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Significant research efforts are ongoing to elucidate the com-

plex molecular mechanisms underlying amyotrophic lateral 

sclerosis (ALS), which may in turn pinpoint potential thera-

peutic targets for treatment. The ALS research field has 

evolved with recent discoveries of numerous genetic muta-

tions in ALS patients, many of which are in genes encoding 

RNA binding proteins (RBPs), including TDP-43, FUS, ATXN2, 

TAF15, EWSR1, hnRNPA1, hnRNPA2/B1, MATR3 and TIA1. 

Accumulating evidence from studies on these ALS-linked 

RBPs suggests that dysregulation of RNA metabolism, cyto-

plasmic mislocalization of RBPs, dysfunction in stress granule 

dynamics of RBPs and increased propensity of mutant RBPs to 

aggregate may lead to ALS pathogenesis. Here, we review 

current knowledge of the biological function of these RBPs 

and the contributions of ALS-linked mutations to disease 

pathogenesis. 
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INTRODUCTION 
 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenera-

tive disorder characterized by progressive degeneration of 

motor neurons in the brain and spinal cord, leading to mus-

cle weakness, paralysis and death (Rowland and Shneider, 

2001). Although the underlying cause is unknown for most 

ALS cases, advances in sequencing technology have allowed  

the identification of more than one hundred genes associat-

ed with ALS, including approximately thirty potential ALS-

causing drivers (Al-Chalabi et al., 2017; Guerreiro et al., 

2015; Wroe et al., 2008). Interestingly, many of the genes 

implicated in ALS encode RNA-binding proteins (RBPs), 

which include transactive response DNA-binding protein 43 

(TDP-43), fused in sarcoma/translocated in liposarcoma 

(FUS/TLS or FUS), ataxin-2 (ATXN2), TATA-box binding pro-

tein associated factor 15 (TAF15), Ewing’s sarcoma break-

point region 1 (EWSR1), heterogeneous nuclear ribonucleo-

protein A1 (hnRNPA1), heterogeneous nuclear ribonucleo-

protein A2/B1 (hnRNPA2/B1), matrin 3 (MATR3) and T-cell-

restricted intracellular antigen-1 (TIA1). As shown in Fig. 1, 

these RBPs share structural similarities; they all contain one 

or more RNA-binding domains (e.g., RRM, Lsm or LsmAD), a 

glycine (Gly)-rich region (except for MATR3 and ATXN2), 

and a nuclear localization signal (NLS) (except for TIA1 and 

ATXN2). In addition, these RBPs share functional similarities, 

since they are involved in RNA metabolism and many localize 

to stress granules upon cellular stress. Stress granules are 

membrane-less discrete cytoplasmic structures containing 

mRNA and associated proteins that form as a protective 

response to stress (Buchan and Parker, 2009; Kedersha et al., 

1999; Monahan et al., 2016). Interestingly, the stress gran-

ule proteome was shown to be enriched for proteins encod-

ing predicted prion-like or low-complexity (LC) domains, 

including many ALS-linked RBPs (Jain et al., 2016; Monahan 

et al., 2016). Mutations within these LC domains have been  
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shown to interrupt stress granule dynamics and increase 

aggregation or fibrillization, which suggests a potential 

mechanism for ALS pathogenesis. Indeed, an increasing 

number of mutations identified in RBPs strongly suggest that 

abnormal RBP function and dysregulated RNA homeostasis 

also lead to ALS pathogenesis. Much progress has been 

made in understanding the mechanisms of how mutant 

RBPs exert toxicity and lead to neurodegeneration in ALS. In 

this review, we summarize studies that have investigated the 

biological function of the potential ALS-driving RBPs and the 

mechanisms by which mutations in these RBPs cause ALS. 

Where available, we discuss what we have learned from ALS 

models, with a focus on mouse models. 

 

TDP-43 
 

TDP-43 is an RBP containing two RNA recognition motifs 

(RRMs), an NLS, a nuclear export signal (NES), and a Gly-rich 

region at the C-terminus (Fig. 1) (Buratti and Baralle, 2001; 

Winton et al., 2008). TDP-43 plays a role in transcription, 

alternative splicing and mRNA stability and is involved in 

various cellular processes, such as apoptosis, cell division and 

axonal transport (Buratti and Baralle, 2008). TDP-43 

primarily binds to UG-rich regions in the introns of pre-

mRNA, particularly long introns (Polymenidou et al., 2011; 

Sephton et al., 2011; Tollervey et al., 2011; Xiao et al., 2011), 

and its depletion leads to significant changes in alternative 

splicing and cryptic splicing (Ling et al., 2015; Polymenidou 

et al., 2011; Tan et al., 2016; Tollervey et al., 2011). TDP-43 

is primarily localized in the nucleus; however, upon cellular 

stress, it localizes to stress granules (Buratti and Baralle, 

2008; Colombrita et al., 2009; Li et al., 2013). 

In 2006, TDP-43 was identified as a major component of 

protein inclusions in the cytoplasm of ALS-affected motor 

neurons, marking it as the first RBP associated with ALS (Arai 

et al., 2006; Mackenzie et al., 2007; Neumann et al., 2006). 

Corresponding with abnormal cytoplasmic inclusion, nuclear 

clearance of TDP-43 was also observed (Neumann et al., 

2006; Van Deerlin et al., 2008). This finding raises the 

question of whether TDP-43 pathogenicity is due to loss of 

nuclear function, gain of cytoplasmic function, or both. 

Numerous TDP-43 mutations have been identified in ALS 

patients, accounting for approximately 5% of familial and 

less than 1% of sporadic cases (Taylor et al., 2016). Most 

mutations are clustered in the Gly-rich domain (Fig. 1) 

(Kapeli et al., 2017; Sreedharan et al., 2008). The Gly-rich, 

LC domain has been shown to be necessary for TDP-43 

assembly into stress granules (Colombrita et al., 2009) and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Functional domains and ALS-linked mutations in RNA binding proteins. The arrowheads indicate single mutations and asterisks 

denote mutation hotspots found in both familial and sporadic ALS cases. RRM, RNA recognition motif; RGG, arginine/glycine-rich re-

gion; Znf, Zinc finger motif; NES, nuclear export signal; NLS, nuclear localization signal; Lsm, like-Sm protein domain; QGSY, glutamine, 

glycine, serine and tyrosine-rich region; Gly-rich, glycine-rich region; LsmAD, Lsm‐associated domain; PAM2, PABP-interacting motif 2; 

Poly-Q, polyglutamine repeat; a.a., amino acids. 
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for undergoing liquid-liquid phase separation (or phase 

separation) (Aguilera-Gomez and Rabouille, 2017; Ander-

son and Kedersha, 2009; Brangwynne et al., 2009; Chong 

and Forman-Kay, 2016; Conicella et al., 2016). This process 

is dynamic, as proteins can transition between liquid and gel-

like states (recently reviewed in (Purice and Taylor, 2018)). 

However, TDP-43 proteins that harbor disease mutations in 

the LC domain were shown to favor the gel-like, rigid state 

and form aggregates (Conicella et al., 2016). Additionally, 

these mutant TDP-43 proteins increased the formation of 

stress granules upon oxidative stress induced by sodium 

arsenite (Liu-Yesucevitz et al., 2010). As many other studies 

have demonstrated that ALS mutations in the LC domain 

results in increased conversion to aggregates (Kapeli et al., 

2017; Purice and Taylor, 2018), phase separation disruption 

is a possible mechanism leading to ALS. In addition to full 

length TDP-43, low molecular weight species containing the 

LC domain (e.g., TDP-35) were also found to localize to cy-

toplasmic inclusions in ALS motor neurons (Xiao et al., 2015), 

further supporting that this LC domain is critical for aggrega-

tion. In parallel, other studies have shown that dysregulation 

in RNA splicing due to loss of TDP-43 function may be in-

volved in ALS pathogenesis. One example demonstrated by 

Ling and colleagues showed that cryptic exon inclusion in-

duced by loss of TDP-43 is found in ALS patients presenting 

TDP-43 pathology (Ling et al., 2015). 

Many transgenic mice and rats expressing mutant TDP-43 

have been generated; most of which reproduce clinical 

features seen in ALS patients including impaired motor 

function, degeneration of motor neurons, and accumulation 

of ubiquitinated TDP-43 cytoplasmic aggregates (Liu et al., 

2013; Picher-Martel et al., 2016; Wegorzewska et al., 2009). 

Loss of TDP-43 was found to cause age-dependent motor 

neuron degeneration in mice and many other animal models 

(Iguchi et al., 2013; Vanden Broeck et al., 2014), suggesting 

that loss of TDP-43 function is involved in ALS pathogenesis. 

However, it is still not clear to what magnitude gain-of-

function and loss-of-function contribute to neurodegenera-

tion. 

 

FUS 
 

FUS was first identified as an oncogene that causes liposar-

comas, where chromosomal translocation fuses the FUS 

transactivation domain to transcription factors (Crozat et al., 

1993; Kapeli et al., 2017; Rabbitts et al., 1993). In addition 

to its role in transcription, FUS plays a role in RNA processing 

events. Cross linking immunoprecipitation coupled with 

high-throughput sequencing (CLIP-seq) analysis revealed 

that FUS binds to RNAs that contain an enriched GUGGU 

motif (Lagier-Tourenne et al., 2012) or GUU motif (Rogelj et 

al., 2012). FUS-binding sites are clustered in RNAs with ex-

ceptionally long introns, and depletion of FUS leads to 

downregulation of long intron-containing FUS targets (Lagi-

er-Tourenne et al., 2012). 

Mutations in FUS were reported to cause ALS in 2009 

(Kwiatkowski et al., 2009; Vance et al., 2009). FUS is nor-

mally localized primarily in the nucleus, but in ALS-affected 

brains and spinal cords, FUS is often found aggregated in 

the cytoplasm. Interestingly, TDP-43 pathology is absent in 

ALS patients with FUS mutations (Vance et al., 2009). FUS 

mutations account for 5% of familial ALS and less than 1% 

of sporadic ALS cases (Taylor et al., 2016). The average age 

of onset for ALS cases with FUS mutations is 43.6 ± 15.8 

years, which is relatively earlier than that of patients with 

SOD1 or TDP-43 mutations (Shang and Huang, 2016; Yan 

et al., 2010). In addition, many FUS mutations were found in 

juvenile ALS cases (late teens and early 20s) (Baumer et al., 

2010; Huang et al., 2010; Liu et al., 2017b). Most of the 

mutations identified in FUS are clustered in either the N-

terminal glutamine-glycine-serine-tyrosine (QGSY)-rich and 

Gly-rich regions or the C-terminal region within the arginine-

glycine-glycine (RGG)-rich domain and NLS (Fig. 1). Several 

groups have demonstrated that ALS mutations accelerate 

the phase transition of FUS and readily lead to formation of 

nuclear and cytoplasmic aggregates (Murakami et al., 2015; 

Patel et al., 2015). In addition, ALS-linked FUS mutants have 

shown increased localization to stress granules upon cellular 

stress (Bosco et al., 2010). Recently, the detailed structural 

and molecular mechanism of the phase behavior of FUS has 

been further investigated (Hofweber et al., 2018; Luo et al., 

2018; Murray et al., 2017; Qamar et al., 2018; Yoshizawa et 

al., 2018), providing additional support for aberrant phase 

transition as a molecular mechanism leading to disease. 

Several mouse and rat models that express mutant FUS re-

capitulate ALS features, including cytoplasmic inclusions, 

muscle atrophy, and motor neuron degeneration (Qiu et al., 

2014; Sephton et al., 2014; Sharma et al., 2016; Shelkovni-

kova et al., 2013). Similarly, mice overexpressing wild-type 

FUS also exhibit ALS features (Mitchell et al., 2013; Sephton 

et al., 2014), suggesting that increased levels of FUS con-

tribute to toxicity and neurodegeneration. Interestingly, nei-

ther widespread postnatal FUS deletion nor motor neuron-

specific FUS knockout mice develop motor neuron degener-

ation (Sharma et al., 2016), suggesting that loss of FUS 

function does not contribute to ALS. However, studies in 

other animal models such as Drosophila and C. elegans sug-

gest that loss of FUS function may be involved in pathogene-

sis (Lanson and Pandey, 2012; Shang and Huang, 2016). 

Qiu and colleagues performed RNA-seq on spinal cord tissue 

of FUS-R521C mice and found RNA splicing defects, particu-

larly in genes that are involved in dendritic growth and syn-

aptic functions (Qiu et al., 2014), suggesting that aberrant 

RNA splicing caused by mutant FUS contributes to neuro-

degeneration. In addition, RNA analysis of motor neurons 

derived from induced pluripotent stem cells (iPSCs) with ALS 

mutations in FUS revealed that aberrant gene expression 

and splicing changes are associated with mutant FUS (De 

Santis et al., 2017; Ichiyanagi et al., 2016). These results 

suggest that dysregulation of RNA metabolism is involved in 

ALS pathogenesis. 

 

ATXN2 
 

ATXN2 plays diverse roles in the regulation of RNA metabo-

lism, including mRNA stability, polyadenylation and transla-

tional activation (Auburger et al., 2017; Carmo-Silva et al., 

2017; Lee et al., 2018a; Ostrowski et al., 2017). ATXN2 con-
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tains an N-terminal like-Sm protein domain (Lsm) and Lsm-

associated domain (LsmAD), which bind to the 3′ UTR of 

mRNA and promote mRNA stability (Yokoshi et al., 2014). In 

addition, ATXN2 is involved in translational regulation by 

associating with polyribosomes and poly (A)-binding protein 

(PABP) through its C-terminal PABP-interacting motif 2 

(PAM2) domain (Ralser et al., 2005; Satterfield and Pallanck, 

2006). ATXN2 is predominately found in the cytoplasm and 

localizes to stress granules upon stress (Nonhoff et al., 2007; 

Ralser et al., 2005). ATXN2 is also involved in reorganization 

of the actin cytoskeleton and regulation of calcium signaling, 

cellular metabolism and circadian rhythm (Auburger et al., 

2017; Carmo-Silva et al., 2017; Lee et al., 2018b; Lim and 

Allada, 2013; Ostrowski et al., 2017). 

ATXN2 normally contains ~22 polyglutamine (polyQ) re-

peats in the N-terminus (Fig. 1), and an expansion of >34 

polyQ repeats causes spinocerebellar ataxia type 2 (SCA2) 

(Imbert et al., 1996). In 2010, intermediate-length polyQ 

repeats (27–33), which were found in up to 4.7% of ALS 

cases, were identified as a significant risk factor for ALS, 

although the cutoff length of the polyQ expansion varies 

between populations (Conforti et al., 2012; Elden et al., 

2010; Lee et al., 2011; Lu et al., 2015; Ross et al., 2011; Van 

Damme et al., 2011). Similar to other ALS-linked RBPs, dis-

tinct cytoplasmic accumulation of ATXN2 was observed in 

spinal cord autopsies of ALS patients, which differs from the 

diffuse pattern observed in control tissue (Elden et al., 2010). 

The link between ATXN2 and ALS was first discovered using 

yeast two-hybrid screens, which identified ATXN2 as a TDP-

43 modifier (Elden et al., 2010). Up-regulation of ATXN2 

enhanced TDP-43 toxicity in yeast and flies, while a decrease 

in ATXN2 levels suppressed TDP-43 toxicity, a feature also 

observed in mice (Becker et al., 2017; Elden et al., 2010), 

strongly suggesting that reducing ATXN2 levels is an attrac-

tive therapeutic strategy to mitigate ALS. Similarly, expres-

sion of mutant ATXN2 enhances mutant FUS toxicity (Farg et 

al., 2013). A very recent study has identified domains in 

ATXN2 that are required for phase separation and stress 

granule assembly as well as long-term memory and neuro-

degeneration (Bakthavachalu et al., 2018). Relative to the 

other RBPs discussed, the distinct structure and function of 

ATXN2 speaks to the complex molecular mechanism of ALS. 

 

TAF15 
 

TAF15 is composed of an N-terminal QGSY-rich domain, 

Gly-rich region, an RRM, a zinc finger motif (Znf), a C-

terminal RGG repeat region, and an NLS (Fig. 1) (Anders-

son et al., 2008; Bertolotti et al., 1996; Morohoshi et al., 

1996). Although TAF15 is found primarily in the nucleus, it 

localizes to stress granules upon cellular stress (Andersson 

et al., 2008; Marko et al., 2012). TAF15 has been implicat-

ed in DNA damage repair and RNA processing (Bertolotti 

et al., 1996; Ibrahim et al., 2013; Izhar et al., 2015; Jobert 

et al., 2009). Several studies were unable to identify a con-

sensus RNA-binding sequence and proposed that TAF15 

binds to stem-loop structures within intronic regions (Hoell 

et al., 2011; Kashyap et al., 2015). However, other studies 

have suggested that TAF15 binds to the CUG motif or 

GGUA motif (Ibrahim et al., 2013; Kapeli et al., 2016). 

Interestingly, TAF15 and FUS share common RNA targets 

(Hoell et al., 2011; Ibrahim et al., 2013; Kapeli et al., 2016), 

supporting that TAF15 and FUS are structurally and func-

tionally similar. 

In 2011, mutations in TAF15 were identified in familial ALS 

cases (Ticozzi et al., 2011). Couthouis and colleagues identi-

fied additional mutations within the RGG-rich domain in 

sporadic ALS patients (Couthouis et al., 2011). Punctate 

granular cytoplasmic TAF15 staining was observed in sporad-

ic ALS postmortem spinal cord tissue, whereas in postmor-

tem controls, TAF15 is localized in the nucleus (Couthouis et 

al., 2011). ALS-linked mutations were also shown to in-

crease the aggregation propensity of TAF15 compared to 

that of wild-type TAF15 (Couthouis et al., 2011). Further-

more, Couthouis and colleagues found that overexpression 

of wild-type TAF15 led to shortened lifespan in Drosophila, 

and ALS-associated mutations reduced lifespan even further 

(Couthouis et al., 2011), suggesting a possible gain-of-

function mechanism. 

 

EWSR1 
 

EWSR1 or EWS was originally identified in Ewing’s sarcoma, 

in which chromosomal translocation fuses the N-terminus of 

EWSR1 to a transcription factor (Delattre et al., 1992). 

EWSR1 is composed of an N-terminal QGSY-rich domain, a 

Gly-rich domain, an RRM, a C-terminal RGG-region divided 

by a Znf, and an NLS (Fig. 1) (Bertolotti et al., 1996; Ohno et 

al., 1994; Zakaryan and Gehring, 2006). Like other RBPs 

detailed above, EWSR1 is primarily found in the nucleus but 

can localize to stress granules upon cellular stress (Anders-

son et al., 2008; Neumann et al., 2011). One study failed to 

identify an RNA consensus sequence for EWSR1 and pro-

posed that it recognizes a stem-loop structure within intronic 

sequences, similar to TAF15 (Hoell et al., 2011). However, 

several studies have suggested that EWSR1 recognizes a 

guanine (G)-rich sequence (Ohno et al., 1994; Paronetto et 

al., 2014). EWSR1 regulates alternative splicing and gene 

expression for genes involved in many cellular processes, 

including the DNA damage response, cell growth and apop-

tosis (Duggimpudi et al., 2015; Huang et al., 2012; Paronet-

to et al., 2011; 2014). 

Two mutations within the RGG-rich domain of EWSR1 

were identified in sporadic ALS cases in 2012 (Couthouis et 

al., 2012). The ALS-associated mutations were found to 

promote cytoplasmic accumulation of mutant EWSR1 in 

primary mouse neuron cultures and increase aggregation 

kinetics when compared to the wild-type protein. In Dro-
sophila, overexpression of wild-type EWSR1 leads to neuro-

degeneration; however, overexpression of mutant EWSR1 

does not exacerbate the phenotypes. In postmortem tissue 

from sporadic ALS patients, EWSR1 was present in cyto-

plasmic punctate granular structures (Couthouis et al., 2012). 

Together, these results suggest that EWSR1 has a potential 

role in conferring toxicity, but further experiments on these 

mutations and additional studies to identify novel mutations 

in EWSR1 are required. 
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HnRNPA1 
 

HnRNPA1 belongs to a family of at least 20 human hnRNPs, 

which bind to and regulate nascent RNA polymerase II tran-

scripts (Dreyfuss et al., 1993). Structurally, hnRNPA1 con-

tains two RRMs and a Gly-rich domain at the C-terminus (Fig. 

1) (Dreyfuss et al., 1993). HnRNPA1 is highly expressed in 

the nucleus but can shuttle between the nucleus and cyto-

plasm (Dreyfuss et al., 2002; Michael et al., 1995; Mili et al., 

2001; Nakielny et al., 1996; Pinol-Roma and Dreyfuss, 

1992; Pollard et al., 1996). HnRNPA1 preferentially binds to 

UAGGGA/U sequences and cooperates with other hnRNPs 

to regulate splicing, including splicing of its own transcripts, 

and pathological splicing events (Chabot et al., 1997; Clow-

er et al., 2010; Huelga et al., 2012; Mayeda and Krainer, 

1992; Mohagheghi et al., 2016; Yang et al., 1994). In addi-

tion to its role in splicing, hnRNPA1 also has functions in 

mRNA stability, export, transport, localization, and transla-

tion as well as miRNA processing (Alarcon et al., 2015; 

Cammas et al., 2007; Dreyfuss et al., 2002; Guil and Caceres, 

2007; Kwon et al., 1999; Villarroya-Beltri et al., 2013). 

Moreover, hnRNPA1 is recruited to stress granules upon 

stress (Guil et al., 2006). 

Mutations in hnRNPA1 underlie less than 1% of ALS cases 

(Taylor et al., 2016). Kim and colleagues identified hnRNPA1 
missense mutations in a family affected by ALS and in two 

families with multisystem proteinopathy (MSP) affecting the 

brain, motor neurons, muscle and bone (Kim et al., 2013). 

Cytoplasmic accumulation and nuclear clearance of mutant 

hnRNPA1 were observed in patient muscle tissue (Kim et al., 

2013). Interestingly, hnRNPA1 staining in the postmortem 

tissue of sporadic ALS patients was reduced in the nuclei of 

motor neurons relative to that of control tissue, and did not 

colocalize with TDP-43 inclusions (Honda et al., 2015). ALS-

associated mutations in the Gly-rich LC domain of hnRNPA1, 

which mediates phase separation (Molliex et al., 2015), have 

been shown to increase incorporation into stress granules, 

strengthen steric zipper motifs and accelerate fibrillization 

compared to wildtype hnRNPA1 (Kim et al., 2013; Molliex et 

al., 2015). Additional mutations in hnRNPA1 were later iden-

tified by targeted sequencing of sporadic ALS patients and 

of an ALS family with flail arm syndrome (Couthouis et al., 

2014; Liu et al., 2016). HnRNPA1 knockout mice are embry-

onic lethal, while heterozygous animals display a cardiac 

phenotype and show many changes in alternative splicing of 

muscle development-related genes (Liu et al., 2017a). This 

evidence supports an important role for hnRNPA1 in alterna-

tive splicing, but further animal studies are required to inves-

tigate its role in ALS pathogenesis. 

 

HnRNPA2/B1 
 

HnRNPA2/B1, another core hnRNP, is similar to hnRNPA1 in 

structure, expression, and function (Dreyfuss et al., 1993). 

HnRNPA2 and hnRNPB1 are two isoforms expressed from 

the same hnRNPA2/B1 gene. By preferentially binding 

UAGG motifs, this RBP plays a role in alternative splicing and 

alternative polyadenylation (Alarcon et al., 2015; Burd and 

Dreyfuss, 1994; Huelga et al., 2012; Martinez et al., 2016). 

In addition, hnRNPA2/B1 regulates RNA export, transport, 

localization of transcripts, and miRNA processing (Alarcon et 

al., 2015; Gao et al., 2008; Munro et al., 1999; Shan et al., 

2000; Shan et al., 2003). 

ALS-associated mutations in hnRNPA2/B1 are extremely 

rare (< 1%) (Taylor et al., 2016). Exome sequencing and 

linkage revealed a single mutation in hnRNPA2/B1 in an MSP 

family (Kim et al., 2013). Targeted sequencing revealed an 

additional mutation in sporadic ALS patients (Couthouis et 

al., 2014). Mutant hnRNPA2/B1 displays a similar pathology 

as mutant hnRNPA1 in patient muscle, where it was cleared 

from nuclei and accumulated in cytoplasmic inclusions in ∼10% of muscle fibers (Kim et al., 2013). Similarly, electro-

poration of hnRNPA2 into mouse tibialis anterior muscle 

revealed that while wild-type hnRNPA2 was localized in the 

nuclei, mutant hnRNPA2 was excluded from nuclei and ac-

cumulated in cytoplasmic inclusions (Kim et al., 2013). Dro-
sophila models that express hnRNPA2/B1 also show features 

reminiscent of myopathy and cytoplasmic protein inclusions 

(Kim et al., 2013; Li et al., 2016). ALS-associated hnRN-

PA2/B1 mutant iPSC-derived motor neurons also displayed 

hnRNPA2/B1 localization to cytoplasmic granules, abnormal 

splicing changes, and decreased survival in long-term culture 

(Martinez et al., 2016). Furthermore, hnRNPA2/B1 knock-

down in mice induced alternative splicing changes, neuronal 

dendrite loss, and learning and memory impairments (Ber-

son et al., 2012). Altogether, the evidence suggests that 

hnRNPA2/B1 mutations confer susceptibility to ALS. Howev-

er, further experiments and identification of additional mu-

tations are required to fully support this claim.  

 

MATR3 
 

MATR3 is a component of the nuclear matrix (Berezney and 

Coffey, 1974; Nakayasu and Berezney, 1991) and contains 

two RRMs, two Znfs, an NLS and an NES (Fig. 1) (Belgrader 

et al., 1991; Hibino et al., 2006; Hisada-Ishii et al., 2007). By 

binding to DNA and RNA, MATR3 regulates transcription, 

RNA processing, and mRNA export and stability (Banerjee et 

al., 2017; Boehringer et al., 2017; Coelho et al., 2015; Sal-

ton et al., 2011; Skowronska-Krawczyk et al., 2014; Zhang 

and Carmichael, 2001). Several studies have provided evi-

dence that MATR3 preferentially binds to pyrimidine-rich 

sequences within intronic regions and controls alternative 

splicing (Coelho et al., 2015; Uemura et al., 2017). 

A MATR3 mutation (S85C) was first identified in autoso-

mal-dominant distal myopathy (Senderek et al., 2009). 

However, in 2014, myopathy in patients with the S85C mu-

tation was reclassified as ALS, and other missense mutations 

in MATR3 were identified in familial ALS cases (Johnson et 

al., 2014). Since then, several other missense and splicing 

mutations have been identified in familial and sporadic ALS 

cases, although mutations in MATR3 account for less than 

1% of all ALS cases (Leblond et al., 2016; Lin et al., 2015; 

Marangi et al., 2017; Origone et al., 2015; Taylor et al., 

2016; Xu et al., 2016). None of these mutations are found 

in known domains; instead, they are clustered in two regions 

as shown in Fig. 1. MATR3 staining in ALS postmortem spi-

nal cord tissue is primarily observed in the nucleus. However, 
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in some cases, diffuse cytoplasmic MATR3 or MATR3 inclu-

sions have been observed (Johnson et al., 2014; Tada et al., 

2018). For example, intense nuclear and diffuse cytoplasmic 

MATR3 staining was observed in a patient harboring a 

MATR3 F115C mutation (Johnson et al., 2014). A very re-

cent study found MATR3 in a subset of cytoplasmic TDP-43-

positive inclusions (Tada et al., 2018). However, several stud-

ies demonstrated that wild-type or mutant MATR3 was 

mostly localized in the nucleus even upon stress and that 

only a small subset of cells overexpressing MATR3 show 

cytoplasmic puncta resembling stress granules (Gallego-Iradi 

et al., 2015). A recent paper showed that fibroblasts from 

S85C myopathy patients exhibited no significant changes in 

mutant MATR3 localization but showed impaired stress 

granule formation in response to stress, suggesting that 

mutant MATR3 may indirectly impact stress granule for-

mation (Mensch et al., 2018). Several recent studies have 

attempted to identify protein interactors of both wild-type 

and mutant MATR3; one study found an enrichment of pro-

teins involved in mRNA nuclear export to interact with wild-

type MATR3, and these proteins show altered interactions 

with the mutant form (Boehringer et al., 2017). In contrast, 

another study did not find significant differences in the in-

teractions with binding partners between wild-type and 

mutant MATR3 (Iradi et al., 2018). Further studies are re-

quired to determine how MATR3 mutations confer patho-

genicity. 

 

TIA1 
 

TIA1 is a major component of stress granules (Kedersha et 

al., 1999; 2000). As shown in Fig. 1, TIA1 is composed of 

three RRMs and a C-terminal Gly-rich LC domain, which 

undergoes phase separation (Gilks et al., 2004; Mackenzie 

et al., 2017). TIA1 binds to uridine (U)-rich sequences (Azna-

rez et al., 2008; Dember et al., 1996; Piecyk et al., 2000) and 

is implicated in RNA processing and translation regulation 

(Del Gatto-Konczak et al., 2000; Dixon et al., 2003; Forch et 

al., 2000; Kedersha et al., 1999; Piecyk et al., 2000). TIA1 

has also been shown to regulate genes involved in multiple 

processes, including apoptosis, inflammation, and cell prolif-

eration (Dixon et al., 2003; Forch et al., 2000; Heck et al., 

2014; Reyes et al., 2009; Sanchez-Jimenez and Izquierdo, 

2013). 

In 2017, several mutations were identified within the C-

terminal LC domain of TIA1 in familial and sporadic ALS cas-

es, and several other mutations were found in 2018 (Mac-

kenzie et al., 2017; Yuan et al., 2018; Zhang et al., 2018). 

Brain and spinal cord autopsy tissue samples with TIA1 mu-

tations revealed cytoplasmic TDP-43 pathology and hyaline 

Lewy body-like inclusions, but, interestingly, no TIA1 pathol-

ogy (Hirsch-Reinshagen et al., 2017; Mackenzie et al., 2017). 

Functional studies revealed that these mutations increased 

phase separation, delayed stress granule disassembly and 

promoted accumulation of stress granules harboring TDP-43 

(Mackenzie et al., 2017), providing evidence that TIA1 muta-

tions confer pathogenicity. A homozygous TIA1 knockout 

mouse line exhibited 50% lethality before 3 weeks post-

partum, while surviving mice exhibited no gross abnormali-

ties and had normal lifespans (Piecyk et al., 2000). Animal 

studies will further provide clues as to whether TIA1 gain-of-

function, loss-of-function or both lead to ALS pathogenesis.  

 

CONCLUSION 
 

Several RBPs have been identified to be strongly linked with 

ALS. Many of these proteins share structural and functional 

properties that mediate their role in the disease process. The 

most striking structural property shared by many of the RBPs 

are the LC domains. When harboring ALS-linked mutations 

in these domains, these RBPs are associated with increased 

aggregation or fibrillization propensity, cytoplasmic mislocal-

ization, and dysregulation of stress granule dynamics, sug-

gesting that LC domains play an important role in ALS path-

ogenesis. However, not all ALS-linked RBPs have a defined 

LC domain (e.g., MATR3 and ATXN2), suggesting that alter-

native pathogenic mechanisms may exist. By definition, the-

se RBPs play functional roles in RNA metabolism, including 

transcription, RNA processing, mRNA export and stability, 

and translation regulation. As such, ALS-linked mutations in 

these proteins have the potential to affect gene expression 

and thereby impact certain cellular processes, including the 

DNA repair response, apoptosis, and cell growth and prolif-

eration. However, it is difficult to pinpoint a single or a few 

pathway(s) or mechanism(s) by which all these RBPs con-

verge to cause ALS. A better understanding of the normal 

function as well as pathological significance of these RBPs 

will be critical to illuminate the biology behind this devastat-

ing disease. 
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