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Abstract: Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and
extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has
great potential, and the development of new treatment strategies using the ASCs secretome is of
global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome
is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted
by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been
proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization
activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory,
and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem
cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and
safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage
of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on
the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.

Keywords: adipose-derived stem cells; extracellular vesicles; secretome; stem cell therapy

1. Introduction

Mesenchymal stem cells (MSCs) have a great potential for use in medicine and stem
cell therapy. The therapeutic potential of MSCs is mainly based on their ability to self-renew
and differentiate towards tissue-specific cells, thus tissue regeneration [1,2]. To standardize
the concept and the possibility of comparing the results of research in possible medical
application, in 2006, the International Society for Cellular Therapy (ISCT) published three
minimum criteria for defining MSC cells. According to ISCT, these cells must be plastic-
adherent, capable of differentiating into osteoblasts, adipocytes and chondroblasts, and
phenotypically be ≥95% CD105, CD90, and CD73 positive and negative for CD45, CD34,
CD14 or CD11b, CD79alpha or CD19 and HLA-DR [3]. MSCs can be hypothetically ob-
tained from almost all human tissues, e.g., the marrow spaces of long bones, cord blood,
dental pulp, placenta, and synovial fluids, first discovered and described by Friedenstein’s
group (1976), Muluen’s group (1978), Shi’s group (2003), and Atala’s group (2006), re-
spectively [4–7]. However, due to many limitations in isolation and abundance, the main
sources today are bone marrow (BM) and adipose tissue (AT) [2,8]. BM-MSCs were the first
discovered and described at the end of the twentieth century, and naturally, BM became the
first and most important source of MSCs [8]. However, subsequent researchers provided
evidence that multipotent stem cells can be successfully isolated from other tissues and that
higher densities of MSCs can be found in AT than BM. At the same time, the invasiveness
of donor sampling is reduced [9].

Adipose-derived stem cells are mesenchymal stem cells harvested from AT capable of
self-renewal and multipotent differentiation towards adipocytes, osteoblasts, chondrocytes,
myocytes, neurocytes, and other types of cells [10–14]. ASCs isolated from AT meet the
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criteria established by the ISCT and are considered a promising tool for use in regenera-
tive medicine, including the treatment of degenerative, inflammatory, and autoimmune
diseases [13]. ASCs have already been shown to have the potential for use in multiple
sclerosis [14], rheumatoid arthritis, osteoarthritis [13,15–18], fistulae [18,19], diabetes mel-
litus [20,21], dyslipidemia, and cardiovascular diseases [22,23] treatment as well as skin
aging and wound healing [24–26]. The great advantage of MSCs isolated from AT is that
they can be easily obtained by liposuction from autologous subcutaneous adipose tissue
with high cellular activity without any ethical concerns comparing to embryonic stem cells,
the obtainment of which is associated with the destruction of the embryo. This makes ASCs
a suitable choice for use in cell-based therapies, apart from those that may be questionable
and controversial [10].

ASCs may also be considered a therapeutic tool due to their autocrine and paracrine
factors and by increasing the recruitment of endogenous precursors. They secrete many
significant proteins, including growth factors (GF) and cytokines [27–29], as well as ex-
tracellular vesicles (EV) and RNAs [30–32] to support cell regeneration, proliferation,
differentiation, and migration [33]. Attempts have been made to optimize the conditions of
stem cell-based therapy with naive ASCs by manipulating the route of administration and
dose of cells and the timing [34–36] of homing to the site of inflammation, however, without
fully satisfactory results [37,38]. The Sacerdote group has been studying the use of ASCs for
years [34]. In 2013, they showed that 1 × 106 human ASCs administered intravenously can
reduce pain in a mouse model with neuropathic pain. However, they suggested validation
of ASCs dose and the time of treatment to improve this effect [35]. In a clinical study by
Alvaro-Gracia et al., after three months of treatment of the rheumatoid arthritis patients
(three groups: 1, 2, and 4 million cells/kg by three intravenous administrations on days 1,
8, and 15), clinical benefits were not sustained but many side effects were observed [36].
Therefore, a new strategy for ASCs based therapy is needed, and ASCs secretome can be
a promising tool for medical purposes as a safe therapeutic agent for cell-free-based therapy
with easy storage for long-term use [39,40].

This review provides information on the current state of knowledge about secretome
of adipose-derived stem cells, with particular focus on their exosomes. The study used
all available sources such as PubMed, Google Scholar, and Clinical Trials (European and
World) databases. The authors collected data and summarized information from in vitro,
in vivo, and clinical trials using adipose-derived stem cells secretome in the context of use
in stem cell-free therapy. The literature study was based on keywords such as adipose-
derived stem cells, secretome, exosomes, growth factors, cytokines, cell-free, therapy that
were used alone or in combination with diabetes mellitus, cardiovascular, wound healing,
neurodegenerative, skeletal, respiratory, metabolic, regeneration, disease, and skin aging.

2. Adipose-Derived Stem Cells Characteristics
2.1. Nomenclature

The International Fat Applied Technology Society has proposed and adapted the term
adipose-derived stem cells (ASCs) to standardize it to avoid confusion in nomenclature.
In the older literature, adipose-derived stem cells are referred to by various terms and
abbreviations: adipose-derived adult stem (ADAS) cells; adipose mesenchymal stem cells
(AdMSCs); adipose-derived adult stromal cells; adipose-derived stromal cells (ADSCs);
adipose stromal cells (ASCs); adipose-derived stromal/stem cells (ASCs); vascular stro-
mal/stem cells; preadipocytes; processed lipoaspirate (PLA) cells; pericytes and lipoblasts
and that inconsistent nomenclature in the literature has led to confusion [41–44]. In line
with International Fat Applied Technology Society recommendations, we use the term
adipose-derived stem cells in this study.

2.2. Sources

Adipose-derived stem cells can be harvested from adipose tissue also containing
adipocytes, preadipocytes, pericytes, and immune cells such as eosinophils, macrophages,
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and innate lymphoid cells (ILCs), T cells, and B cells, fibroblasts, and endothelial
cells [45,46]. Before International Fat Applied Technology in 2004 defined the nomenclature
and adapted the term ASCs with a specific phenotype, referring only to mesenchymal stem
cells isolated from the vascular stromal fraction, the terms preadipocytes and pericytes had
previously been used confusingly [41–43]. Adipose tissue can be divided into white (WAT)
and brown (BAT) adipose tissue as a site for energy storage and expenditure, respectively.
Adipose-derived stem cells from WAT are characterized by a different expression of cell
surface markers than BAT, e.g., ASCs from BAT express noticeably more TMEM-26, SSEA-4,
CD106, CD105, HLA-A,B,C, and CD-137 but less CD86 and LIN, than WAT [47]. Subcu-
taneous AT is most commonly used for ASCs isolation due to its easy and non-invasive
obtaining procedure from the abdomen, thigh, and arm. [48,49]. Moreover, those obtained
from thighs show the best viability [50]. However, it can also be obtained from the cran-
iofacial, pericardial, perirenal, omentum, intestine, bone marrow, buttocks, pulmonary
(WAT regions) cervical, paravertebral, supraclavicular, axillary, suprarenal (BAT regions)
regions [43,49,51]. The type of harvested area and the type of adipose tissue affects pro-
liferation, endocrine function, gene expression, surface antigens, and the differentiation
potentials of adipose-derived stem cells [50,52]. Nepali et al. have already shown that
abdominal ASCs exhibit better chondrogenic but poorer osteogenic potential than orbital
ASCs [53].

Moreover, the origin of the adipose-derived stem cells is critical, and the age, weight,
and disease state of the donor may affect the condition and properties of isolated ASCs. It
has been shown that the older donor of ASCs the lower proliferation and differentiation
potential and the lower growth factors secretion ability [9,36,54]. Furthermore, ASCs
obtained from obese donors are characterized by decreased expression of phenotypic
mesenchymal stem cells markers, an excessive immune response, and thus a lower self-
renewal, differentiation potential [55,56], and a higher capacity for migration, invasion,
and phagocytosis [57]. Studies have also shown that type 1 and type 2 diabetes mellitus,
hypercholesterolemia, hypertension, and smoking have negative effects on the pluripotency
and self-renewal of isolated ASCs [56,58]. On the other hand, it has been shown that gender
and chemotherapy have not shown much effect on ASCs [59]. However, it is necessary to
use exosomes isolated from healthy individuals to avoid a reduction in the therapeutic
potential and potential side effects caused by bioactive exosomes, the content of which
depends on the state of secretory cells, therefore their pathological effects should be
assessed [60].

2.3. Phenotype

Adipose-derived stem cells are a heterogenic population and no unique surface mark-
ers have yet been described. However, they express markers characteristic of mesenchymal
stem cells established by ISCT and the International Federation for Adipose Therapeutics
and Science (IFATS) and are described by CD73(+), CD90(+), CD105(+), and CD36(+) but
also CD31(−), CD45(−), CD11b(−), CD106(−). The expression of CD36 and lack of ex-
pression of CD106 distinguish ASCs from BM-MSCs [61]. Moreover, ASCs express β-1
the integrin (CD29) that participates in angiogenesis and CD44 hyaluronate and osteo-
pontin receptor, which is crucial in extracellular matrix development and pathological
processes such as neoplasia [62,63]. Although, they also show the characteristics of neural
phenotypic profile through the expression of NEUROD1, SOX3, and PAX6 and markers
determining core circuitry self-renewal: SOX2, NANOG, OCT4 [64]. There are incon-
sistent data, confounding if ASCs isolated from stromal vascular fraction may express
CD34 [65,66] and CD106 [67] or not [68]. It is recognized that cultured MSCs do not express
CD34 contrary to freshly isolated cells. Some studies have shown that CD34 is present
at the beginning of culture in freshly isolated ASCs but after the first and subsequent
passages (2–4) disappears [69] or remains at a low level [70].

ASCs markers also depend on adipose tissue origin, and it has been proven that
orbital-ASCs express less HLA-DR, CD31, and CD44 than abdominal-ASCs [53]. It has
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also been shown that the ASCs phenotype changes progressively with passages in vitro.
Stromal-cell associated markers such as CD13, CD29, CD44, CD63, CD73, CD90, CD166
were present after subsequent passages but with increased levels [68,70]. Zhu et al. have
also shown that ASCs, retained their phenotype after 25 passages, as well as multilineage
differentiation, and proliferation capacity but decreased compared to the first passage [71].
Furthermore, Atat et al. confirmed that the expansion of the passaged ASCs did not
influence their differentiation capacity [72]. Interestingly, Griffin et al. showed that the
phenotype and differentiation potential are not changed by comparing ASCs from healthy
and systematic sclerosis donors but only the proliferation, invasion, and migration capacity
of these cells, which may suggest that the diseases does not alter the self-renewal potency
of ASCs [73]. Similarly, Mieczkowska et al. showed that ASCs from oncological surgery
patients exhibit comparable phenotypes to those from healthy donors [70].

3. Adipose-Derived Stem Cells Secretome

Adipose-derived stem cells produce many molecules responsible for cell signaling,
such as cytokines [29,74], growth factors [28,75], morphogens [76], chemokines [27,77], and
extracellular vesicles [78–80], improving various cellular mechanisms. Interestingly, com-
pared to BM-MSCs—the second most frequently considered MSCs for stem cell therapy—
ASCs secrete more growth factors, and this feature increases their regenerative capac-
ity [2,81]. It has also been shown, in vivo, that ASCs are better in the bioactive factors
secretion such as nerve growth factor (NGF), hepatocyte growth factor (HGF), mono-
cyte chemotactic protein 1 (MCP-1), colony stimulator of granulocyte-macrophage factor
(GM-CSF), granulocyte colony stimulating-factor (CSF), interleukin 1 receptor antagonist
(IL-1RA), interleukin (IL)-6 and IL-8 versus bone marrow (BM)-MSCs [27]. This implies
a better differentiation, migration, proliferation, and autocrine activity compared to BM-
MSCs; moreover, an excellent ASCs paracrine potential has been revealed. Additionally,
ASCs undergo senescence later than BM-MSCs [82,83]. Due to several limitations of cell
therapy, in terms of increasing the effectiveness of ASCs and in view of safety and costs,
the dose and frequency of cell application cannot be increased indefinitely. One strategy for
enhancing ASCs therapy is to use their secretome with particular emphasis on extracellular
vesicles. This approach promises higher efficiency than naive ASCs without having to use
ASCs alone [37] (Figure 1).

Figure 1. Different types of secretory activity of adipose-derived stem cells.
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3.1. Cytokines and Growth Factors

Adipose-derived stem cells are characterized by high trophic activity and secretion
of a large amount of proteins, growth factors, and pro- and anti-inflammatory cytokines
exerting benefits towards cells’ regenerative capacity. They are considered to be highly
immunomodulating cells, exceeding the suppressive effect of BM-MSCs by secreting more
anti-inflammatory IL-6 and transforming growth factor-β1 (TGF-β1) [84]. However, under
different conditions, IL-6 can have anti- and pro-inflammatory properties similar to IL-
2 [77]. It has been shown that relevant levels of IL-2 affect ASCs function by transcriptional
dysregulation [85] and also that IL-6 enhances ALP activity and promotes osterix expres-
sion, and thus osteogenesis [86,87]. Moreover, it has been shown that orbital ASCs secrete
higher concentrations of IL-6, IL-8, eotaxin, fractalkine, and IL-10, but lower concentrations
of basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF)
than abdominal ASCs [53]. In addition, high seeding density, long-term culturing, and
passaging in vitro reduce the concentration of IL-6 and VEGF [72,88].

In addition to bifunctional IL-2 and IL-6, adipose-derived stem cells secrete other
cytokines with a well-defined pro-inflammatory (IL-7, IL-8, IL-9, IL-11, IL-12, IL-15, IL-
17, interferon-gamma IFN-γ, IL-1β, and tumor necrosis factor-alpha TNF-α) or anti-
inflammatory (IL-1Ra, IL-4, IL-10, and IL-13) properties [29,44,89]. It has been shown
that TNF-α and IL-1β secretion by macrophages mediates the inhibitory effect on ASCs
adipogenesis, and also that combination of TNF-α or IL-1β with IFN-γ can enhance the
immunomodulatory properties of ASCs mainly dependent on indoleamine 2, 3-dioxidase
(IDO) or inducible nitric oxide synthase (iNOS) [74]. IFN-γ triggers ASCs to elicit immuno-
suppressive factors [90]. In addition, the signaling protein (PGE2) secreted by ASCs has
been found to have an immunosuppressive effect [91,92]. It has been shown that IL-4 and
IL-17 have an inhibitory effect on adipogenic differentiation by promoting lipolysis and
suppressing proadipogenic factors gene expression, respectively [93,94].

In addition to cytokines, ASCs secrete many growth factors that influence cellular pro-
cesses that promote regeneration. The proangiogenic and antiapoptotic properties of ASCs
are provided by trophic factors secreted by these cells such as VEGF, FGF-2, TGF-β, HGF,
and GM-CSF [95]. HGF and VEGF also induce neurogenic responses [33]. Interestingly,
the secretion of HGF involved in vasculogenesis and angiogenesis [96] is significantly in-
creased after ASCs stimulation with FGF-2 or epidermal growth factor (EGF) [29]. However,
platelet-derived growth factor (PDGF) secreted by ASCs plays an essential role in angio-
genesis [97] and it has been shown that cell stimulation with PDGF enhances the release of
extracellular vesicles and thus proangiogenic properties [98]. Adipose-derived stem cells
also secrete insulin-like growth factor (IGF) promoting, proliferation, self-renewal, and
differentiation of cells [99] but its level decrease with donor age [100]. Nevertheless, IGF-1,
EGF, FGF-2, and TGFα are essential wound healing factors, enhancing these processes and
cell migration [101].

3.2. Extracellular Vesicles

Extracellular vesicles (EV) are secreted by cells into the extracellular matrix and
carry biomarkers that influence numerous cellular processes. These self-contained lipid
bilayer vesicles are composed of lipids, proteins, and nucleic acids [102], but cannot
replicate because they do not contain a functional nucleus [103]. EV can be formed by
outward budding of the cell membrane or from inward endosome. Exosomes are formed
from exosome precursors called intraluminal vesicles (ILVs) in the endocytic cisternae
membrane. ILVs accumulation leads to the formation of multivesicular bodies (MVBs),
which over time exocytically fuse with the plasma membrane and can be released into the
extracellular space. Whereas, ectosomes are quickly generated in the plasma membrane
(Figure 2) [104]. The term nanovesicles can also be found in the literature. Nanovesicles are
membrane-bounded structures of various origins, e.g., exosomes, so basically exosomes
are nanovesicles. Nanovesicles can be artificially generated by sequential cell membrane
penetration and can be used in cell-based therapy [105].
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Figure 2. Exosomes and ectosomes secretion in adipose-derived stem cell.

EVs have attracted a lot of attention over the last decade and there has been a growing
number of scientific papers on them. There is no consensus yet on the description of
specific markers for EVs subtypes. Due to this, the International Society for Extracellular
Vesicle published in 2018 an updated minimum information statement on extracellular
vesicles (MISEV2018) referring to meaningful changes in nomenclature. MISEV2018 recom-
mends to describe subtypes of EVs in published researches by (a) physical characteristics
such as density (low, middle, high, with each range defined) or size (“small EVs” (sEVs):
<100 nm or <200 nm and “medium/large EVs” (m/lEVs): >200 nm (large and/or medium))
(b) biochemical composition (CD63+/CD81+-EVs, Annexin A5-stained EVs, etc.); or (c)
descriptions of cell conditions or origins (podocyte EVs, hypoxic EVs, large oncosomes,
apoptotic bodies). However, using subtype terms based on subcellular origin is allowed:
endosome-origin “exosomes” and plasma membrane-derived “ectosomes” (microparti-
cles/microvesicles), while a demonstration of origin is shown [106].

3.2.1. Extracellular Vesicles Composition

Adipose-derived stem cells secrete exosomes (Figure 2) with a diameter of
30–100 nm [30] or according to other sources up to 150 nm [107,108]. Exosomes contain
cytoskeleton, heat shock, and transmembrane proteins, enzymes, lipids, and DNA [102].
Moreover, they carry coding (mRNA) and non-coding RNA (e.g., rRNA, miRNA) in vari-
ous subtypes but with a strong emphasis on short non-coding RNA [109,110]. Non-coding
RNAs are RNA molecules that cannot be translated into a protein and the functions of
many have not been understood yet, however, carried by exosomes play a role in cellu-
lar mediated communication [110]. Interestingly, Xing et al. identified 1185 proteins in
ASC-derived exosomes (ASC-exos) and showed that exosomes are crucial not only for
cell-to-cell communication but also for metabolic and cellular processes and the regulation
of biological processes. They also showed that ASC-exos are characterized by exosomal
markers such as CD9, CD63, as well as tumor susceptibility gene (TSG) 101 [111]. In turn,
Ni et al. identified 1466 proteins in ASCs-exos and some of them are associated with the
proliferation and regeneration pathways (e.g., PI3K-Akt or WNT) such as LAMC1, LAMA4,
LAMB2, LAMB1, MEK1, MEK2, IKBKA, IKKA CHUK, RELN, VTN, WNT2, PEDF, and
SERPINF1 [112]. Interestingly, González-Cubero et al. showed that exosomes derived from
ASC-conditioned medium were characterized by a strong enhancement of CD3, CD45,
CD56, HLA-ABC, and HLA-DRDPDQ expression [113].
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3.2.2. Control of the Secretion of Extracellular Vesicles

The specific molecule content makes exosomes (due to their specific biological prop-
erties) modulators with different effects on the target recipient cells. ASC-exos provide
benefits in therapeutic use due to their stability in the human body [30] as opposed to
whole ASCs which die after 48 h of systemic infusion [38]. Moreover, the use of exosomes
is safer, because of the reduced risk of tumorigenicity. They can also be readily produced in
large quantities with well-established protocols in under laboratory conditions, and their
components are less prone to cellular degradation [30]. Importantly, exosomes can affect
not only neighboring cells by transporting bioactive cargo, but also cells and host tissues
over a greater distance [105].

Despite the benefits of exosome use, the regulation of their content and reproducibility
is important to provide successful clinical applications. The function and secretion quantity
of exosomes depends on their donor. It has been shown that ASCs from obese donors and
those from omental depots secrete more exosomes than lean donors and subcutaneous de-
pots, respectively, which is reflected in the disease state [114]. However, exosome secretion
can be enhanced with in vitro molecule modulators. Wang et al. showed that MSCs treated
with N-methyldopamine and norepinephrine for 24 h produce three times more exosomes
without altering their features [115]. The exosomal content is not random and is controlled
by posttranslational modifications and specific endogenous target sequences at the stage of
exosome formation, most importantly, miRNAs are the most preferred exosome loaded
RNAs [116]. Nevertheless, due to the improvement in the exosome efficiency in therapy,
their function can also be boosted by the engineering content modifications through genetic
and chemical methods and may be used as an ideal drug delivery agent [109,117].

4. Therapeutic Potential of Adipose-Derived Stem Cells Secretome

Adipose-derived stem cells are getting more and more interest due to their use in
regenerative medicine. Currently, 1259 MSC-containing investigational medicinal products,
including 406 ASCs are registered in the Clinical Trials database [118] and also 138 and
46 in the European Clinical Trials database [119], respectively. Regarding European clini-
cal trials database, the greatest number of ASC studies concern wound healing (fistulae,
skin burns, and ulcers) and vascular applications (myocardial infarction, ischemia, and
heart failure). ASCs are also studied for respiratory (respiratory distress, bacterial and
COVID-19 pneumonia), immunomodulatory (HIV infection, amyotrophic lateral, and
systemic sclerosis), skeletal (spinal cord injury, osteoarthritis, atrophic pseudarthrosis),
dermatology (scars, cutis laxa, lichens, epidermal necrolysis), reconstructive (breasts re-
constructions), gastrointestinal (hyposalivation and xerostomia), genito-urinary (urinary
incontinence, erectile dysfunction), and ophthalmology (dry eye disease) applications
(Figure 3). On the other hand, regarding the world Clinical Trial database, most research is
focused on skeletal applications but also wound healing with the extension of research on
skin aging. In this database are also registered clinical trials concerning haematological
(e.g., anemia) and neurological (e.g., Parkinson’s disease) applications (Figure 4). Many
clinical and laboratory research show the enormous potential of using ASCs in cell therapy
(Tables 1 and 2).

Two main perspectives are crucial in stem-cell-based therapy. First, the ability of
cells, which are the progeny of implanted cells, to rebuild tissues by cell differentiation
and proliferation, and second immune cells, due to their trophic activity and stimulation
of endogenous regenerative factors [120]. The ASCs secretome can be obtained during
culturing in vitro from the culture medium, and then conditioned medium after removal
of cell debris can be used directly or fractioned as concentrated formula [121]. Below, we
summarize the current stage of knowledge of ASCs and their use in neurodegenerative,
inflammatory, cardiovascular, respiratory, and metabolic diseases as well as skin aging and
wound healing with particular emphasis on cell-free-based therapy.
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Figure 3. Summary of European clinical trials concern adipose-derived stem cells based on all clinical
trials available in the database (years 2007–2021) [119].

Figure 4. Summary of World clinical trials concern adipose-derived stem cells based on all clinical
trials available in the database (years 2007–2021) [118].

4.1. Neurodegenerative Diseases

Neurodegenerative diseases such as Alzheimer’s (AD), Huntington’s (HD), Parkin-
son’s (PD), Machado–Joseph (Spinocerebellar ataxia type 3, SCA3) diseases, and multiple
sclerosis (MS) are characterized by progressive deterioration and/or death of nerve cells
that disable brain function [122]. Adipose-derived stem cells secrete angiogenic and
antiapoptotic factors such as VEGF, IGF [123,124], TGF-β [125], and HGF involved in
neurogenic responses and tissue regeneration [33], as well as neurotrophic factors such
as brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial
cell line-derived neurotrophic factor (GDNF) [126–128], and NGF [129] are required for
neurons survival and growth. Choi et al. reported that ASCs therapy in a mouse PD model
restored the activity of dopaminergic neurons and mitochondrial complex I, improving the
behavioral performance of mice after three weeks [130]. Recently, Park and Chang have
also shown in a mouse PD model that BDNF and GDNF expressed by ASCs have an effect
on the protection of dopaminergic neurons and could be used in the treatment of PD [128].
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Trophic factors from ASCs can also be used in the treatment of SCA3 due to protective func-
tion of neurons by reducing the production of reactive oxygen species [131]. Furthermore,
it has been proven that miR-21 from ASCs stimulates neuronal differentiation [132] as well
as miR-24 [133].

Table 1. Clinical trials of adipose-derived stem cells exosomes for cell-free based therapies. N/A—Not available [111].

NCT no. Title Status Condition/
Disease Administration Intervention/

Treatment Results

NCT04313647

A tolerance clinical study
on aerosol inhalation of
mesenchymal stem cells

exosomes in healthy
volunteers

Recruiting Healthy
volunteers

Aerosol
inhalation

2 × 108, 4 × 108,
8 × 108, 16 × 108,

20 × 108 nano
vesicles/3 mL to be

administrated at
once to different
participants sets

N/A

NCT04388982

Open-label, single-center,
phase I/II clinical trial to
evaluate the safety and
the efficacy of exosomes
derived from allogenic
adipose mesenchymal
stem cells in patients

with mild to moderate
dementia due to

Alzheimer’s disease

Recruiting
Dementia due
to Alzheimer’s

disease
Nasal drip

5 µg, 10 µg, 20 µg
exosomes/1 mL
exosomes, twice

a week for 12 weeks

N/A

NCT04544215

A clinical study of
allogeneic human
adipose-derived

mesenchymal progenitor
cell exosomes

(haMPC-Exos) nebulizer
for the treatment of

carbapenem-resistant
gram-negative
bacilli-induced

pulmonary infection

Recruiting
Drug resistant

pulmonary
infection

Aerosol
inhalation

8 × 108, 16 × 108

nano vesicles/3 mL
per day for 7 days

N/A

NCT04276987

A pilot clinical study on
aerosol inhalation of the
exosomes derived from

allogenic adipose
mesenchymal stem cells
in the treatment of severe

patients with novel
coronavirus pneumonia

Completed Coronavirus
pneumonia

Aerosol
inhalation

2 × 108 nano
vesicles/3 mL per

day for 5 days
N/A

In addition, ASC-exos show a key role in neuroprotection and neuroregeneration
and have a great potential to be used in neurodegenerative disorders. It has been shown
that treatment with ASC-exos can reduce amyloid beta (Aβ) levels and the Aβ42/40 ratio
causing neuronal mitochondrial dysfunction in the transgenic mice-derived Alzheimer’s
disease, thereby increasing cell survival and reducing neuronal death in the hippocam-
pus and cerebral cortex [134]. ASC-exos carry enzymatically active neprilysin (NEP) that
reduces the deposition of Aβ plaques in AD [135]. In turn, Lee et al. showed in in vitro
mouse-derived neural cells that ASC-exos can reduce mHtt aggregate accumulation, mito-
chondrial dysfunction, and cell apoptosis by activating the p-CREB-PGC1α pathway and
can also be used in HD treatment [136]. It has also been shown by the same authors that
ASC-exos can be used in amyotrophic lateral sclerosis (ALS). Neuronal cells from the G93A
ALS mouse model after treatment with ASC-exos showed a reduced level of cytosolic
superoxide dismutase 1 (SOD1), which restored the abnormal reduction of mitochondrial
proteins [137]. The potential for the use of ASCs extracellular vesicles in MS has also been
demonstrated by Laso-Garcia et al. They have shown in a mouse model of progressive
multiple sclerosis that administration of EV diminishes brain atrophy and promotes re-
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myelination as well as reduces Th1 and Th17 levels [138]. ASC-derived exosomes used in
brain-injured rats have been shown to reduce the inflammatory index (Ly6G+/CD11b/c+),
as well as expression of immune cells (CD3+/CD4+/CD3+/CD8+ cells) and apoptotic
cells in the circulatory system. Thereby, ASC-exos might also have the potential to prevent
brain damage and neurological complications (e.g., sepsis-associated encephalopathy) that
are affected by sepsis syndrome [31]. In addition, the long noncoding RNA MALAT1
from ASC-exos modulates the immune response after traumatic brain injury in vivo [139].
One Clinical Trial is currently approved to investigate the impact of ASC-exos in Alzheimer’s
disease treatment (NCT04388982). The participants will be treated with exosomes from allo-
genic adipose-derived stem cells to cure mild to moderate dementia caused by Alzheimer’s
disease at three different doses to verify their safety and efficacy. This non-randomized
trial now is currently in recruitment and it is estimated to be completed in April 2022.

4.2. Cardiovascular Diseases

Adipose-derived stem cells are of great interest in angiogenic therapy as they are good
and abundant source of proangiogenic proteins such as FGF-2, HGF, VEGF, PDGF, Ang-1,
Ang-2 [33,58]. They secrete a higher concentration of Ang, LIF, and TGF-β1 factors than
BM-MSCs and equal levels of VEGF-A and HGF [81]. In 2009, Wei et al. showed that con-
centrated ASC conditioned media can block postischemic p38 activation with concomitant
neuroprotective function of IGF-1 and BDNF, thus protecting neurons in vitro and in vivo
and preventing loss of hippocampal and cortical volume [140]. Similarly, Rehman et al.
showed that conditioned media after ASC culture under hypoxia, administrated to mice
with hind limbs showed a fivefold increased level of VEGF, and a marked improvement in
perfusion [95]. The neovascularization ability and directing ASCs to the fate of vascular
cells by VEGF is well known. It has been shown that after ischemia within the myocardial
infarction its level increases [141]. Recently, Zhu et al. showed that extracellular vesicles
from ASCs promote VEGF secretion by vascular endothelial cells in vitro and in vivo con-
tributing angiogenesis via the let-7/argonaute 1 (AGO1)/VEGF signaling pathway [142].
In addition, Yu et al. showed that mRNA-engineered modified ASCs encoding VEGF
promotes and improves vascularization and neo-angiogenesis by improving cell prolifera-
tion and vascular maturity [143]. ASC-exos have the potential to be used after ischemic
stroke. Chen et al. showed that they can enhance neural regeneration and significantly
reduce the infarct after ischemic stroke in a rat model. The administrated dose of ASC-exos,
after the third day of acute ischemic stroke reduced cerebral edema and contraction [144].
It has been shown that ASC-exos overexpress miR-21 thus promoting vascularization of
endothelial cells [30]. Interestingly, an increased level of PDGF changed the RNA and
protein content in extracellular vesicles by modifying the expression of anti-inflammatory
and immunomodulatory factors. These changes enhance the production of IL-10 and
TGF-β1 and stimulate the formation of T-cells in order to protect the muscle from acute
ischemia in vivo [145].

4.3. Metabolic Diseases

Cardiovascular diseases, as well as metabolic diseases (such as diabetes mellitus),
may be the effect of obesity. Adipose-derived stem cells have the potential to contribute to
the pathophysiology of obesity and metabolic disorders due to their bioactive secretome.
Due to their immunomodulatory properties, they can regulate the metabolic inflammation
during obesity, and therefore can be used in the treatment of metabolic diseases [146,147].
Moreover, ASCs isolated from WAT are desired to be used in cell therapy for metabolism
disorders. They can be easily differentiated into brown adipocytes and this conversion
is dependent on PPARγ agonist and differentiated cells express a higher level of uncou-
pling protein 1 (UCP1) important for adaptive thermogenesis. It has been already shown
that ASCs-implanted animals demonstrated less weight gain than animals in the control
group [146,148,149]. Recently, Ikemoto et al. showed that ASCs isolated from diabetic and
non-diabetic patients exhibit the same phenotype and can be differentiated into insulin-



Biomolecules 2021, 11, 878 11 of 24

producing cells (IPCs) characterized by the autonomous insulin secretion. They showed
in a diabetic mellitus 1 mouse model that IPCs from diabetic 1 patient ASCs can affect
normoglycemia through prolonged insulin secretion. Moreover, the programmed cell
death ligand-1 (PDL-1) secreted by these cells can be considered as circumvention of immu-
nity [20]. ASCs also have the potential to be used in type 2 diabetes mellitus. It has been
shown that ASCs treatment improves insulin sensitivity and results in the lower number
of β-cells death [21].

A similar observation was made by Cao et al. where ASC-treated mice had better
glucose tolerance, reduced triglyceride, and high-density lipoprotein level as well as re-
duced expression of IL-6, but also increased InsR and PPARγ expression [150]. The specific
properties of ASCs are related to their secretome. Zhao et al. showed that exosomes trans-
ferred to macrophages induce the anti-inflammatory M2 macrophages phenotype by STAT3
and transactivation of arginase 1 and IL-10 increasing expression of uncoupling protein
1. These results suggest that exosomes can be used in clinical treatment due to improved
obesity-related inflammation and metabolism [60]. Furthermore, it has been shown that
PDGF can reverse the changes induced by diabetes, such as reduced proliferation and
inhibition of migration, as well as targeting sites of inflammation and impaired function of
diabetic ASCs [151].

Neuropathic pain, a prevalent compilation of diabetic mellitus and it has been shown
that ASCs [34] and ASC conditioned media can be used in advanced peripheral painful
neuropathy [152]. Brini et al. showed that diabetic mice after ASC conditioned media
(from 2 × 106 ASC culture) treatment restored the balance of pro-inflammatory cytokines
and prevented the loss of skin innervation. Most importantly reversed allodynia and
hyperalgesia effect lasted up to 12 weeks [151]. Interestingly, the same group of Sacerdote
in 2021 published a paper in which conditioned media (from 2 × 106 ASCs) after injection
into the tail vein in osteoarthritic mice showed rapid and lasting pain relief but did not
affect tissue regeneration [153].

Exosomes have also been shown to positively affect chronic complications of dia-
betes mellitus such as erectile dysfunction, cognitive decline, diabetic nephropathy, or
wounds. Wang et al. used exosomes isolated from ASCs in a rat model and showed that
corin (transmembrane serine proteinase, converting pro-atrial natriuretic peptide (ANP)
and pro-brain natriuretic peptide (BNP) to active forms) present in these exosomes has
a beneficial therapeutic influence on erectile dysfunction treatment [154]. ASCs also have
neuroprotective properties regardless of cause and have been shown to be of use in the
prevention of cognitive impairment in diabetic mellitus patients by peripheral reduction of
advanced glycation end products [155]. In turn, Jin et al. showed that ASC-exos attenuate
diabetic nephropathy and reduce amount of serum creatinine, urea nitrogen, and urine
protein, as well as podocyte apoptosis in a mouse model. These effects were caused by
enhanced miR-486 expression and thus inhibition of the Smad1/mTOR podocyte signaling
pathway [156]. On the other hand, Duan et al. showed that miR-26a-5p from ASC-exos
also protects against diabetic nephropathy by targeting toll-like receptor 4 (TLR4), silenc-
ing the NF-κB pathway, and downregulating VEGF-A secretion [157]. Furthermore, Gao
et al. suggest that ASC-exos renal protective effect may be through the SIRT1 signaling
pathway [158]. The use of exosomes in wound healing from diabetes mellitus and other
causes is described in the chapter on wound healing and skin aging.

4.4. Respiratory Diseases

Acute respiratory distress syndrome is often observed in critically ill patients (~10%
of all patients in intensive care units worldwide), and is most commonly associated with
sepsis, pneumonia (bacterial and viral), severe trauma or aspiration of gastric, and/or
oral and oesophageal contents [159]. Paracrine factors such as IFN-γ, IL-1β, IL-6, IL-10,
TGF-β1, TGF-6, VEGF, HGF, PGE2, Ang-1, and IDO secreted by ASCs can attenuate lung
injury [160]. Shigemura et al. showed that HGF from ASCs can improve gas exchange thus
treat pulmonary emphysema [161]. In turn, Kim et al. showed that ASCs nanovesicles
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can also inhibit pulmonary emphysema by FGF-2 dependent pathway and can be used
in cell-free therapy in a lower dose than naturally delivered ASC-exos demonstrating
high treatment efficiency [162]. It has been also shown that ASCs have the potential for
use in acute lung injury (ALI)—severe pulmonary inflammation—treatment by increased
secretion of IL-6 in anti-inflammatory modulation [163]. Recently, ASC-exos have been
shown to alleviate histone-induced ALI by activating PI3K/Akt pathway. Exosomal miR-
126 has been shown to be a key factor in increasing Akt phosphorylation in the mouse ALI
model [80].

The national clinical database has registered one study of ASC-exos in drug resistance
gram-negative bacilli pulmonary infection (NCT04544215). This randomized study with
60 participants will use exosome aerosol inhalation in two doses (8 × 108 and 16 × 108 for
seven days) and placebo groups. The results are not yet available, the current state of this
study is recruitment, and the end of the study is estimated for July 2023.

Adipose-derived stem cells are also of great interest for treatment of COVID-19 res-
piratory distress. It has been shown that 13 patients with COVID-19 pneumonia treated
with ASCs, exhibited clinical and biological improvement and a reduction in secreted
inflammatory indicators such as C-reactive protein, IL-6, ferritin, LDH, and d-dimer [164].
ASC-exos are also being tested. A clinical trial (NCT04276987) with 24 critically ill patients
is testing the use of conventional treatment and ASC-exos by inhaling an aerosol five times
(2 × 108 nanovesicles at day 1, 2, 3, 4, 5) but the results are not yet published.

4.5. Skeletal Tissue Regeneration

Skeletal tissue clinical trials are registered in the highest number of all clinical trials
using ASCs (Figure 4). Most of these studies focus on osteoarthritis. The ASCs secretome
also has the potential to regenerate skeletal tissue. Mitchel et al. showed that ASCs
secretome increases tissue regeneration and homeostasis of the mouse myoblast cell line
by promoting skeletal muscle proliferation, differentiation, and migration. This may be
due to the presence of soluble proteins and exosomal immunomodulatory miR-21 [165].
On the other hand, ASC-exos has been shown to induce osteogenic differentiation [166]
and also suppress inflammation by upregulating miR-145 and miR-221, and therefore can
be helpful in the treatment of osteoarthritis [167]. It has already been shown in the case of
chondrocytes isolated from osteoarthritic patients that treatment with ASCs extracellular
vesicles reduces MMP-1, MMP-3, MMP-13, and ADAMTS-5 and increases collagen II
expression [168,169]. ASC-exos also have the potential to regenerate muscles. Wang et al.
showed in a rat model that exosomes can prevent muscle degradation in torn rotator cuffs
by atrophy, fat infiltration, inflammation, and prevention of vascularization. However,
they pointed out that they had used a population of young, although mature rats, while
torn rotator cuffs are common in the elderly population and that additional studies with
older animals are required [170].

4.6. Wound Healing and Skin Aging

The skin as the first physical barrier against physical and biological damage and its
self-repairing ability, protect against dehydration and thermal, chemical, and physical
stress. Repairing physical damage is a dynamic process involving overlapping stages such
as homeostasis, inflammation, proliferation, re-epithelization, and fibrosis [171]. ASCs
secrete four major growth factors that promote re-epithelization: EGF, FGF-2, IGF-1, and
TGF-β. These factors induce the necessary biological effects for tissue repair including
cell migration, proliferation, and differentiation but also promotion of angiogenesis and
extracellular production and inflammation resolution [101]. It has already been shown
that co-treatment with administration of ASCs and conditioned ASCs media increases the
proliferation of dermal keratinocytes and fibroblast in the skin [172] but also the maturation
of fibroblasts associated with miR-24 upregulation [173]. Moreover, Pu et al. showed that
ASCs conditioned media prevent flap necrosis after skin flap transplantation by increasing
proliferation and secretion of IL-6 [174]. Similarly, Bai et al. showed that ASC-exos enhances
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skin flap recovery by reducing inflammation and apoptosis [175]. ASC-exos prolong the
survival of vascularized composite allografts after transplantation by downregulating CD4+
T and Th1 cells and upregulating Tr1 and Treg cells [32]. It shows that the use of ASCs
conditioned media as well as exosomes may be a promising approach in reconstructive
and plastic surgery.

Tissue repairing requires the mitigation of inflammatory insults. Besides secreted
immunomodulatory factors by ASCs, it is possible to govern inflammatory pathways
by extracellular vesicles assisted by transfer at the site of injury with RNA derived from
adipose-derived stem cells [105]. It has been shown that ASC-exos express miR-21, which
increases migration and proliferation of HaCaT cells by enhancing the matrix metallo-
proteinase 9 (MMP-9) expression via the PI3K/AKT pathway, thereby increasing wound
healing [176]. Furthermore, miR-19b from ASC-exos promotes wound healing by regu-
lating the TGF-β pathway through targeting chemokine C-C motif ligand 1 (CCL1) by
modulating the CCL1/TGF-β signaling axis [75]. Interestingly, TGF-β secreted by ASCs
has been shown to cross react with growth differentiation factor 11 (GDF11) to reverse
keratinocytes aging and trigger skin rejuvenation [177]. Improved re-epithelialization, col-
lagen remodeling, angiogenesis, and vessel maturation and thus wound healing were also
demonstrated in diabetic mice treated with engineered ASC-exos containing miR-21-5p. In
Lv et al.’s study, keratinocytes proliferation and migration and accelerated wound healing
were performed via the Wnt/β-catenin signaling pathway in vitro [178], confirming the
results obtained by Ma et al. a year earlier, where ASC-exos was shown to improve wound
healing also via the Wnt/β-catenin pathway [78]. ASC-exos can also be used as a potential
factor in alleviating atopic dermatitis. It has been found that an in vivo model of atopic
dermatitis after ASC-exos injection exhibited reduced clinical score, decreased level of
serum IgE and blood eosinophil counts, as well as CD86+ and CD206+ cells in skin lesions,
as well as diminished the infiltration of mast cells. Moreover, it has been shown that levels
of inflammatory cytokines such as IL-4, IL-23, and IL-31 were reduced [179]. Recently,
Shin et al. showed that not only the levels of these cytokines are reduced after ASC-exos
treatment in atopic dermatitis, but also IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP. They
also showed that after ASC-exos treatment, cells restored expression of genes responsible
for lipid metabolism, the cell cycle, and the inflammatory response, as well as improving
the skin barrier [180].

Furthermore, adipose-derived stem cells and their secretome can be used in skin reju-
venation and wrinkle reduction, mostly by stimulating collagen synthesis and regulating
the proliferation and migration of dermal fibroblasts [181]. Guo et al. showed the protective
function of ASCs conditioned media on dermal fibroblasts and keratinocytes against UVB-
induced photoaging. They showed that reduced skin cellular senescence was observed
in the group stimulated with conditioned media after UVB irradiation. Moreover, treat-
ment with ASCs conditioned media improved collagen I, collagen III, elastin, and TIMP-1
expression. However, they also showed that inhibitory effect of ASCs conditioned media
on human dermal fibroblasts senescence decreased with fibroblasts passages [182]. In
turn, Li et al. showed that ASCs conditioned media may downregulate mitogen-activated
protein kinases (MAPKs), activator protein 1 (AP-1), and nuclear factor kappa B (NF-κB)
UVB-induced signaling pathways and reduce IL-6 secretion [183].
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Table 2. Adipose-derived stem cells’ secretome investigations for cell-free therapy.

Paracrine Factors Model Therapeutic Effect References

Neurodegenerative Diseases

BDNF, GDNF Mouse Parkinson disease model Protection of dopaminergic neurons. [128]

Exosomes Mice Alzheimer disease Model

Reduction of amyloid beta (Aβ) levels and
the Aβ42/40. Increasing cell survival and

decrease of neuronal death in the
hippocampus and the cerebral cortex.
Decrease deposition of Aβ plaques in

Alzheimer Disease by exosomal neprilysin.

[134,135]

Exosomes Mice-derived neural cells from
Huntington’s disease mouse model

Reduction of accumulation of mHtt
aggregates, mitochondrial dysfunction and
cell apoptosis by p-CREB-PGC1α pathway

activation in Huntington’s disease.

[136]

Exosomes
Mice-derived neuronal cells from

Amyotrophic lateral sclerosis
disease mouse model

Reduction of cytosolic superoxide
dismutase 1 and restore of the abnormal

reduction of mitochondrial proteins.
[137]

Exosomes Mouse progressive Multiple
Sclerosis model

Brain atrophy reduction and remyelination
promotion.

Reduction of Th1 and Th17 levels.
[138]

Exosomes Brain injured male
Sprague-Dawley rats

Reduction of inflammatory indicator
(Ly6G+/CD11b/c+) and immune

(CD3+/CD4+/CD3+/CD8+) cells.
Reduction of early and late apoptotic cells.

[31]

Exosomes
(containing or depleted of

MALAT1)

Rats following a mild controlled
cortical impact

Modulation of inflammation-related after
traumatic brain injury by MALAT1. [139]

Cardiovascular diseases

Exosomes Endothelial cells Promotion of vascularization by
overexpressing miR-21. [30]

VEGF
Human microvascular

endothelial cells
and

mouse Hindlimb Ischemia model

Reduction of endothelial cells apoptosis.
Perfusion improvement in ischemic

hindlimbs.
[95]

IGF-1, BDNF Cerebellar granule neurons Blocking postischemic p38 activation.
Protection of neural cells. [140]

Exosomes Rat Acute Ischemic Stroke model
Increase of neural regeneration.

Reduction of brain infarct zone, brain
swelling, and shrinkage.

[144]

Exosomes released by
PDGF-stimulated

adipose-derived stem cells

Acute Hindlimb Ischemia
mouse model Muscle protection from Acute Ischemia. [145]

Engineered modified
exosomes encoding VEGF

Nude mouse fat
transplantation model

Improvement of neo-angiogenesis and
vascularization by promoting cell

proliferation and vascular maturity.
[143]

Exosomes
Vascular endothelial cells

and
nude mice

transplantation model

Promoting exogenous angiogenesis.
Increase the proliferation, migration, tube

formation, and VEGF secretion.
Improving the survival of fat grafts.

[142]

Metabolic diseases

PDGF

Diabetic patients adipose-derived
stem cells

and
SCID Wound mice model

Increased proliferation, migration, and
homing to sites of inflammation. [151]

Exosomes Diabetic rat model Restored erectile function due to corin
content in exosomes. [154]
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Table 2. Cont.

Paracrine Factors Model Therapeutic Effect References

Exosomes
Mouse podocyte MPC5 cells

and
spontaneous diabetes mice

Reducing high glucose-induced increase of
cell death.

Reduction of urine protein, serum
creatinine, blood urea nitrogen, and

podocyte apoptosis.

[156]

Exosomes
(miR-26a-5p)

Mouse podocyte MPC5 cells
and

spontaneous diabetes mice

Protection of cells from injury.
Protection against diabetic nephropathy. [157]

Exosomes
Peritoneal macrophages

and
obesity mouse model

Improving obesity-related inflammation
and metabolism. [60]

Exosomes Sepsis-induced acute kidney injury
mouse model

Renal Protective effect in acute kidney
injury. [158]

Respiratory diseases

HGF Pulmonary emphysema rat model Increased alveolar and vascular repair. [161]

Artifical Nanovesicles
MLE-12 epithelial cells

and
elastase-induced emphysema mice

Proliferation increase.
Inhibition of emphysema primarily by an

FGF2-dependent pathway.
[162]

Exosomes Histone-induced acute lung
injury mice

Improvement of survival.
Inhibition histone-mediated lung

hemorrhage edema,
Reduction of vascular hyper-permeability.

[80]

Skeletal tissue regeneration

Exosomes Adipose-derived stem cells Induction of osteogenic differentiation. [166]

Exosomes Synovial fibroblasts and
periosteal cells

Chondrogenesis promotion.
Increased Collagen type II and

β-catenin expression.
Increased proliferation (miR-145) and

chondrogenic potential (miR-221).

[167]

Conditioned Media Osteoarthritic mice model Rapid and lasting pain relief.
No effect on tissue regeneration. [153]

Exosomes Chondrocytes from
osteoarthritic patients

Reduction of MMP-1, MMP-3, MMP-13
and ADAMTS-5.

Increased collagen II expression.
[169]

Exosomes Chondrocytes from
osteoarthritic patients

Reduction of MMP-3 expression.
Increased collagen II expression. [168]

Whole secretome/isolated
exosomes

Mouse myoblast cell line C2C12
and

C57BL/6 mice

Increased cell proliferation, skeletal muscle
differentiation and migration.

Enhancing of regeneration of skeletal
muscle in acute damage.

[165]

Exosomes Massive rotator cuff tear rat model
Prevention of atrophy, fatty infiltration,
inflammation, and vascularization of

muscles.
[170]

Wound healing and skin aging

Platelet-rich plasma and
conditioned Media

Fibroblasts and keratinocytes
isolated from skin sample Increased cell proliferation and migration. [172]

Conditioned Media Human epidermal keratinocyte
neonatal cells

Acceleration of keratinocyte differentiation
via miR-24 upregulation. [173]

Exosomes Human keratinocyte cell
line HaCaT

Increased migration and proliferation by
exosomal miR-21.

Enhancing MMP-9 expression.
Promotion of wound healing.

[176]

Exosomes Human keratinocyte cell
line HaCaT

TGF-β pathway regulation by miR-19b.
Promotion of wound healing. [79]
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Table 2. Cont.

Paracrine Factors Model Therapeutic Effect References

Exosomes Human keratinocyte cell
line HaCaT

Promotion of wound healing via
Wnt/β-catenin pathway.

Increased proliferation and migration.
Apoptosis inhibition.

[78]

Conditioned media

Human keratinocyte cell
line HaCaTs

and
normal human dermal fibroblasts

Anti-photoaging activity.
Reduced IL-6 secretion. [183]

Engineered modified
exosomes miR-21-5p

Human keratinocyte
cell line HaCaT

and
fullthickness skin defects diabetic

rat model

Promotion of wound healing via
Wnt/β-catenin pathway.

Improved wound healing by
re-epithelialization, collagen remodeling,

angiogenesis, and vessel maturation.

[178]

Conditioned Media Ischemia/reperfusion flap
mice model

Increased cell proliferation and the number
of hair follicles.

Prevention from flap necrosis after skin
flap transplantation.

[174]

Exosomes Human umbilical vein
endothelial cell

Reduction of inflammation and apoptosis.
Enhancing skin flap recovery. [175]

Exosomes Human embryonic kidney 293 cells

Prolonged the survival of vascularized
composite allografts after transplantation.
Downregulation of CD4 + T and Th1 cells.

Upregulation Tr1 and Treg cell.

[32]

Conditioned media Human dermal fibroblasts
Reduced cellular senescence of skin cells.
Improved collagen I, collagen III, elastin,

and TIMP-1 expression.
[182]

Exosomes Atopic dermatitis mouse model

Decreased level of IgE and eosinophiles in
blood and CD86+ and CD206+ cells in

skin lesion.
Reduction of (IL)-4, IL-23, IL-31.

[179]

Exosomes Chronic allergic dermatitis
mouse model

Promotion of epidermal barrier repair.
Reduction of IL-5, IL-13, TNF-α, IFN-γ,

IL-17, and TSLP.
[180]

5. Conclusions

Adipose-derived stem cells secretome is considered as a potential agent for treatment
of various diseases, e.g., multiple sclerosis, rheumatoid arthritis, osteoarthritis, fistulae,
diabetes mellitus, and cardiovascular diseases, but also in skin aging and wound heal-
ing. ASCs properties are effected by the specific content of its secretome: cytokines,
proteins, growth factors, and exosomes with several types of RNAs, characterized by
extensive bioactivity including immunomodulatory, antiapoptotic, angiogenic, vasculo-
genic, neurogenic, and epithelial activity. The application of bioactive factors without
administering whole cells is a safer alternative treatment and may be more effective. Nowa-
days, many in vitro and in vivo studies from the last four years confirm effectiveness of
ASCs secretome therapy, mostly with ASCs derived exosomes. Several clinical trials are
currently being evaluated for safety and effectiveness of ASC-derived exosomes therapy,
but the results are not yet available. Nevertheless, further research in vivo and in vitro are
needed to understand the specific role of ASCs secretome in repairing of damaged and
diseased tissues.
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