiotemporal precision,27–33 is a promising approach for
resolving the throughput problem. Several studies that combine 2P optoge-
ll
netics with patch-clamp electrophysiology have achieved high-resolution
optogenetic circuit mapping.29,34–40

Here, we devised and validated a 2P optogenetic high-throughput circuit chart-
ing approach, which we called optomapping. We optomapped connectivity, syn-
aptic weights, and short-term dynamics of excitatory synapses onto PCs, BCs,
and MCs across the layers of mouse V1, which revealed striking and surprising
target-cell-specific differences. Our findings provide a fresh perspective on the
principles that govern V1 excitatory fine structure.
RESULTS
Reliable optogenetic activation of candidate input cells
Through neonatal viral injection41 in Emx1Cre/Cre mice,42 we targeted ChroME

opsin and mRuby33 to PC somata while simultaneously tagging interneurons
with GFP43 (supplemental materials and methods; Figures 1A and 1B). We acti-
vated PCs with 1,040-nm 2P spiral scans (Figures S1A and S1B),27 which reli-
ably evoked spiking up to �70 Hz (Figures S1C and S1D). Surplus spiking was
indistinguishable from current injection, spike latency was �5 ms, and jitter
was <0.5 ms (Figures S1E–S1I), similar to classical current clamp. Spike-prob-
ability half-widths at half-maximum (w1=2 Þ was �5 mm laterally and �13 mm
axially (Figures S1J and S1K), as inherited from the 2P excitation resolution
(Figure S2). The w1=2 was smaller than the �20-mm distance between
ChroME-expressing PCs (see supplemental materials and methods). In conclu-
sion, we could, with 2P optogenetics, reliably drive spiking with single-cell res-
olution and millisecond temporal precision (Figure S1), as previously
shown.27,29,30,33,34,37,38,40,44
Sample optogenetic synaptic connectivity map
To map connectivity, we patched a PC, BC, and/or MC and sequentially spiral

scanned mRuby3-positive PCs in a field of view (FOV; Figures 1C–1E). To avoid
dissection artifacts, we optomapped �100 mm into slices cut normal to the pial
surface (Figure S3). We verified that the detection of connections was robust
(Figures S3H and S3I). While recording the same postsynaptic cell, adjacent
FOVs were subsequently optogenetically stimulated (Figure 1F).
In offline analysis, presynaptic PCs that statistically elicited excitatory post-

synaptic potentials (EPSPs) in the patched cell were semi-automatically tagged
as connected (Figure 1C). EPSP amplitude was used as a metric of connective
strength, and the paired-pulse ratio (PPR) quantified short-term plasticity. To
enable comparison of connectivity and synaptic strength across cortical layers,
we assigned a 200-mm-wide vertical column centered on the postsynaptic cell
as well as layer boundaries based on standard layer-specific features (see sup-
plemental materials and methods).45–47

In this sample experiment, the high throughput of optomapping allowed us to
probe 363 candidate presynaptic PCs, of which 35 were connected (Figure 1G).
For comparison, this throughput over a whole-cell recording lasting 1–2 h is
�100-fold faster than multiple patch-clamp recordings, depending on the spe-
cific comparison.17,18,20–22 To enable averaging of connectivity maps across
different postsynaptic cells of the same type, we created synaptic input density
maps (Figure 1H; see supplemental materials and methods). For context, such
maps cannot be meaningfully created for paired recordings.
From this individual map, we observed that, although this layer 2/3 (L2/3) BC

received appreciable within-layer excitation as previously reported,20,48 cross-
layer excitation from L4 and L5 was substantial, revealing a high success rate
at finding connections hundreds of mm from the patched cell. Laterally in L2/3,
connectivity qualitatively died down over tens to hundreds of mm (Figures 1G
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Figure 1. Sample optomap of excitatory inputs onto an individual cell (A and B) Viral injection in Emx1Cre/Cre neonates41,42 targeted ChroME and mRuby to PC somata33 and GFP to
interneurons,43 shown at postnatal day (P)21. (C) We spiral scanned mRuby-positive PCs with a 2P laser beam while whole-cell recording a postsynaptic cell, here a GFP-expressing
interneuron. (D) Statistical detection across 20 sweeps (gray) determined connectivity, with mean sweep (black) determining synaptic efficacy and dynamics (see supplemental
materials and methods). (E) Sample FOV with PCs eliciting EPSPs (closed circles) or not (open circles) in recorded L2/3 cell (green X). Arrowheads: samples in (D). (F) By repeating
(E) across adjacent FOVs, the cortical thickness as well as hundreds of mm laterally were mapped. Yellow dash: FOV in (E). (G) Input PCs are color coded by EPSP amplitude (circles)
elicited in patched cell (diamond). The column (dotted lines) enables comparison across patched cells. (H) Synaptic input density map of (G) enables averaging across patched cells
(diamond; see main text). (I) Patched sample cell was morpho-electrophysiologically classified as BC (see supplemental materials and methods).
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and 1H).20,48 Detailed statistical comparisons across different postsynaptic cells
of these observations are provided below.

Accounting for optogenetic stimulation artifacts
Emx1Cre/Cre mice drive expression in >90% of excitatory neurons.42,49 Conse-

quently, we occasionally directly depolarized patched PCs when spiral scanning
nearby presynaptic PCs. Compared to EPSPs, direct depolarization was instan-
taneous, had a small coefficient of variation (CV), and had no short-term dy-
namics (Figure S4). Direct depolarization only occurred within �60 mm of the
2 The Innovation 6(1): 100735, January 6, 2025
patched PC (Figures S4E–S3H). We thus relied on a combination of patched
cell type (PC vs. BC/MC), onset latency, stimulation location, CV, and short-
term dynamics to determine if a location elicited direct depolarization
(Figures S4B–S4I), which we then accounted for (Figure S4J; supplemental
materials and methods).
In conclusion, for a negligible fraction of proximal PC/PC connections,

synaptic weight and dynamics might be distorted. Since Emx1-Cre does
not target inhibitory cells,42,49 this artifact did not affect PC/BC or
PC/MC optomapping.
www.cell.com/the-innovation
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Figure 2. EPSPs in individual L2/3 cells distribute log normally (A) We explored the distribution of synaptic weights in a single L2/3 PC, BC, and MC. Open circles: unconnected
presynaptic neurons. Closed circles: connected presynaptic neurons. Diamond: patched postsynaptic cell. (B) EPSP distributions from cells in (A) were best fit by a log-normal model
(see supplemental materials and methods). Dashed line: mean EPSP amplitude. Dotted line: log-normal fit.
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Identification of PCs, BCs, and MCs
It is known that synaptic connectivity, weight, and short-term dynamics

depend on the target cell.7–9We thereforehierarchically clustered patched cells50

into PCs, BCs, and MCs based onmorphology and electrophysiology (Figures 1I,
S5, andS6; see supplementalmaterials andmethods). PC, BC, andMCproperties
matched prior descriptions,12–14 suggesting accurate classification.

Excitatory synaptic strengths distribute log normally
Previous paired-recording studies found log-normal synaptic strength distribu-

tions, but the data were pooled across cells and days.17,19,22,51 We therefore
asked if synaptic weights onto individual L2/3 cells also distributed log normally
(Figure 2A). We found that the best-fit distribution type was log normal for indi-
vidual PCs, BCs, and MCs (Figure 2B). EPSP amplitudes pooled across PCs,
BCs, and MCs also distributed log normally (Figure S7). Although means and
standard deviations differed across PCs, BCs, and MCs, the best-fit distribution
model did not. From this emerged the principle that excitatory synaptic weights
distribute log normally regardless of target cell type.

In L2/3, PCs and BCs receive a strong ascending drive, while that of MCs
is local

Due to the slow throughput of classic paired patch, it has been challenging to
explore how synaptic connectivity distributes spatially.48,52 We therefore opto-
mapped the spatial input distributions for PCs, BCs, and MCs, starting in L2/3,
which revealed strikingly different connectivity patterns (Figure 3A).

Consistent with the canonical circuit,4–6,53 L2/3 PCs received more inputs
from L4 than from other layers (Figures 3A and 3B). L5 PC/L2/3 PC connectiv-
ity was also high, as previously reported.34 L6 PC/L2/3 PC connectivity was
low. Similar to L2/3 PCs, L2/3 BCs received many excitatory inputs from L2/3,
L4, and L5 but few from L6 (Figures 3A and 3B). In contrast, L2/3 MCs received
themost input from the same layer (Figure 3A), more so than L2/3 PCs did. L2/3
MCs also received more inputs from L5 than from L4 (Figures 3A and 3B). L4
PC/L2/3 MC connectivity was lower than that of L4 PC/L2/3 BCs and L4
ll
PC/L2/3 PCs. L6/L2/3 excitatory connections were strikingly rare for all three
cell types (Figures 3A and 3B).
We optomapped hundreds of microns laterally, but excitatory inputs were

chiefly detected within 300 mm (Figure 3A), in keeping with prior literature.20,48

However, the excitation of BCs seemingly originated farther away (see below
for details). We observed no mediolateral asymmetries.
To compare synaptic strengths, we relied on the amplitude of the first EPSP in

a train of three EPSPs (Figure 1D). Input strengths were indistinguishable across
layers except for L2/3 BCs, where L6 inputs were weaker (Figure 3C). Excitatory
inputs were stronger onto L2/3 BCs than onto L2/3 PCs and MCs (Figures 3A
and 3C). These comparisons, however, did not account for the strong short-
term facilitation of PC/MC connections,10,11,45,54 which is revisited sepa-
rately below.
In sum, we revealed target-cell-specific spatial distributions of excitation in

L2/3. We found more potent overall excitation of BCs, strong ascending excita-
tion of PCs and BCs but not MCs, and a relatively disconnected L6.20

In L5, most excitatory inputs originate from L5
We next explored spatial distributions of excitatory inputs to L5. Here, BCs

received more intralaminar inputs than L5 PCs and L5 MCs (Figures 4A and
4B). Connectivity was low for L6/L5, despite these layers being adjacent.
Like in L2/3, connection strength depended on input layer for BCs but not
PCs or MCs (Figure 4C). Inputs from L4 and L5 were stronger onto L5 BCs
than PCs or MCs. Interestingly, PC/BC strength concentrated to upper L5
(Figure 4A).
Overall, spatial distributions were similar across L5 target cell types, chiefly

originating from L5. Like L2/3 (Figure 3), the excitation of BCs was stronger
than that of PCs or MCs, and L6 was relatively disconnected.20

In L6, excitatory inputs are chiefly intralaminar
Next, we investigated the spatial distribution of excitatory connections to L6.

L6 PCs and MCs received more excitation from L6 than from other layers,
The Innovation 6(1): 100735, January 6, 2025 3
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Figure 3. In L2/3, strong ascending PC/PC/BC drive but local PC/MC excitation (A) Synaptic input density maps for L2/3 PCs, BCs, and MCs were generated by averaging
individual maps (Figure 1H). Connectivity within a 100-mm radius (dashed circle) enables comparison with paired recordings, which are typically close.48 Inset right and bottom:
vertical and horizontal density projections. Dashed horizontal lines: layer boundaries. Dotted lines: vertical column. (B) L2/3 PCs had higher excitatory connectivity from L4 than from
other layers and lower excitatory connectivity from L6. L2/3 BCs had higher excitatory connectivity from L2/3 and L4. L2/3 MCs, on the other hand, had higher excitatory connectivity
from L2/3 than from other layers, with few L4 and L6 inputs.39 L2/3 PCs weremore frequently connected to L2/3 BCs and L2/3MCs than to L2/3 PCs (PC vs. BC, p< 0.001; PC vs. MC,
p < 0.001), L4 PCs were less frequently connected to L2/3 MCs than to L2/3 PCs and L2/3 BCs (PC vs. MC, p < 0.001; BC vs. MC, p < 0.001), and L5 PCs were more frequently
connected to L2/3 BCs than to L2/3 PCs (p < 0.05), whereas for L6 inputs, we found no differences. We used generalized linear mixed model (GLMM) statistics (see supplemental
materials and methods, presynaptic layer and cell type interaction effect, p < 0.001). Numbers: within-column connectivity. Sample sizes: see Table S1. (C) L2/3 PCs received weaker
excitatory inputs than L2/3 BCs (p < 0.01), regardless of presynaptic layer. MCs, however, were indistinguishable (PC vs. MC, p = 0.15; BC vs. MC, p = 0.99). LMM statistics revealed
that EPSP amplitudes depended on cell type (p < 0.01) but not presynaptic layer (p = 0.12, interaction effect p = 0.74). Mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001.
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although L5 PC/L6 BC and L6 PC/L6 BC connectivity rates were indistin-
guishable (Figures 5A and 5B). L6 BCs also had higher connectivity rates from
L5 than L6 PCs or L6 MCs. Within each cell type in L6, there was no difference
in connection strength between different layers (Figure 5C), but across cell types
in L6, excitatory inputs onto BCs were stronger than excitatory inputs onto PCs
and MCs.

In sum, spatial distributions were similar across L6 target cells. Like for L2/3
and L5 (Figures 3 and 4), the excitation of BCs was stronger than that of PCs
or MCs, and L6 was isolated.

Excitation of inhibition originates farther away
Qualitatively, the excitation of inhibitory cells (E/I) seemed to originate

farther away (Figures 3, 4, and 5). We therefore quantified the spatial decay of
connectivity, which indeed revealed more distal E/I than E/E inputs (Fig-
ure S8). This E/I/E/E difference could promote stability and difference-of-
Gaussian connectivity.
4 The Innovation 6(1): 100735, January 6, 2025
Optomapping and paired patch yield indistinguishable results
To validate optomapping, we compared it with our L5 paired-recording data.45

One caveat, however, is that our paired-recording study was carried out at a
younger age range (paired recordings, postnatal day [P]11–P20: 16 ± 0.1 days,
n = 223 vs. optomapping, P17–P25: 21 ± 0.3 days, n = 41, p < 0.001,
Wilcoxon-Mann-Whitney). Another is that paired-recording studies of the same
brain region have been known to disagree,20,21 meaning this method is not a
gold standard.
Our paired recordings were done with cells spaced as closely as possible,

meaning <100 mm apart.17 To enable comparison, we restricted the opto-
mapping dataset to a 100-mm radius of patched cells (Figure 4A, dashed
circles).
In L5, PC/PCconnectivity ratesmeasuredwith paired recordings45 (81/682 =

�11.9%) and optomapping (16.9%; Figure 4A) were indistinguishable (p = 0.055,
chi-squared test). However, EPSP amplitude was larger with paired recordings
(0.87 ± 0.09 mV, n = 162) than with optomapping (0.33 ± 0.03 mV, n = 59,
www.cell.com/the-innovation
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Figure 4. For PCs, BCs, and MCs in L5, excitatory drive concentrated to L5 (A) Synaptic input density maps for L5 PCs, BCs, and MCs. (B) L5 PCs, BCs, and MCs had higher
connectivity from L5 than from L2/3 or L6. Within L5, BCs receivedmore excitatory inputs than PCs (p< 0.001) or MCs (p< 0.01). Connectivity depended on presynaptic layer and cell
type (p < 0.001). (C) Input strengths onto L5 PCs andMCs did not differ by layer. L5 PC/L5 BC and L4 PC/L5 BC inputs were stronger than inputs from other layers. Inputs from L4
and L5 were stronger onto BCs than onto PCs andMCs (from L4, PCs vs. BCs, p< 0.05, BCs vs. MCs, p< 0.05; from L5, PCs vs. BCs, p< 0.01, BCs vs. MCs, p< 0.01). EPSP amplitudes
depended on both cell type and presynaptic layer (p < 0.01). Mean ± SEM. *p < 0.05, **p < 0.01, and *** p < 0.001.
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p < 0.001, Wilcoxon-Mann-Whitney). However, the smaller optomapping ampli-
tude agreed with paired recordings from older mice.20

For L5 PC/L5 BC synapses, connectivity rateswith paired recordings45 (100/
299 = �33.4%) and optomapping (35.2%; Figure 4A) were indistinguishable
(p = 0.67, chi-squared test), as were EPSP amplitudes (paired recordings, 2.1 ±

0.2 mV, n = 100 vs. optomapping, 2.3 ± 0.4 mV, n = 82, p = 0.66, Wilcoxon-
Mann-Whitney). Likewise, for L5 PC/L5 MC synapses, connectivity rates with
paired recordings (4/47 = �8.5%) and optomapping (16.7%; Figure 4A) were
indistinguishable (p = 0.17, chi-squared test), as were EPSP amplitudes (paired
recordings, 0.21 ± 0.1 mV, n = 4 vs. optomapping, 0.36 ± 0.08 mV, n = 27,
p = 0.44, Wilcoxon-Mann-Whitney).

We next directly compared paired patch and optomapping (Figure S9). We op-
tomapped an FOV to find connected PCs. We reasoned that if optomapping
worked reliably, then targeting those samePCs for patching should invariably yield
connected pairs, which turned out to be true (Figures S9A–S9C). EPSP amplitude
and synaptic dynamics were furthermore indistinguishable (Figures S9D–S9F).

In conclusion, as strength differences for L5PC/PC synapses could be attrib-
uted to age,55 we found no systematic differences. Results obtainedwith the two
methods were thus indistinguishable.
ll
Excitatory pathway structure depends on target cell type
Based on ensemble optomaps (Figures 3, 4, and 5 and associated statistics),

we constructed connectivity matrices for PCs, BCs, and MCs (Figure 6A). This
highlighted several features, e.g., a prominent L4/L2/3 pathway for PCs (Fig-
ure 3), as expected for V1.4-6,53 In L5, BCs received more excitatory inputs than
PCs and MCs (Figure 4). Finally, L2/3 MCs had higher excitatory connectivity
from L2/3 than from other layers (Figure 3).
We similarly created synaptic-strengthmatrices (Figure 6B). For PC/PC con-

nections, synaptic efficacy distributed relatively evenly across the layers (Fig-
ures 3, 4, and 5). For BCs, EPSP amplitudes were stronger in subgranular layers,
especially for L5 PC/L5 BC synapses (Figure 4). In contrast, amongMCs, EPSP
amplitudes dominated in supragranular layers (Figure 3).
To illustrate the combined effect of connectivity and synaptic efficacy, we

created path-strength matrices (Figure 6C), where path strength is the product
of connectivity andEPSPamplitude.22 Consequently, path-strength comparisons
were qualitative. For PCs, this analysis highlighted the strong L4/L2/3 path. For
BCs, however, L5/L5 intralaminar drive appeared to be more prominent. For
MCs, L2/3/L2/3 intralaminar drive was salient. Overall, path strengths onto
PCs were weaker.
The Innovation 6(1): 100735, January 6, 2025 5
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Figure 5. In L6, excitatory inputs to PCs, BCs, andMCswere chiefly from L6 (A) Synaptic input densitymaps for L6 PCs, BCs, andMCs. (B) L6 PCs andMCs both receivedmore inputs
from L6 than other layers. L6 BCs, however, received fewer excitatory inputs from L2/3, with an indistinguishable number of inputs from L5 and L6. BCs received more L5 inputs than
PCs (p < 0.01) or MCs (p < 0.001). Connectivity depended on presynaptic layer and cell type (p < 0.001). (C) In L6, BCs received stronger excitation than PCs (p < 0.01) and MCs
(p < 0.01). EPSP amplitudes depended on cell type (p < 0.001) but presynaptic layer (p = 0.08, interaction effect p = 0.16). Mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001.
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In summary, excitatory microcircuit structures were target-cell specific (Fig-
ure 6D). For PCs, we reproduced the V1 canonical circuit,4-6,53 but we found sur-
prising differences for BCs and MCs. Finally, E/E pathways were weaker than
E/I pathways.

Short-term plasticity depends on layer as well as target cell type
It is known that short-term dynamics is specific to target cell,9 e.g., PC/MC

synapses short-term facilitate but PC/PC and PC/BC connections short-
term depress.10,11,45,54 We used optomapping to explore if this principle applies
to all cortical layers.

We first simultaneously optomapped excitatory inputs onto a PC, a BC, and an
MC (Figure 7A), which revealed target-cell-specific synaptic dynamics (Fig-
ure 7B).10,11,54 Quantification of short-term plasticity with the PPR revealed
that synaptic responses in the PC short-term depressed, those in the BC
depressed less so, and those in the MC short-term facilitated (Figure 7C). Opto-
mapping and published paired-recording PPR values corresponded well.45,56 Op-
tomapping thus accurately quantifies synaptic dynamics.

To look for differences across the cortical layers, we broke down all our PPR
measurements across presynaptic layer, postsynaptic layer, and postsynaptic
cell type (Figure 7D). This revealed predominant short-term depression for
6 The Innovation 6(1): 100735, January 6, 2025
PC/PC and PC/BC connections. However, noteworthy exceptions included
L6 PC/PC and L2/3 PC/L5 BC pathways, which facilitated (Figures 7D and
7E). PC/MC synapses, however, consistently facilitated (Figures 7D and 7E).
In sum, we produced an excitatory short-term plasticitome for PCs, BCs, and

MCs in developing V1,7,26 revealing that synaptic dynamics depended on cortical
layer in addition to target cell.9 This reveals complex interactions between pre-
and postsynaptic partners.

Excitation latency varies with target cell type
Due to strong facilitation16,20,45 and a long membrane time constant45 (Fig-

ure S5C), our 30-Hz EPSP trains temporally summated appreciably in MCs (Fig-
ure 7). Therefore, the first response, EPSP1, in a train underestimated the excita-
tion of MCs.
Therefore, we measured the peak depolarization, DVpeak, across EPSP trains

and expectedly found stronger excitation of MCs (Figures S10A and S10B).
DVpeak highlighted the strength of E/I over E/E connections without affecting
PC/MCspatial distributions appreciably (Figures 6CandS10C).DVpeak is a use-
ful proxy for the latency at which postsynaptic neurons tend to fire.56 As ex-
pected,15,16,57 BC latencieswereshort, andMC latencieswere long (Figure S10D).
Surprisingly, however, PC latencies distributed heterogeneously (Figure S10D).
www.cell.com/the-innovation
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Figure 6. Excitatory circuit structure depends on
target cell type (A) For PCs, L4/L2/3 connectivity
was prominent. Among L5/L5 connections, PC/
BC synapses stood out. For MCs, however, connec-
tivity concentrated to L2/3/L2/3. Color code:
normalized values. Cyan numbers: absolute values.
Statistics: see Figures 3, 4, and 5. (B) Excitatory input
strength to PCs did not depend on layer. For BCs,
L5/L5 inputs were strongest, whereas for MCs, L2/
3/L2/3 inputs dominated. MC matrix shows EPSP1

and so does not account for PC/MC facilitation
(Figure S10). Statistics: see Figures 3, 4, and 5. (C)
Path strengths highlighted the strong L4/L2/3 path
for PCs, but for BCs, L5/L5 dominated, and for MCs,
L2/3/L2/3 was the strongest. Overall, E/E path-
ways were weaker than E/I pathways. (D) Arrow
thickness scaled to normalized path strengths in
(C) reproduced the V1 canonical circuit for PC/PC
synapses.6,53 PC/BC paths, however, were stron-
gest in L5, and PC/MC paths dominated in L2/3.

ARTICLE
High-order connectivity patterns in L6
Classical connectivity studies have revealed high-order connectivity patterns in

L2/3 and L5.17,23,24,58,59 We therefore examined L6 for this connectivity principle.
Using Monte Carlo,17,23,24,60,61 we revealed 4-fold overrepresentation of shared
excitatory inputs for reciprocally connected, but not unconnected, PC pairs (Fig-
ure 8), thus extending this principle from L2/3 and L5 to L6. This principle further-
more holds for individual neuronal pairs.

In L2/3, excitatory inputs are overrepresented for reciprocally connected
PC4BC but not for PC-MC pairs.58 In agreement, we found a shared-input over-
representation for the reciprocally connected PC4BC pair in Figure 7 (excess
m ± SD = 34.3% ± 18%, p < 0.01, Monte Carlo, data not shown) but not for the
unconnected PC-MC (�22.4% ± 17%, p = 0.87). This replication validates our
approach.

DISCUSSION
Here, we showcased optomapping, a high-throughput connectivity mapping

method that we validated as accurate and reliable. Due to its high throughput,
we were able to reveal several hitherto unappreciated principles of V1 excitatory
fine structure.
ll The
The ubiquitous log-normal distribution
Many physiological and anatomical features in

the brain are described by log-normal distribu-
tions,25,62 e.g., spine size.63 Since spine size
scales with synaptic strength,62,63 this implies
that weight distributions should be similarly
heavy tailed. Paired recordings have indeed re-
vealed log-normal synaptic responses,17,22,25,51

but because paired-recording studies pool data
across cells,17,22,51 log normality could arise as
a sampling artifact because most cells are
weakly driven, whereas hub neurons receive
numerous strong inputs.62 However, we found
log normality in individual cells, arguing it is not
a sampling artifact.
Interneurons are relatively devoid of

spines,12–14 so their weight distributions have
been unclear.25 Weight distribution log normality
means few connections are strong and most
weak and may underlie key capabilities such as
feature encoding.19 Consequently, PCs with
similar functional preference wire together more
strongly and frequently,18 as expected fromHeb-
bianplasticity. Accordingly, it hasbeensuggested
that log-normal weights emerge from Hebbian-
like plasticity.64,65 Since PC/BC plasticity is
anti-Hebbian,7,66,67 we speculated that inter-
neuron weight distributions are not log normal.
However, we found log normality onto both BCs and MCs, suggesting that log
normality governs all excitatory synapses. It is unclear whether inhibitory synap-
ses also distribute log normally, but pooling across cells suggests they do.34

Theory studies suggest that heavy-tailed distributions arise frommultiplicative
processes such as homeostatic, intrinsic, or structural plasticity.64,68,69 However,
spine size log normality persists in synaptic blockade,63 suggesting that activity-
dependent plasticity is not required.
Finally, we reproduced in single cells the known sparsity of cortical connectiv-

ity,17,22,51 with mostly zero weights.25,70 A large zero-weight fraction—i.e., poten-
tial synapses as a blank slate71—is key to optimal information storage.70

The structure of excitatory circuits
Neocortical circuits generalize across areas, repeating the same basic laminar

organization.6 Simplistically, this canonical circuit consists of an ascending path
from L4 to L2/3, which then projects to L5, the output layer.6,53 Classic studies
typically explored these pathways in bulk, whereas optomapping permitted inter-
rogation of the sublaminar structure.
PC/PC optomapping largely reproduced the canonical circuit, although we

found intriguing differences compared to prior literature. Some reported that
Innovation 6(1): 100735, January 6, 2025 7
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Figure 7. Synapse dynamics varied with cortical layer as well as target cell type (A) PC/BC/MC triplet recording with sample shared inputs 1–4. Out-of-plane inputs are not shown for
clarity. (B) Shared inputs 1–4 facilitated onto MC but depressed onto PC and BC. Pink bars: optogenetic stimulation. (C) Across all inputs to this triplet, PC/PC short-term depressed,
PC/BC depressed less so, and PC/MC facilitated. Triplet target cell thus determined synaptic dynamics.10,11,45,54 Dashed line demarcates short-term depression from facilitation.
(D) PPR analysis across all PCs, BCs, andMCs confirmed that target cell type determines synaptic dynamics.9 However, outliers such as L6 PC/PC and L2/3 PC/L5 BC connections
suggested additional dependence on layer. PPR depended on presynaptic layer and postsynaptic cell type (p< 0.001, LMM) but not postsynaptic layer (p = 0.17). For inputs from L2/3
and L5, MCs had a greater PPR than PCs (p < 0.001) and BCs (p < 0.001). For inputs from L6, BCs had a lower PPR than PCs (p < 0.01) and MCs (p < 0.001). Numbers: PPR. Gray: <3
connections. (E) Synaptic dynamics depended differentially on presynaptic layer for PCs and BCs but notMCs. Facilitation was largest in L6 for PC/PC connections but dominated in
L2/3 for PC/PC synapses. Bars: PPRs pooled across postsynaptic layers. Numbers: number of inputs. Dashed line demarcates short-term depression from facilitation. Mean ± SEM.
*p < 0.05, **p < 0.01, and ***p < 0.001.
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L2/3/L5 is stronger than L2/3/L2/3,72 but we found these paths to be indis-
tinguishable. Like others,34 we found prominent L5/L2/3 projections, yet these
are absent from influential neocortical models,73,74 aswell as from several paired
A B C

D

Figure 8. 4-fold overrepresentation of shared inputs onto connected L6 PCs (A) Three L6 P
in (A), several were shared by two of the patched PCs (purple). (C) PCs 1 and 3 were bidirecti
pair shared more L6 inputs than expected from uniformly random (Monte-Carlo bootstrap)
reconstruction confirmed pyramidal cell identity. Dark: dendrite; light: axon. Mean ± SD. ***

8 The Innovation 6(1): 100735, January 6, 2025
recording studies.21,22,55 Although a known L5/L6 projection6,53 showed up
weakly, optomapping revealed a largely isolated L6, as previously shown.20

This L6 independence may, however, be neuromodulated in the intact brain.
E

Cs were simultaneously optomapped. Only connected inputs are shown. (B) Of the inputs
onally connected. EPSP traces are averages of 20 repeats. (D) Reciprocally connected PC
. This was not true for unconnected PCs (N = 3 pairs pooled). (E) Three-dimensional (3D)
p < 0.001.
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Key cortical interneuron types such as BCs and MCs establish functionally
important recurring connectivity motifs.15,16,57,75 We therefore considered BCs
and MCs as targets in addition to PCs, which revealed striking differences.
PC/BC excitation concentrated to L5, whereas PC/MC excitation dominated
in L2/3, reminiscent of barrel cortex.39 In both cases, excitation qualitatively orig-
inated from the upper half of the layer, suggesting sublaminar structuring.

Although PC/PC optomapping chiefly reproduced the canonical circuit, the
layer specificity of PC/BC and PC/MC drive was surprising. MCs have been
thoroughly studied in L5,15,16,45,50,56,75 yet their L2/3 drive seems greater. The
potent PC/BC drive in L5 suggests a prominent BC role in the output layer.
This arrangement may promote sparse and dense coding in L2/3 and L5,
respectively.1,2

Our study provides a snapshot of developingmicrocircuits, whichmay explain
differences with studies at other ages. An interesting future direction would be to
optomap across ages to reveal circuit maturation.

E/I: Denser, stronger, farther
An emerging principle was that E/I projections were denser, stronger, and

farther reaching than E/E projections. This differential arrangement of E/E
and E/I synapses may prevent runaway excitation in local circuits, as hyperac-
tive PCs are promptly inhibited by strongly driven neighboring BCs and MCs.

Differential E/I and E/E spatial distributions may together provide a sub-
strate for difference-of-Gaussian connectivity structures.76 L2/3 I/E projections
are likewise long range,34 supporting this idea. It has long been argued that dif-
ference-of-Gaussian connectivity mediates lateral suppression in local circuits
and underlies edge detection in vision.77

A V1 excitatory short-term plasticitome
The synapse-type specificity of short-term dynamics is well known.9 For

instance, PC/BC connections short-term depress, but PC/MC synapses facil-
itate, which helps BCs and MCs elicit early- and late-onset inhibition, respec-
tively.10,11,45,54 This principle, however, need not apply across the layers, given
their distinct computational roles.1,2,4 We therefore used optomapping to create
an excitatory short-term plasticitome.7 This replicated the known target-cell
specificity of synaptic dynamics,9 which in turn validated optomapping.

However, we additionally found stronger facilitation in L6 inputs for PCs and
stronger facilitation in L2/3 inputs for BCs. To our knowledge, these cell-specific
dissimilarities across the lamina have not been previously reported.20,21 Our
finding suggests that, over the course of activity bursts, E/E and E/I drive
differentially varies in supra- and subgranular layers. E/I balance may thus also
dynamically vary accordingly across the cortical thickness.

Factors other than synaptic short-term dynamics also determine BC and MC
spiking latency, such asmembrane time constant and synaptic conductance dy-
namics.56 To account for such factors collectively, we also explored peak depo-
larization. Unsurprisingly, depolarization peaked early for BCs and late for
MCs.10,11,45,54

However, PC peak depolarization latencies distributed heterogeneously over
short EPSP bursts. PC/PC connections are well known for undergoing presyn-
aptic forms of long-term plasticity that alter short-term synaptic dynamics.78–80

Long-term potentiation thereby redistributes synaptic efficacy toward the begin-
ning of EPSP bursts,79,80 whereas long-term depression does the opposite.78

PC/PC long-term plasticity may thus alter both the likelihood and latency of
PC spiking relative to BC and MC spiking. Developing this view would require cir-
cuit computer models of long-term plasticity that include the locus of plasticity
expression.81,82

High-order patterns of connectivity
Influential connectivity studies have revealed high-order connectivity

patterns.17,23,24,58,59 For instance, compared to unconnected L5 PC pairs, recipro-
cally connected L5 PCsmore likely receive input from the same L2/3 PC.23 High-
order patterns are important, as they shape information processing in the brain,
e.g., by binding different features of information or by creating separate informa-
tion streams.17,23,24,58,59 However, many of these studies pooled data across ex-
periments with paired recordings.17,23,24 They also focused on L2/3 and
L5.17,23,24,58,59

We explored if this connectivity principle carried over to individual PC pairs in
L6. We found a 4-fold overrepresentation of shared inputs onto connected L6
ll
PCs that was not present for unconnected L6 PCs. We validated our findings
by replicating prior high-order connectivity findings in L2/3.58 The existence of
high-order connectivity patterns thus extends to L6, even for individual pairs.
Patchy connectivity patterns have long been reported in L2/3 and L517,48,52

and have, in some cases, been attributed to the existence of different PC
types,24,83,84 and in other cases not.23,59 Although our high-order connectivity pat-
terns did not align with the L6 PC type, we also could not exclude this
possibility.85,86

Caveats
Like anymethod, optomapping comeswith caveats. We identified direct opto-

genetic activation of opsin-expressing postsynaptic cells as a central problem as
well as approaches to mitigate it. Ideally, opsins in postsynaptic cells should be
specifically blocked by drug dialysis via the recording pipette.45,50 Such pharma-
cology would be a key improvement of optomapping.
As opposed to paired recordings, optomapping could not directly monitor pre-

synaptic spiking. Even though the reliability of presynaptic spiking was high in
control experiments, and even though optomapping connectivity closely
matched that of paired recordings, it is possible that connected presynaptic neu-
rons were occasionally erroneously classified as unconnected because they
failed to spike. One solution would be to co-express GCaMP with the opsin to
enable presynaptic spike-driven calcium imaging.33,38,40,87–89

The acute slice preparation suffers from undesirable severing of neuronal pro-
cesses. With optomapping, it is not possible to reconstruct presynaptic neurons
to evaluate their intactness. To minimize cutting artifacts, we optimized slice
angle, patched and stimulated deep, and triaged data based on a threshold value
for cutting angle and cell depth, but the only way to avoid this problem is to find
monosynaptic connections in the intact brain, which has been done with paired
recordings.90 It would thus be interesting to adapt optomapping for in vivo
conditions.
It is possible to identify cells with greater granularity than we did.12-14 Future

optomapping studies may classify cell types with higher resolution using, for
instance, layer-specific Cre lines and patch-sequencing.12,34,37,91 However, the
use of new Cre lines requires re-characterizing the optogenetic effector.39,88

Outlook
The state-of-the-art approach for synapse-type-specific experimentation has

long been the paired-recording technique.17,18,20–24 This methodology, however,
is difficult to learn and slow to use, leading to the throughput problem.7,26 Conse-
quently, relatively completemappings of entiremicrocircuits have been rare.20–22

Since circuit structure fundamentally determines circuit function,1–3 the
throughput problem has been a major impediment to progress in neuroscience
research.
To solve the throughput problem, we implemented optomapping by seeking

inspiration from recent advances with 2P optogenetics.33,34,36–38,40 We validated
optomapping by comparing it with paired recordings. With optomapping, we
could rapidly and reliably test hundreds of candidate inputs hundreds of microns
away from a patched cell, across the cortical layers and covering the entire
cortical thickness, to reveal hitherto unappreciated microcircuit differences for
PCs, BCs, and MCs. We estimate that optomapping is around two orders of
magnitude faster thanmultiple patch. Additionally, without patching onto presyn-
aptic cells and dialyzing the intracellular milieu, which is known to severely affect
paired recordings in some brain regions,92 we eliminated a subset of experi-
mental artifact types during the measurement of synaptic events. For an even
better yield, optomapping can also be combined with other approaches, such
as multiple patch, pipette cleaning, and patch robots.93–95

Becauseof the throughput problem, the typicalmedium-sized lab hasnot been
able to explore how local circuits differ in disease states, in genetic models,
across brain areas, or across species. By solving this problem, optomapping
and similar pipelines thus change what kinds of questions neuroscientists can
ask. Here, we showcased an optomapping pipeline adapted from a standard
2P imaging system, as well as open-access data acquisition and analysis soft-
ware. By applying optomapping to developing V1, we provided a fresh perspec-
tive on the principles that govern its excitatory fine structure.

MATERIALS AND METHODS
See the supplemental information for details.
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