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Abstract

Motivation: The inherent promiscuity of small molecules towards protein targets impedes our

understanding of healthy versus diseased metabolism. This promiscuity also poses a challenge for

the pharmaceutical industry as identifying all protein targets is important to assess (side) effects

and repositioning opportunities for a drug.

Results: Here, we present a novel integrated structure- and system-based approach of drug-target

prediction (iDTP) to enable the large-scale discovery of new targets for small molecules, such as

pharmaceutical drugs, co-factors and metabolites (collectively called ‘drugs’). For a given drug, our

method uses sequence order–independent structure alignment, hierarchical clustering and prob-

abilistic sequence similarity to construct a probabilistic pocket ensemble (PPE) that captures pro-

miscuous structural features of different binding sites on known targets. A drug’s PPE is combined

with an approximation of its delivery profile to reduce false positives. In our cross-validation study,

we use iDTP to predict the known targets of 11 drugs, with 63% sensitivity and 81% specificity. We

then predicted novel targets for these drugs—two that are of high pharmacological interest, the

peroxisome proliferator-activated receptor gamma and the oncogene B-cell lymphoma 2, were

successfully validated through in vitro binding experiments. Our method is broadly applicable for

the prediction of protein-small molecule interactions with several novel applications to biological

research and drug development.

Availability and implementation: The program, datasets and results are freely available to aca-

demic users at http://sfb.kaust.edu.sa/Pages/Software.aspx.

Contact: xin.gao@kaust.edu.sa and stefan.arold@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most metabolites and pharmaceutical drugs bind to more than one

protein (Reddy and Zhang, 2013), resulting in a phenotype com-

posed of many molecular (side) effects. For the pharmaceutical

industry, predicting and minimizing off-target effects is important

because they are the source of low efficacy and high toxicity that re-

sult in a high failure rate of new drugs in clinical trials (Arrowsmith,

2011a,b; Liebler and Guengerich, 2005). Recent studies estimate

VC The Author 2015. Published by Oxford University Press. 3922
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 31(24), 2015, 3922–3929

doi: 10.1093/bioinformatics/btv477

Advance Access Publication Date: 18 August 2015

Original Paper

http://sfb.kaust.edu.sa/Pages/Software.aspx
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv477/-/DC1
http://www.oxfordjournals.org/


that each drug on average binds to at least six known and several

unknown targets (Lounkine et al., 2012; Mestres et al., 2009). Thus,

knowledge of off-target effects can help reduce drug resistance and

provide opportunities for multi-target drug development (Peters,

2013). Moreover, off-target ligands for a given drug may inspire

‘drug repositioning’, where a drug already approved for one condi-

tion is redirected to treat another condition, thereby overcoming

delays and costs associated with clinical trials and drug approval

(Ashburn and Thor, 2004). Therefore, predicting off-target binding

sites to comprehensively understand the side effects of drugs and

exploit drug repositioning opportunities is central for rapid, cost-

efficient drug development.

In addition to drug development, identifying all cellular targets

of a given biological cofactor, metabolite or other small molecules is

of great importance for understanding cellular function and dysfunc-

tion in general (e.g. metabolome-target interactions and associated

diseases) (Alam et al., 2014). Finally, identifying possible targets of

environmental pollutants may help us to understand and avoid

health hazards from released chemicals.

Computational methods to predict new targets for existing en-

dogenous or administered small-molecule compounds are, therefore,

of high biological and pharmacological value. (For simplicity, we

herein refer to all these compounds collectively as ‘drugs’, meaning

‘a small-molecule chemical substance with effects on a biological

system’.) These methods can be divided into three broad categories:

structure based, expression based and ligand based. Structure-based

methods utilize information from drug targets by employing binding

site similarity or molecular docking (Chang et al., 2010; Engin et al.,

2012; Kinnings et al., 2009; Li et al., 2011); expression-based meth-

ods exploit molecular activity perturbation signatures that result

from drug activity (Chen et al., 2009; Emig et al., 2013; Hu and

Agarwal, 2009; Iorio et al., 2010; Lamb et al., 2006; Suthram et al.,

2010; Wei et al., 2006); and ligand-based methods utilize the chem-

ical and structural properties of a drug to discover new targets

(Keiser et al., 2009; Noeske et al., 2006; Qu et al., 2009). In add-

ition to these methods, previously unknown targets for existing

drugs have also been predicted using side effect similarity

(Campillos et al., 2008), genome-wide association studies (Sanseau

et al., 2012) and medical genetics (Wang and Zhang, 2013).

Recently, methods that combine information from multiple sources

have been introduced and will likely become the preferred approach

(Napolitano et al., 2013); however, because most of these methods

were not benchmarked on drugs with known targets (sensitivity ana-

lysis), it is difficult to evaluate their success rate. To date, the only

studies to report a true positive prediction rate have done so at rela-

tively low rates (29% and 49%, respectively) (Chang et al., 2010; Li

et al., 2011). Moreover, a high-throughput framework based on

structural information remains unavailable, and current methods do

not satisfactorily capture the structural flexibility of drugs that can

adopt several conformations, allowing them to interact differently

with different targets.

In this study, we propose a novel computational drug target pre-

diction method that integrates structural signatures of small-mol-

ecule compounds with their tissue delivery profiles. iDTP

incorporates four major developments: (i) Unlike previous methods,

this framework is generic and does not target a specific drug. (ii)

iDTP uses the probabilistic pocket ensemble (PPE) to capture the

promiscuous nature of different binding pockets for the same drug.

(iii) iDTP uses the approximated drug delivery profile (aDDP) of the

respective drug to predict biologically relevant targets. The drug

delivery profile (DDP) is defined as the distribution of drug concen-

trations in different tissues after circulation. Since such information

is not directly available, we approximated the DDP, denoted as

aDDP, as the average of the mRNA expression of the known drug

targets in 79 human tissues. Thus, an aDDP is a vector of length 79.

(iv) iDTP has a performance guarantee supported by (i) cross valid-

ation on a benchmark dataset; (ii) in vitro binding experiments; and

(iii) large-scale text mining. Application of iDTP allowed us to pro-

pose a novel cellular target for coenzyme A (CoA), a novel drug-

gable pocket and lead compound for Bcl-2, and plausible

mechanistic information for the inhibition of CYP2E1 by Trolox.

2 Methods

2.1 Dataset
We extracted the approved/experimental drugs from the DrugBank

database (version 3) (Knox et al., 2011). Eleven drugs selected for

use in this study had at least one 3D structure of a drug–protein

complex and more than 40 known drug targets with solved apo

structures (Supplementary Table S1). During the in silico valid-

ation of our method, a 5-fold cross-validation is done on the

known targets of each drug to evaluate how well our method can

recover the known targets. For example, for a drug with 40 known

targets, only 32 structures are used to construct the PPE for each

fold. When our method is used to predict new targets, all the

known targets are used to construct the PPE for a drug. Therefore,

in this study, our dataset contains drugs with 40 or more known

targets because our experiments involve 5-fold cross-validation. In

practical use of our method, 30 known targets are sufficient. We

expect this number to be further reduced in the future. We expect

that our method is also suitable for much larger sets of drugs estab-

lished for proprietary research that are not detailed in public

databases.

Protein structures have more than 30 pockets on average (some

structures have >100 pockets), and a majority of the small-mol-

ecule protein interactions occur in the three largest pockets (Huang

and Schroeder, 2006). A typical pocket involved in small-molecule

protein interactions (also known as a druggable pocket) has char-

acteristic values for pocket solvent accessible surface area (300–

600 Å2) and pocket volume (400–600 Å3) (Gao and Skolnick,

2013; Pérot et al., 2010). We hypothesize that a protein structure

that has a minimal (i.e. less than three) number of pockets and no

druggable pocket is unlikely to interact with a drug. To form the

negative dataset, we extracted the protein structures with fewer

than three pockets from the CASTp database (Dundas et al.,

2006). We extracted the surface residues (>70% of the solvent-ac-

cessible surface area) of these protein structures using POPS after

redundancy reduction using the PISCES webserver (<60% pair-

wise sequence identity) (Cavallo et al., 2003; Wang and Dunbrack,

2003). We further removed the NMR structures, the structures

with cocrystallized DNA, RNA or ligands (excluding ions like

Zn2þ, Cl�), and the structures with druggable pockets. Our nega-

tive dataset contained a total of 63 protein structures (a detailed

list of PDB IDs can be found in the Supplementary file NEG data-

set). Note that our negative dataset thus can still contain protein

structures with less than three pockets. However, if they do so,

none of the pockets can be druggable. The surface residues of the

structures in the negative dataset were aligned with the PPEs of all

drugs in the dataset by CPalign (Dundas et al., 2007). The align-

ments were then scored by the scoring function defined in Section

2.3. Ideally, each of these alignments should have a bad (i.e. high)

score, so it will not be predicted to be a drug target. Otherwise, it

is counted as a false-positive prediction when we evaluate the spe-

cificity of our method (see Section 3.2).
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2.2 Constructing a PPE
The overview flowchart of our method is shown in Supplementary

Figure S1. After identifying the drug–target complex for each drug

in the dataset, we extracted the pocket that the drug binds to in the

protein structure using the CASTp webserver (Dundas et al., 2006),

which we refer to as the ‘bound pocket’. To identify the drug-bind-

ing site in apo structures of known drug targets, we extracted the

three largest pockets from the first chain of their respective 3D struc-

tures. We used sequence order-independent alignment to choose the

pocket most similar to the bound pocket (Cui et al., 2015; Dundas

et al., 2011). Dundas et al. (2011) established a method to construct

the structural signatures for enzyme binding pockets that require

high-quality, manually curated enzyme binding sites and is, there-

fore, not suitable for high-throughput studies. However, we reduced

this requirement by using just one manually curated pocket (except

for nicotinamide-adenine-dinucleotide where we used both bound

structures that are available) and predicting the binding pockets on

the rest of the targets from their apo (unbound) structures to con-

struct the PPE for each drug. Conversely, Dundas et al. manually

searched the literature to find residues that are important for the

interaction and mapped them back onto the apo structures. The PPE

represents a unified set of individual pockets that potentially bind to

several conformations of the drug.

Extraction of the common structural features from the set of

binding pockets is ideally performed using a multiple structure align-

ment method. However, because no such method currently exists

that can handle our dataset, we followed Dundas et al. (2011) by

first using pairwise sequence order-independent structure alignment

of surface pockets and then using hierarchical clustering based on

the pairwise similarities. Dundas et al. constructed several structural

signatures corresponding to the different ligand/ligand binding site

conformations at a predefined specific level of the hierarchical tree.

In most cases, identifying this cutoff is nontrivial and requires in-

depth knowledge about the different conformations of the ligand/

ligand binding site. In contrast, we constructed the structural signa-

ture at the root of the tree. The hierarchical tree is used as a guide to

recursively combine sibling pockets along the paths from leaf nodes

to the root. A signature pocket is computed as the average of two

child (signature) pockets, and the two original child nodes are

replaced with a new single leaf node on the hierarchical tree.

As a result, the structural signature is an ensemble of more than

one unique pocket (corresponding to distinct branches in the hierarch-

ical tree). Each position in the PPE has a preservation ratio (how often

that particular atom was present in the underlying set of pockets)

(Dundas et al., 2011) of at least 0.5 (each atom was present in at least

half of the structures that have an atom present after alignment at this

position). To achieve a minimalistic ensemble and reduce the compu-

tational time, we increased the preservation ratio cutoff to 0.6 if the

number of atoms in the PPE was greater than 110. For specific drugs,

a stricter conservation ratio of atoms essential for binding action of

the respective drugs can be readily incorporated in our method.

2.3 Calculating distance to the PPE
Each position in the structural signature may be occupied by more

than one type of atom (which can be from different residues).

Therefore, we formulated a probabilistic distance function to ac-

commodate this property. The distance function of a query protein

to the already constructed PPE has both structural and sequence

components. The structural component follows Dundas et al.’s ap-

proach, while the sequence component is based on maximum

likelihood.

Score¼ Structural scoreþ a * Sequence score

Structural score¼RMSD*N(�1/3)

Sequence score¼1� (Sequence similarity/Best sequence similarity)

Sequence similarity¼Ri (AtomFreqiþResFreqi)

Best sequence similarity¼Ri (MaxAtomFreqiþMaxResFreqi),

where the value for a is set to 1.2 following Dundas et al. (2011),

RMSD is the root mean square distance after the alignment, N is the

number of positions aligned, AtomFreqi/ResFreqi is the frequency of

aligned atom/residue at position i, MaxAtomFreqi/MaxResFreq is

the highest frequency of any atom/residue at position i, and their

summation is over all the aligned positions. An empirical distance

cutoff of 0.85 that maps to an RMSD of 0.7 Å and pocket sequence

similarity of 60% for a sequence order-independent alignment of

12–15 atoms is used in this study. An alignment should also contain

at least five atoms.

2.4 Integrating aDDP
We included an approximation for the DDP as an orthogonal source

of structure-independent information. The aDDP for each drug is

calculated by averaging the mRNA expression of known drug tar-

gets over 79 human tissues from Su et al. (2004). We mapped each

drug–target structure to a gene using Uniprot ID mapping service

(Wu et al., 2006); the gene was then searched in the tissue expres-

sion dataset compiled by Su et al. (2004). Because a protein struc-

ture could be mapped to more than one gene, the average expression

of all the mapped genes was used. We classified expression in 79

human tissues into three classes (low, medium and high) based on

empirical cutoffs for mRNA expression (<300, <1000 and �1000,

respectively). The new drug target list is reordered by including the

drug–target tissue expression term in the distance function as

follows:

Score¼ Structural similarityþ a * (1� Sequence similarity)þb *

Tissue expression

Tissue expression¼1� (Number of tissue with matching expres-

sion/Total number of tissues),

where b is empirically set to 0.4. If a gene is not present in the data-

set compiled by Su et al., we set (b*Tissue expression) to 0.2. Our

method is not sensitive to the specific value of b in the range of 0.3–

0.5. b plays an important role in differentiating true targets from the

false targets and the most promising targets from less promising

ones. However, it usually does not play an important role in ranking

the top 10 targets as the top 10 predicted targets have an almost per-

fect match between their mRNA expression profile and that of the

estimated DDP.

2.5 In vitro experimental setup
Detailed sections on protein expression and purification; ligands

and peptides; differential scanning fluorimetry; differential static

light scattering; fluorescence anisotropy (FA) measurements; and in-

trinsic tryptophan fluorescence quenching binding assay can be

found in the Supplementary information.

3 Results

3.1 Probabilistic pocket ensemble
An inherently promiscuous drug can bind to different protein pock-

ets that have a range of features, making it difficult to establish a

general description of a drug’s possible binding sites. To capture the

essential binding site features of a promiscuous drug, we developed
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a method to construct its PPE (see Section 2 for details). The PPE

represents a unified set of individual pockets that potentially bind to

several conformations of the drug. Each position in the PPE can con-

sist of a number of atoms from different residues. The frequency of

the atoms and residues at each position is recorded and used to con-

struct a maximum likelihood sequence similarity scoring function.

This probabilistic scoring method adequately accounts for the fact

that a drug can bind several pockets and a pocket can bind

several drugs (Gao and Skolnick, 2013). The PPEs of formic acid,

b-D-glucose and phosphoaminophosphonic acid-adenylate ester are

shown in Figure 1; each position in the PPE is labeled with the atom

of highest frequency.

3.2 Evaluation of the PPE and the probabilistic

scoring function
To investigate the capacity of PPE to retrieve structurally similar

drug-binding pockets, we compared the protein pocket bound by

20-monophosphadenosine 50-diphosphoribose with the predicted

binding pockets of the top 10 predicted targets of this compound

using sequence order-independent and sequence order-dependent

alignments (see Supplementary Section S1). Our results suggest

that a combination of the minimalistic PPE and sequence order-

independent alignment is more powerful in identifying new drug tar-

gets than the combination of the complete binding pocket with

sequence order-dependent structure alignment. Moreover, we

showed that the probabilistic similarity function performs better

than the deterministic similarity function used by Dundas et al.

(2011) (see Supplementary Section S1). The PPE is able to extract

non-trivial sequence and structure signatures that are necessary for

capturing the promiscuous process of a drug binding to multiple

sites and the sites binding to multiple drugs. Most of the predicted

targets spatially align with distinct parts of a respective drug’s PPE

(Supplementary Figure S2), suggesting that the PPE is indeed an en-

semble of several pockets and, therefore, can accommodate different

conformations of each drug. In contrast to previous studies (Dundas

et al., 2011; Tseng and Liang, 2006), these results suggest that mul-

tiple structural signatures may not be optimal for capturing different

drug conformations, but instead, this can be achieved by the incorp-

oration of a probabilistic scoring function in structural signatures.

Moreover, our methodology does not require in-depth details about

the number of binding conformations or the number of structural

signatures.

In the next step, we used cross-validation (see Supplementary

section S3 for details) to assess whether the PPE for each drug

captures the essential features for the drug–protein interaction.

We were able to predict the interaction of drugs with known targets

to an average sensitivity of 63% (Supplementary Table S1). We also

constructed a negative dataset (a benchmark dataset is not available

for such studies) to assess the specificity of the methodology.

Construction of such a negative dataset is non-trivial because of the

inherent promiscuity of drug binding sites and incomplete know-

ledge of drug targets (see Section 2 for details). We found the aver-

age specificity of this method to be 81% (Supplementary Table S1).

3.3 Integrating the DDP to reduce false positives
To identify new drug targets, we downloaded the CASTp database

(Dundas et al., 2006), which consists of 75 000 protein structures

and their pockets. We extracted the three largest pockets, reported

to account for more than 80% of a protein’s small-molecular bind-

ing sites (Huang and Schroeder, 2006; Laskowski, 1995; Liang

et al., 1998; Peters et al., 1996), from each of these protein struc-

tures. We aligned the pockets of each protein structure with the PPE

(constructed using all the known drug targets) of each drug in our

dataset using sequence order-independent structure alignment. This

resulted in several thousand hits, a number similar to those of other

drug repositioning studies (Keiser et al., 2009). Although our

method has high specificity for the curated dataset, the false-positive

rate is expected to be higher in a general database search because

our construction of the PPE is minimalistic, and therefore it can

align with several unrelated protein surfaces randomly (Dundas

et al., 2011; Watson et al., 2005).

To reduce the false positive rate of our method, we included an

approximation for the aDDP as an orthogonal source of structure-

independent information. Given that the actual tissue delivery pro-

file for a specific drug is generally not available, we reasoned that

the intracellular delivery profile of this drug has to be compatible

with the mRNA expression profile of its established targets. In other

words a protein can only be a target of a given drug if the drug is de-

livered into (or produced in) the tissues in which the protein is ex-

pressed at significant levels. For each candidate drug, we therefore

approximate its delivery profile by averaging the mRNA expression

profiles of all its known targets in a set of 79 human tissues (Su

et al., 2004). For the drugs tested, the mRNA expression profiles of

the known target proteins are similar for the same drug (e.g. the

Pearson correlation coefficient of aDDP of CoA with its known tar-

gets is 0.56), but are different between different drugs (e.g. the aver-

age Pearson correlation coefficient of aDDP of CoA with the

aDDP’s of the rest of the drugs is 0.44) as shown in Figure 2. The

mRNA expression profiles not only provide information about pro-

tein localization but also provide information about protein–protein

interactions and pathways (Jansen et al., 2002). Thus, the compari-

son of the average tissue expression profile of the established drug

targets with the expression profiles of the predicted target is ex-

pected to reflect the likelihood for drug–target interactions in a par-

ticular set of tissues and hence can be used as a proxy for the drug

delivery.

3.4 Validation using in silico experiments
We used text mining to investigate the capacity of an aDDP to pre-

dict drug–target interactions. A cocitation index finds the associ-

ation between two terms (in this case the name of a drug and a gene)

by comparing the number of times the two terms appear in the ab-

stract of studies in the PubMed library when compared with two

random terms (Qiao et al., 2013). We found that, when the aDDP

was combined with the PPE, the number of predictions with a

Fig. 1. The PPE of formic acid (a, d), b-D-glucose (b, e) and phosphoamino-

phosphonic acid-adenylate ester (c, f) (Top view: a–c, Side view: d–f). Each

position is labeled with the atom of highest frequency. The PPE represents a

unified set of individual pockets that potentially bind to several conformations

of the drug. The atoms are color coded as C: green, O: red and N: blue
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statistically significant cocitation index was 2- to 4-fold higher than

using aDDP alone (see Supplementary Section S2 and Table S2). The

top 10 predicted targets (<60% sequence similarity with any of the

known drug targets) of b-D-glucose using the combined approach

aligned extremely well with its PPE (Supplementary Table S3).

Similar results were observed for all the drugs in the dataset (see

Supplementary file PredTargets). Moreover, six of the top ten pre-

dictions for b-D-glucose and four predictions for CoA have a statis-

tically significant cocitation index (P-value<0.05). We found a

total of 34 predicted targets with cocitation index values of statis-

tical significance (P-value<0.05) for all the drugs in our dataset.

For the top 10 predicted targets of all the drugs in the dataset, the

range of the average sequence-similarity score between the PPEs and

the predicted pocket on the targets was between 80 and 87%, the

range of the average RMSD between the PPEs and the predicted

pocket on the targets was between 0.62 and 0.66 Å, the range of the

average match of mRNA expression profile between 72 and 76 out

of the 79 tissues and the range of the average final score was be-

tween 0.45 and 0.56 (compared to our cutoff value of 0.85 in our

cross-validation study). These results support that the combination

of PPE and aDDP into iDTP allows identifying novel proteins that

have high structural (binding site) and system-level similarity with

known drug targets.

3.5 Validation using in vitro binding experiments
To provide an experimental assessment of the performance of iDTP,

we chose to test the predicted targets for CoA because it has the least

number of known binding proteins in our dataset and hence has the

least well-defined PPE. We used multiple in vitro binding experi-

ments to test binding site and affinity for two top hits from iDTP,

namely the peroxisome proliferator-activated receptor gamma

(PPARc) and B-cell lymphoma 2 (Bcl-2).

PPARc is a nuclear hormone receptor that regulates numerous

biological functions including adipogenesis and cell differentiation.

Its dysregulation is involved in the onset of diabetes and obesity

(Swedenborg et al., 2009). The interaction of the ligand binding do-

main (LBD) of human PPARc (hPPARc-LBD) with CoA is one of

our most promising predictions because this interaction achieved a

high iDTP score and a statistically significant cocitation index

(Supplementary Table S4). The pocket predicted by iDTP to bind

CoA overlaps with the known ligand binding site of PPARc. To test

this prediction in vitro, we used differential scanning fluorimetry to

measure the melting temperature (Tm) of hPPARc-LBD in the pres-

ence or absence of CoA or rosiglitazone, an antidiabetic drug known

to act as a ligand of hPPARc-LBD (Fig. 3a and Supplementary Table

S5). At a molar excess of seven, rosiglitazone had a protective effect

by raising the Tm of hPPARc-LBD’s by 2�C from that of the apo pro-

tein, while CoA displayed a destabilizing effect, lowering the Tm by

0.8�C from that of the apo protein, suggesting a direct interaction

with hPPARc-LBD. Next, we used fluorescence anisotropy (FA) to

characterize the interaction between hPPARc-LBD and its natural

partner proteins upon binding with CoA. We measured Kd between

hPPARc-LBD and fluorescein-labeled peptides derived from a coac-

tivator protein (PGC1) and two corepressor proteins (NCoR and

SMRT). These experiments were performed in the presence or ab-

sence of increasing molar excess of CoA or the reference hPPARc-
LBD agonist rosiglitazone or antagonist CD5477 (LeMaire et al.,

2009). If an increasing molar excess of the ligand causes the fluores-

cently labeled coactivator/corepressor Kd to increase, we can infer

that ligand binding is taking place because the ligand disturbs

binding to coactivators or corepressors. The nature of the ligand-

hPPARc-LBD interaction can also be inferred: an agonist ligand

enhances binding to a coactivator and decreases binding to a core-

pressor; an inverse agonist causes the opposite effect; and a neutral

antagonist decreases binding for both coactivators and corepressors.

Accordingly, adding a 2–10 M excess of the agonist rosiglitazone

hPPARc-LBD raised the affinity of hPPARc-LBD for the coactivator

PGC1 (Figs 4a and b, Supplementary Table S6). Conversely, a 2 M

excess of the antagonist CD5577 lowered the affinity of hPPARc-
LBD for the coactivator PGC1 (Figs 4a and b, Supplementary Table

S6), whereas the addition of 2–10 M excess of CoA lowered the af-

finity of hPPARc-LBD for both coactivator PGC1 (Fig. 4b) and core-

pressors NCoR and SMRT (Figs 4c and d), Supplementary Table

S6). Collectively, our experiments confirm a direct interaction be-

tween CoA and hPPARc-LBD in which CoA behaves as a neutral an-

tagonist. From its potency in competing with known ligands and its

dose-dependent stabilization of hPPARc-LBD, we estimate an ap-

parent Kd of <500mM.

We also tested direct binding of CoA to recombinant Bcl-2 (see

Supplementary file PredTargets). Bcl-2, the founding member of the

Bcl-2 family of proteins that control cell death, is an important anti-

apoptotic protein and is classified as an oncogene. Using differential

static light scattering, we observed that the aggregation temperature

Tagg for 0.5 mg/ml apo Bcl-2 was �57�C. Four hundred nanomoles

of the known ligand, Bax-BH3, significantly increased the Tagg to

67�C, whereas the presence of 1 lM of the scrambled LD4 peptide

Fig. 3. (a) Thermal shift assays on hPPARc-LBD. Melting temperatures (Tm)

calculated from thermal denaturation curves of hPPARc-LBD in the presence

of varying molar excess of Rosiglitazone or CoA. Rosiglitazone displays a pro-

tective effect (increased Tm) against thermal denaturation, while CoA displays

a destabilizing effect (decreased Tm). (b) The predicted CoA binding site over-

laps with the ligand-binding site on hPPARc-LBD. The figure is based on the

crystal structure of hPPARc-LBD (green) bound to rosiglitazone (red; PDB ID

4EMA). The predicted CoA binding pocket is shown in orange

Fig. 2. (a) aDDPs of 11 drugs investigated in this study. (b) aDDP of CoA

(1XVT) and the mRNA expression profile of four known CoA targets (ACAT2,

HMGCR, KAT2B, CRAT), the Pearson correlation coefficient of aDDP of CoA

with its known targets is 0.56. (c) aDDP of b-D-glucose (1PIG) and the mRNA

expression profile of five known b-D-glucose targets (ASPA, GNDPA, PYGM,

NUDT9, PYGL). (d) The mRNA expression profile of RGS10 matches the

aDDP of CoA in 65/79 tissues, while the mRNA expression profile of AMD1

matches the aDDP of CoA in 46/79 tissues. In this case, RGS10 will be pre-

ferred over AMD1 as the predicted target of CoA. Color code: Red (low ex-

pression), Yellow (medium expression) and Green (high expression). Y-axis

has the 79 human tissues
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(a negative control) did not alter Tagg. Increasing concentrations of

CoA increased Tagg for Bcl-2 up to 62�C, suggesting a direct inter-

action (Figs 5a and b, Supplementary Table S7). By measuring the

quenching of intrinsic tryptophan fluorescence of Bcl-2 in the pres-

ence of increasing CoA concentrations, we established the Kd of the

CoA:Bcl-2 interaction to be 0.38 mM (Figs 5c and d), whereas the

Kd of a the fluorescent-labeled Bax-BH3 peptide was 128 6 21 nM

(Supplementary Fig. 3a). According to iDTP, the CoA binding

pocket is adjacent to the Bax-BH binding site with no notable over-

lap (Supplementary Fig. 3b). In agreement even 4.7 mM CoA did

not reduce the FA of Bax-BH3 (at a concentration of 20 nM,

235 000 times less than CoA), supporting the prediction that the

binding sites of CoA and Bax-BH do not overlap (Supplementary

Fig. 4). Thus, our in vitro binding experiments strongly support our

computational predictions.

4 Discussion

We have developed a computational method to extract implicit

structural signatures of a drug binding site from an ensemble of

structures of proteins to which this drug binds. We showed that

such a PPE, can be built using as few as one structure of a drug–pro-

tein complex and a set of apo structures of other known drug-bind-

ing proteins. The PPE of a given drug is constructed using sequence

order–independent alignments and a probabilistic scoring function,

which allows weakly conserved but significant structural patterns of

the interactions between the drug and its several target proteins to

emerge and be quantified. Thus, our PPE is able to encode features

related to promiscuous target interactions and structural flexibility

of a drug. The validity of 11 PPEs was confirmed by illustrating that

they reliably identify known targets of the respective drugs. We

found that by combining a PPE with an aDDP as an orthogonal

source of structure-independent information, the resulting method,

iDTP, enables large-scale prediction of novel drug targets.

The challenge of identifying new drug–target pairs in silico has

attracted significant interest from the computational community.

However, compared with other algorithms, iDTP includes unprece-

dented features, because no previous studies have combined se-

quence order-independent alignment and probabilistic scoring

function to model the drug–protein interaction, nor have they

employed the aDDP to filter out false positive predictions. Most pre-

vious studies have not assessed the performance of their methodolo-

gies by exploiting known drug targets, as we did here to validate the

success rate of PPE. Because other studies used considerably differ-

ent datasets and their programs are not publicly available, a direct

comparison among methodologies is unfortunately impossible.

However, compared with iDTP, other existing methods including

conventional docking or structure-based virtual screening, share one

or more of the following limitations: (i) they are known to scale

poorly with the size and complexity of drugs and drug binding sites

(Diller and Li, 2003) and (ii) their algorithms do not appropriately

account for the different conformations of both drug and binding

site residues. Our method addresses these concerns by constructing a

structural signature from a set of binding sites, instead of a single

binding site, and by using a probabilistic sequence similarity func-

tion that allows accounting for the different conformations of drugs

and binding site residues. (The improvement expected from this

methodology is analogous to the improvement from a multiple se-

quence alignment compared to a pairwise alignment.) We also incor-

porated the aDDP to identify relevant new targets.

The predictive power of iDTP was supported by both computa-

tional cross-validation and text mining. Additionally, we validated

two of our predicted interactions by in vitro experiments. First, we

showed that CoA bound to hPPARc-LBD with an apparent Kd of

less than 500mM, displaying characteristics of a neutral antagonist.

CoA is a ubiquitous cofactor that can reach high concentrations in

eukaryotes depending on cell type and subcellular localization

(�0.14, 0.7 and 5 mM in animal cytosol, peroxysomes and mito-

chondria, respectively) (Leonardi et al., 2005). It is therefore pos-

sible that this predicted interaction plays a currently unrecognized

Fig. 4. FA on hPPARc-LBD. Dissociation constants (Kd) measured from FA ti-

trations between fluoresceine-labeled PGC1-NR2, N-CORNR2 (NCoR RID2) or

S-CORNR2 (SMRT RID2) peptides and hPPARc-LBD in the absence of a ligand

or in the presence of (a) a 10 M excess and (b–d) increasing molar excess of

Rosiglitazone, CoA or CD5477, respectively.

Fig. 5. (a) Change in the aggregation temperature DTagg of Bcl-2 in the pres-

ence of the Bax-BH3 peptide (as a positive control), the scrambled LD4 peptide

(as negative control) and CoA at various concentrations. (b) The change in

DTagg plotted against the concentration of CoA was used to determine an ap-

parent Kd of 0.326 0.13 mM using the single-binding-site model. (c)

Comparison of tryptophan fluorescence quenching by the Bax-BH3 peptide,

scrambled LD4 and various concentrations of CoA. CoA (0.25 mM) was as ef-

fective in quenching tryptophan fluorescence as 400 nM Bax-BH3 peptide. (d)

Tryptophan relative fluorescence of Bcl-2 in the presence of increasing concen-

trations of CoA. Using a single-binding-site model the Kd was 0.386 0.08 mM
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biological role in fatty acid signaling and metabolism. iDTP pre-

dicted that the CoA binding site on hPPARc-LBD is the receptor’s

ligand-binding pocket, which also binds rosiglitazone and CD5477.

Indeed, the ligand-binding pocket of hPPARc is one of the largest

among the nuclear receptor protein family (Li et al., 2003), allowing

hPPARc to bind a variety of ligands. Thus, CoA may trigger a con-

formational change that disrupts or unsettles the binding surface of

both coactivators and corepressors, producing the characteristics of

a neutral antagonist. However, we cannot strictly rule out that CoA

binds to the surface where coactivators and corepressors would nor-

mally bind, creating competition for the binding site.

Second, we verified another CoA interaction predicted by iDTP

by showing that CoA binds in vitro to recombinant Bcl-2 with a Kd

of �350 lM. The predicted CoA binding pocket on Bcl-2 is adjacent

to the known binding site for Bax-BH3. Because we showed that

CoA binds Bcl-2 without displacing Bax-BH3, we can indeed infer

non-competitive binding. The predicted binding pocket of CoA is

interesting for drug design purposes, because it is located adjacent to

the well-explored Bax-BH3 binding pocket (Ku et al., 2011); there-

fore, it may provide an alternative target site with possible syner-

getic effects.

Beyond validating our computational predictions, our in vitro

experiments also suggest the usefulness of iDTP for various applica-

tions: The case of the CoA-hPPARc illustrates how iDTP might be

used to reveal biologically relevant interactions between small mol-

ecules (ligands, cofactors or metabolites) and cellular proteins.

Thus, our method could help establish metabolite-protein pairs for

large-scale metabolic analyses or for predicting possible targets for

chemical small-molecule pollutants such as bisphenols. The inter-

action between CoA and Bcl-2 illustrates how iDTP could be used

for drug discovery by suggesting possible lead compounds and

novel druggable protein binding pockets. In addition, iDTP could

provide insight into the binding mechanisms of known drugs for

which the drug–target complex has not yet been determined. For

example, our results suggest that formic acid binds to CYP2E1

(Supplementary file PredTargets). CYP2E1 is an enzyme known to

interact with more than 70 small drugs and xenobiotic compounds

(Ogu and Maxa, 2000). Induction of CYP2E1 has been shown to

cause oxidative stress and alcohol-induced liver injury in mouse

models (McGehee et al., 1994; Nanji et al., 1994); however,

Trolox[6-hydroxy,2,5,7,8-tetramethylchroman-2-carboxylic acid],

a drug that contains the formic acid structure, has been shown to

reduce the aforementioned toxicity (Wu and Cederbaum, 2000,

2002). Hence, our results suggest a direct interaction between the

Trolox formic acid moiety and CYP2E1 that results in reduced

toxicity.

To further evaluate the usefulness of iDTP for pharmaceutical

purposes, we identified the genetic diseases associated with the pre-

dicted target proteins for each drug using the databases—Online

Mendelian Inheritance in Man (Hamosh et al., 2000) and Human

Gene Mutation Database (Stenson et al., 2014). A cocitation index

with high statistical significance (P<0.005) was found for 16 pre-

dicted drug–target pairs (including CoA-hPPARc). The predicted

drug targets were associated with major human diseases, such as

cancer, heart problems and metabolic dysfunctions (Supplementary

Table S4), making these results a potentially valuable basis for drug

discovery and repositioning. However, the use of iDTP for drug re-

positioning, in the strict sense of re-using a FDA-approved chemical

compound, remains currently limited, as a relatively large set of 3D

structures of known targets is required to construct a high-confi-

dence PPE. The rapid pace of experimental determination of protein

structures will reduce this limitation in the future.
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