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A B S T R A C T   

The standard reconstruction of Photoacoustic (PA) computed tomography (PACT) image could cause the artifacts 
due to interferences or ill-posed setup. Recently, deep learning has been used to reconstruct the PA image with 
ill-posed conditions. In this paper, we propose a jointed feature fusion framework (JEFF-Net) based on deep 
learning to reconstruct the PA image using limited-view data. The cross-domain features from limited-view 
position-wise data and the reconstructed image are fused by a backtracked supervision. A quarter position- 
wise data (32 channels) is fed into model, which outputs another 3-quarters-view data (96 channels). More
over, two novel losses are designed to restrain the artifacts by sufficiently manipulating superposed data. The 
experimental results have demonstrated the superior performance and quantitative evaluations show that our 
proposed method outperformed the ground-truth in some metrics by 135% (SSIM for simulation) and 40% (gCNR 
for in-vivo) improvement.   

1. Introduction 

AS a hybrid imaging modality, photoacoustic tomography (PAT) has 
emerged to visualize the chromophores in biological tissue by convert
ing absorbed optical energy into acoustic energy. It has high spatial 
resolution at deep penetration in tissues. Photoacoustic computed to
mography (PACT) is one of the major implementations of PAT, which 
explores a higher penetrability with large view. Many potential appli
cations have been explored in biomedical imaging areas, such as blood 
oxygen saturation (sO2) quantification for cancer diagnostics. PACT 
possesses high temporal resolution by reconstructing a photoacoustic 
(PA) image with single-shot pulsed laser light and provides potential 
preclinical and clinical prospects in thyroid cancer, breast cancer di
agnostics, and small animal whole-body imaging [1–9]. Standard 
reconstruction algorithm, e.g. delay-and-sum (DAS), is widely used to 
rebuild PA image with high frame rate. However, ill-posed conditions, e. 
g. limited-view and limited elements, could cause poor quality with 

blurry image and artifacts. Many studies have improved the recon
struction methods to address these issues to some extent [10,11]. These 
methods improved the quality of PA image paid by increasing the 
computational complexity of reconstruction. 

Recently, deep learning (DL) has emerged to reconstruct the PA 
image [12,13]. Specially, convolutional neural networks (CNN) have 
been a great success in the computer vision area. DL enables PACT 
reconstruction in both image and signal domains. In image domain, a 
straightforward way of applying DL is to reduce image artifacts as a 
post-processing step [14–16]. For instance, Austin Reiter identified the 
point source locations from pre-beamformed PA data using a CNN [17]. 
Neda Davoudi et al. used a U-net for efficient recovery of image quality 
from sparse data [18]. Also, DL directly learns the map from PA signals 
to PA image, which could contain a complex physical procedure [19, 
20]. However, DL has difficulty in learning the process from signal to 
image for complex objects, since the model is hard to properly fit the 
cross-modality mapping between signal and image for complex objects. 
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In signal domain, DL is used to recover the bandwidth of PA signals and 
improve the signal-to-noise ratio (SNR) of PA signals [21,22]. Then, a 
higher quality image can be rebuilt by standard reconstructed method. 
Some frameworks extract different features by combined signal and 
image instead of single domain. In [23,24], the authors proposed a 
multi-input reconstruction framework by combining signal and image 
inputs. Steven Guan et al. used pixel-wise delayed data as input of CNN, 
which includes more positional information [25]. Meanwhile, MinWoo 
Kim et al. converted raw data into a 3-D array, where additional posi
tional information is considered [26]. In addition, DL inspires iterative 
reconstruction methods to simplify the adjustment and repeating opti
mization for the inverse problem by learning the regularization and 
some parts of the optimization procedure [27,28]. 

For most artifacts removal and limited-view compensation problems, 
the artifacts are identified by taking PA image as input, which can be 
treated as an image denoising task. The missing view can be also 
compensated by building the relationship of input and output images. 
Namely, it is feasible that the neural network model can restore the lost 
information from large training data in image inpainting and enhance
ment task. Inspired by the input format of [25,26], we make use of the 
position-wise data as input data and propose a jointed feature network 
(JEFF-Net) to reconstruct the limited-view PA image and eliminate the 
artifacts of reconstruction. We define the position-wise data of 
delay-and-sum (DAS) as a sub-image, which can be superimposed as a 
PA image. Meanwhile, the superimposed image provides the shape of 
the object, which can be fused with output position-wise data. There
fore, the common parts of the sub-images, i.e. the object, are extracted 
from the fused features. In this paper, we demonstrate JEFF-Net using 
limited-view (a quarter view) PACT data, which are fed into the model 
and generates delayed data of another 3 quarters positions as Fig. 1(a) 
shows. Furthermore, an image feature path transforms the output of the 
3 quarters’ positions and obtains the full-view image in every channel. 
Compared with the limit-view image, the output result shows superior 
performance. The ground-truth coming from DAS reconstruction with 
full-view data, which still contains distorted ingredients in the back
ground. By this detached data arrangement, two novel losses are 
designed to restrain the artifacts in superposed position-wise data. 
Specifically, we could surpass the ground-truth in PACT by simple 
operation, which indicates fewer artifacts and higher contrast results 
than ground-truth. While JEFF-Net completes the compensation task 
through usual supervised learning, the image is split into a state where 
multiple sub-images are superimposed. Meanwhile, the common parts of 
the sub-images, i.e. the object, are extracted through a novel residual 
structure. In this paper, we demonstrate JEFF-Net using limited-view (a 
quarter view) photoacoustic computed tomography (PACT) data. 
Inspired by input format of data procured by isolated probes [25,26], a 
quarter position-wise delayed raw data (32-channels) is fed into model 
and generates delayed data of another 3 quarters positions as Fig. 1(a) 
shows. The ground-truth coming from DAS reconstruction with full-view 
but still sparse data could contain distorted ingredients in background 
due to the limited number of detectors. Specially, by virtue of this de
tached data arrangement, two novel losses are designed to restrain the 
artifacts in superposed position-wise data. We first surpass the 
ground-truth in PACT by designing special supervision and loss, which is 
embodied in less artifacts, higher contrast than ground-truth. 

The numerical experiments are demonstrated to compare the stan
dard full-view DAS reconstruction (ground-truth) with the proposed 
JEFF-Net. Meanwhile, we also compare the compensated view result 
with other deep learning models. Moreover, we perform in-vivo imaging 
experiments of mice abdomen to illustrate the superiority of our 
method. In quantitative evaluations, the results show better perfor
mance compared with ground-truth (0.667 >0.283 SSIM value). 

Our contributions can be summarized as follows:  

• For the first time, we introduce a DL solution to resolve the limited- 
view problem in PACT by feeding a quarter position-wise data.  

• We try to remove the artifacts in full-view reconstructed result by 
two steps:  

• Two joint feature data are used to fuse the reconstructed results, 
which caused the transformation of the output, i.e. 3 quarters’ data, 
from position-wise data to reconstruct image by the backtracked 
supervision.  

• Two novel losses are designed to mitigate interference in PA 
position-wise data.  

• We validate our method on both synthetic and in-vivo PACT dataset 
and compare our method with other models. We further compare our 
result with ground-truth in quantitative analysis.  

• Finally, we share and release the code of our model and the mice 
dataset, using which other researchers can reproduce and train their 
DL model. 

Fig. 1. (a) Illustration of the scanning setup and the input/output views of our 
task. (b) The propagation of PA signals and the image reconstruction principle; 
Δti indicates the PA wave propagation time from source to detector. 
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2. Backgrounds 

2.1. Photoacoustic computed tomography 

In PACT, the initial pressure is excited by the single short laser pulse, 
which can be expressed as [7]: 

p0 = Γ0ηthμaF, (1)  

where Γ0 is the Gruneisen coefficient, ηth is the conversion efficiency 
from light to heat, μa is the optical absorption coefficient, and F is the 
optical fluence. We use p and b to indicate the initial pressure and the 
received PA signals. The forward operation can be modeled as a linear 
operator A: 

b = Ap, (2)  

which contains propagation of PA wave in the medium. The PA signals 
are detected by transducers as shown in Fig. 1(b). The basic idea of 
reconstruction is to recover p from b. For PACT, the light uniformly il
luminates the whole target, which excites the PA signals simultaneously. 
The transducer array is used to receive the PA data at different positions. 
In general, the transducer with a large detection angle is desirable to 
receive PA signals from different directions. Several algorithms are used 
for PA image reconstruction, within which universal back-projection 
(UPB) is widely used due to less computational cost and easy imple
mentation. In short, the basic principle of DAS can be depicted in Fig. 1 
(b), where PA signals are delayed to the region of interest for every 
channel’s data based on the distance between detector and PA source. 

2.2. The physical fundamentals of limited-view and artifacts in PACT 

An accurate reconstruction could be maintained if the transducer 

fully encloses the target, and the number of elements has enough spatial 
density. The transducer often only accesses the PA signals from partial 
coverage of the tissue due to geometric restrictions. The ill-posed situ
ation could be caused by incomplete enclosed-angle or sparse elements, 
which degrades image quality or lose important information. Here, we 
simulated different enclosed views and spatial density of transducer in  
Fig. 2 [29] (The simulated setup is an ideal case with a homogeneous 
medium and 20 PML in grid points, which only use a simple case to show 
as a demonstration). A full circular transducer with enough elements (e. 
g. 256 elements) produces a superior result as shown in Fig. 2(b). Fig. 2 
(c) shows that some minor artifacts will be generated if the sensors’ 
number decreases from 256 to 128. Once the enclosed view decreases to 
half view, more artifacts have emerged, and the target is becoming 
blurry as Fig. 2(d) shows. A severe situation could happen if we further 
decrease the angle to a quarter-view (32 channels) as shown in Fig. 2(e). 
Only part of the object that is close to the sensor array can be recon
structed. Fig. 2(f) shows the result using a 128-elements linear trans
ducer, which is polluted severely by many artifacts. 

Similarly, a more serious issue occurs as a result of DAS recon
struction. In standard DAS, the received PA signals are simply delayed to 
every pixel based on the distance from detector to pixel’s position as  
Fig. 3(a) shows (e.g., the 5th channel with clockwise from left one.), i.e., 
position-wise data. Since we cannot judge the accurate orientation of PA 
pressure, pixels of the same radius distance are usually assigned to the 
same value arbitrarily. We will obtain the reconstructed PA image if we 
superpose all channels’ delayed data as Fig. 3(b) shows. We can divide 
the delayed data into the data of object doj and the data of artifact dar. 
Fig. 3(c) shows doj of 5th-channel position-wise data, which is necessary 
for reconstruction. Fig. 3(d) shows dar of 5th-channel position-wise data, 
which is the components of the artifacts, although they are small and 
irrelevant for all channels. dar could cause severe interference when the 
system has a sparse number of detectors. Likewise, the DAS result 

Fig. 2. Simulation results of different limited-view situations. (a) The example object. (b) reconstructed result with 256 enclosed sensors. (c) reconstructed result 
with 128 enclosed sensors. (d) reconstructed result with 64 half-view sensors. (e) reconstructed result with 32 quarter-view sensors. (f) reconstructed result with 128 
line sensors. 
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fundamentally consists of poj and par. Generally, doj and dar have a 
similar scale of value, and poj usually has a larger scale of value than par. 
Considering the same scale of value for position-wise data, it could be 
more equal to both objects and artifacts if we use position-wise data as 
the label to supervise model, so that we can strip out an unblemished 
object. 

3. Method 

To go beyond supervision, we propose a novel framework to surpass 
the ground-truth (reconstructed image with a full circular transducer). 
In this section, we use a CNN model to compensate for the limited-view 
of PA data and propose space-based calibration and transition module to 
calibrate the position-wise data. And then, to restrain the output 
position-wise data, we introduce an image feature path, which provides 
an image feature (the shape of the object) with backtracked supervision. 
Finally, we will propose the complete JEFF-Net with two novel losses to 
achieve a superior result than ground-truth. 

3.1. PA Position-wise data for reconstruction 

To effectively resolve the limited-view problem, the plain method 
expects to train an end-to-end network by feeding a limited-view result. 
This scheme is regarded as image repair to learn the lost information 
from the data with the powerful deep learning approach, which could 
ignore the underlying physical meaning of each channel data. Inspired 
by previous literature [25,26], for the first time to our best knowledge, 
we introduce a limited-view compensation for position-wise data, which 

simply delays the raw PA signals to every pixel. In this way, the 
position-wise data, which contain a location relation between each 
channel and the respective channel, are treated as inputs of the CNN. 

In our work, we demonstrate a quarter view data x with 32 channels 
as input of our model, which can be denoted by: 

x = [d1(h,w), d2(h,w),…, d32(h,w)] (3)  

where h and w indicate height and width. The model should generate 
another 96 channels’ data by feeding x. We express this procedure as: 

G(x) = [d33(h,w), d34(h,w),…, d128(h,w)], (4)  

where G(⋅) denotes the DL model, and these 96 channels’ data are 
distributed covering the remaining 270◦ angles. Finally, we superpose 
these 128 channels’ data, i.e., ΣG(x) + Σx, and obtain a full-view result 
of DAS. 

3.2. Image feature path for jointed feature fusion 

In previous works, most DL-based methods used limited-view PA 
image to train their end-to-end model, which crudely treats the input as 
an incomplete image. Considering the weights of the artifacts and the 
object have significant overlap in single DAS reconstructed image, we 
cannot simply normalize artifact and object, respectively. These models 
could not be sensitive to small values due to differences of weight in DAS 
result. However, the main structure of the object can be boosted in DAS 
result since poj is a common part for each channel. On the other hand, 
position-wise data distribute poj and par in every channel (poj=Σdoj, 

Fig. 3. Simulation results of DAS reconstruction. (a) The 5th-channel position-wise data. (b) The superposed results of 128-channel position-wise data. (c) doj of 5th- 
channel. (d) dar of 5th-channel. 
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par=Σdar), which have similar scale. We use position-wise data to 
equilibrate the weight between objects and artifacts of every channel. 

In general, the post-processing scheme of deep learning enhances the 
limited-view image, which is restrained by full-view image. Practically, 
it is difficult to acquire the ground-truth image, so we reconstruct the 
full-view image with artifacts by the above operation. To improve the 
quality of output image, we further introduce the image feature path 
using the 32 channels’ superimposed image as input, which guides the 
transformation of 96 channels’ data with the backtracked supervision. 
We consider this branch separately, the limited-view reconstructed PA 
image is fed into a CNN model, obtaining the output of full-view image. 
This scheme is a commonly used post-processing solution to enhance the 
quality of PA image in ill-condition. We use the full-view DAS image as 
the ground-truth of this path. Moreover, we combine these two paths 
and add some additional losses to achieve the feature fusion (these losses 
will be introduced in the next section). Finally, two different features are 
used to reconstruct the PA image, which comes from: (1). Same weight 
between object and artifact of position-wise data; (2). The object with a 
high weight of reconstructed image. 

3.3. Jointed feature fusion framework 

As mentioned above, we integrate these structures and introduce a 
novel JEFF-Net to surpass the quality of ground-truth, which consists of 
two components as Fig. 4 shows. To fully leverage the benefit of com
plementary information from highly similar tasks, we proposed space- 
based calibration and transition module (SCTM) and two novel losses 
(response loss and overlay loss) to fuse the features and reconstruct the 
image. We design a backtracked point (BTP) in that two additional losses 
are used to besiege the output at the positions before and after the 
output, which is also called backtracked supervision. We desire that 
these losses can restrain doj of every channel position-wise data and 
obtain the artifacts and the negative object. 

3.3.1. Space-based calibration and transition module 
The above subnetwork generates 96-channel compensation data by 

feeding x, and SCTM is used to replace the final layer of U-Net. We use 
SCTM to transfer the angle from 90◦ to 270◦, and calibrates the relation 
of position-wise. SCTM has been shown in Fig. 4, which connects the 

encoder features to the decoder. 
We design SCTM with a spatially fully-connected layer inspired by 

Ref. [30]. For the given feature map from the encoder, we first conduct 
two transformations with max pooling and average pooling. These two 
feature maps are further fused with grouped fully-connected layer, 
intended to propagate information of the corresponding position. If the 
input has m feature maps of size n × n, the grouped fully-connected 
layer can decrease the number of parameters from mn4 to 2mn2 

compared to fully-connected layer. Finally, the feature map should be 
reshaped to n × n × m. 

3.3.2. JEFF-Net 
We further introduce JEFF-Net to integrate the above modules. The 

overall architecture has been shown in Fig. 4, which can be divided into 
two pipelines: position-wise data compensation and limited-view image 
inpainting. 

A U-Net [31] model is used for position-wise data compensation, 
which takes 32-channel position-wise data with a 90◦ limited view. 
Given input data with size 128 × 128 × 32, the first four convolutional 
layers and the following pooling layer (fourth layer without pooling) are 
used to encode the position-wise data, followed by the final layer with a 
convolutional layer. SCTM can connect these feature maps to decoder 
with 8 × 8 × 128 size. SCTM is followed by a series of five 
up-convolutional layers, generating 96-channel position-wise data with 
other 270◦ views. To leverage the image features from limited-view, we 
use a small network to extract the feature of PA image, named Residual 
Global Context subnetwork (RGC-Net), which consists of five residual 
global context layers [32]. Furthermore, we introduce a backtracked 
supervision before and after BTP, two losses restrain the 96 channels’ 
data output indirectly. 

To fully leverage the benefit of complementary information from 
highly correlated data, we bridge these two results using residual sep
aration. By combining response loss and overlay loss for G(x), the arti
facts in the reconstructed result can be learned, which will be described 
in detail below. 

3.3.3. Novel loss for position-wise data path 
We train our JEFF-Net by regressing to the ground-truth content of 

full-view PA image. However, ΣG(x) + Σx has multiple equally plausible 

Fig. 4. The overall of proposed JEFF-Net architecture. SCTM: Space-based Calibration and Transition Module. RGC-Net: Residual Global Context subnetwork. BTP: 
backtracked point. GT: ground-truth. Raw data are pre-reconstructed to 32-channel position-wise data x, and superposing these 32-channel data x’ as inputs 
of network. 
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ways to satisfy the residual relation. For conventional L1 or L2 loss, they 
only consider the difference of single position-wise data. However, they 
ignore the relation of different channel data. We propose response loss 
and overlay loss to handle both the artifacts and the opposite object in 
the output. 

The compensated delay data we expect to obtain is G(x) in Equation 
(4), which consists of additionalNl (96 in our paper) channels’ PA sig
nals. That means this layer l (l indicates that our loss can be used to the 
feature maps of arbitrary layer, and it is the final layer G(x) in our work) 
has Nl feature maps, each is with size Ml, where Ml (128 ×128 in our 
paper) is the height times the width of the feature map. There are a lot of 
similarities between the received signals at two adjacent positions. We 
use overly response to describe the correlation of adjacent view. 
Although all channels’ ultrasonic sensors are spatially and indepen
dently placed around the imaging target, their delayed data should have 
a dependent response relationship at the same position. Hence, we built 
a response representation that computes the correlations between the 
different channel’s responses, which is the relationship between the PA 
signal detection channels of each sensor. For given feature maps D, the 
responses between any two channels are given by the Gram matrix [33] 
Gl ∈ ℛNl×Nl, where Gl

ij is the inner product between the vectorized delay 
data i and j in layer l: 

Gl
ij =

∑

k
Dl

ikDl
jk. (5) 

The Gram matrix is used to measure the dependent response rela
tionship of position-wise data at adjacent positions. Therefore, the 
response loss is by minimizing the mean-squared distance between the 
entries of the Gram matrix from the original delay data and generated 
delay data (Al and Gl denote their respective response representations): 

L response =
1

4N2
l M2

l

∑

i,j

(
Gl

ij − Al
ij

)2
. (6) 

Although when acquiring data, a single channel records the signal 
sequence from its own view, the resultant image is superimposed by the 
delayed data of all channels. The superposition of arbitrary channels still 
has a certain dependence. Considering the plainest case, the contribu
tion of the superposition of the arbitrary two views to the full views is 
measured here. Hence, we built an overlay representation that computes 
the correlations between the different channels’ overlays. We propose 
an Overlay matrix Ol ∈ ℛNl×Nl×Ml to describe the overlays between vec
torized delay data of the two probes n and n′: 

Ol
nn′m =

∑

n,n′
Dl

nm +Dl
n′m. (7) 

The overlay matrix builds the relation among different detectors, 
which indicate different view in physics. The superposition of arbitrary 
channels still has a certain dependence. Similarly, the arbitrary two 
views to the full views are considered here. So, it causes a 3-D overlay 
matrix related detector n and n’. But it is worth noting that our overlay 
can be extended to 3, 4 or n detectors. The overlay loss is by minimizing 
the mean-squared distance between the entries of the Overlay matrix 
from the original delay data and generated delay data (Pl and Ol denote 
their respective overlay representations): 

L overlay =
1

4N2
l N2

l M2
l

∑

n,n′ ,m

(
Ol

nn′m − Pl
nn′m

)2
. (8) 

Namely, overlay loss constrains the contribution of each channel to 
the final image. 

And then, we use a texture loss to supervise the limited-view image 
enhancement. We apply commonly used mean square error (MSE) loss 
as our texture loss: 

L texture(y0) = ‖y − y0‖
2
F, (9)  

where F denotes the Frobenius norm. Furthermore, a reconstruction loss 
is used to optimize the residual result by minimizing the mean pixel-wise 
error: 

L rec(ŷ) = ‖y − ŷ‖2
F . (10) 

Finally, we define the overall loss function as follow: 

L overall = λreL response + λovL overlay
+λtexL texture + λrecL rec,

(11)  

where λre, λov, λtex, λrec are hyper-parameters that decide the proportion 
of every loss, which have different values in different experiments. 

4. Experiments 

In this section, we validate our method using both simulation and 
experimental data. Furthermore, some ablation studies are demon
strated. All deep learning methods are implemented on Pytorch [34], 
which is an open-source framework. The high-speed graphics computing 
workstation is used to train our model, which consists of four NVIDIA 
RTX Titan graphics cards. The batch size is set as 16, and iteration is set 
as 600 epochs. Adam optimization is used with the initial learning rate 
of 0.005. We also computed that the amount of multiply-add operations 
(MACs) are 44.72 G, and the number of parameters are 20.39 M. In 
testing procedure, the computational time of single data is about 0.01 s 
using a RTX Titan. For single patch data, the forward path should cost 
about 1266.7 MB GPU memory. Therefore, it can be computed with a 
proper batch size on most GPUs. For U-Net methods, the MACs and 
parameters are similar about 13 G and 20.55 M respectively. All ex
periments are described in detail below. Furthermore, the source code is 
available at https://github.com/chenyilan/BSR-Net. 

4.1. Training on synthetic vessels data 

We use the MATLAB toolbox k-Wave [35] to generate the synthetic 
dataset. The detectors surround the object evenly with 18 mm radius. 
The center frequency of all sensors is set as 2.5 MHz with 110% frac
tional bandwidth. The sound speed is 1480 m/s, and the reconstructed 
region is set as 26 mm × 26 mm. 

We use the public fundus oculi vessel DRIVE [36] as initial pressure 
distribution, which should be expanded by segmentation and combi
nation to increase the data size. We individually compute the 
position-wise data and concatenate them on a new dimension, which 
causes a 3D data with 128 × 128 × 128 size. And then we divide this 3D 
data into two partitions (32 ×128 ×128 and 96 ×128 ×128) along 
channel dimension. (Same operation for experimental data.) Finally, we 
have 2800 training sets and 200 test sets. In this experiment, we use 130, 
0.02, 42, 60 for λre,λov,λtex,λrec, respectively. Note that all 
hyper-parameters are chosen for different data empirically, and then we 
adjust these parameters based on the experimental results. 

4.2. Ablation study for different sub-network comparison 

In this section, we train an individual G(x) without RGC-Net. 
Namely, we compare different channel’s position-wise data with JEFF- 
Net. RGC-Net indicates the conventional DL scheme to resolve the 
limited-view problem in image domain. Noting that G(x) is the final 
output in this work, we change the output image by combining two sub- 
networks with the backtracked supervision (it means we get the desired 
result by constraining the output after the output.). Therefore, we 
compare two different frameworks with our JEFF-Net: 1. G(x) (above 
sub-network) with response and overlay loss; 2. RGC-Net (nether sub- 
network) with texture loss. 
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4.3. Ablation study for response and overlay loss 

One of the contributions in this work is to propose two novel losses. 
To verify them, we compare the superposed G(x) in four different cases 
as ablation study: remove these two losses, only use overlay loss, only 
use response loss, and use these two losses. Therefore, the effect of these 
two losses could be validated in this experiment. 

4.4. Comparisons of different inputs for U-Net 

Considering that models trained on the position-wise channel data 
have better reconstruction performance than the models trained on 
image-to-image or signal-to-image under limited-view or sparse sensing 
configuration, we also train another U-net which feeds 32 position-wise 
channel data with a DAS image ground-truth. 

4.5. Comparisons with other methods 

We also compare two different methods with our method: 1) a con
ventional total variation (TV) method; 2) an end-to-end U-Net with 
limited-view image as input. The DAS results have been processed by 
thresholding to improve the quality. 

4.6. Training on mice data 

Last but not least, we also verify the performance of our method on 
the in vivo data of mice abdomen. A customized PAT system (HISRing, 
HISLAB Inc., China) is employed to record PA signals, which is equipped 
with a 128-elements full-view ring-shaped transducer (2.5 MHz, 
Doppler Inc.). A pulsed laser (720 nm wavelength, 10 Hz repetition rate) 
is used to illuminate the object by a fiber optic bundle, whose output 
fluence is 35 mJ/cm2, and the data sampling rate of our system is 40 
MSa/s. The signal is not averaged during data acquisition due to good 
enough SNR. The region of image reconstruction is 20 mm × 20 mm. 

We vertically scanned the mice using our system and obtained 1100 
training sets and 116 test sets, which are available at https://ieee- 
dataport.org/documents/his-ring-abdomen. In this experiment, we use 
250, 0.6, 30, 40 for λre, λov, λtex, λrec in Equation (11), respectively. 

5. Results 

5.1. Simulated results 

We show two examples of imaging results from the test set in Fig. 5, 
which compares the limited-view results, full-view results, and three 
results in the procedure of JEFF-Net. In addition, we simply process G(x) 
(thresholding for the negative G) and obtain the final result, which is 
called processed G(x). 

We also do same processing for full-view DAS results. Namely, all 
full-view DAS results have been processed to eliminate negative values 
by thresholding. The obvious artifacts can be seen in full-view DAS from 
Fig. 5(c)-(d). Noting that the DAS results used to train JEEF-Net (ground- 
truth) are not processed by thresholding. The whole objects are recov
ered from the limited-view input comparing Fig. 5(e)-(f) with Fig. 5(a)- 
(b). Some of the details are distorted since RGC-Net is not deep enough, 
which are embodied in the ruptured vessels in the circle of Fig. 5(e)-(f). 
The vascular structure becomes more complete after the addition of the 
two paths as Fig. 5(g)-(h) showed. In Fig. 5(i)-(j), the superposed 96- 
channel data have transformed to the artifacts and the negative object, 
which should be the position-wise data. G(x) should be further processed 
to separate objects and artifacts, and here we do simple threshold pro
cessing as Fig. 5(k)-(l) showed. We find that TV cannot solve the limited- 
view issue only with fewer detectors from Fig. 5(m)-(n). U-Net performs 
a similar result with full-view image since the labeled image is full-view 
image as Fig. 5(o)-(p) showed. 

In our work, the G(x) is final output as Fig. 4 showed. In Fig. 4, we use 
full-view image y to supervise the y0, ŷ, x’ and G(x) also are added at 
BTP. It causes a situation that x’+G(x)= ε (ε ≈ 0),so G(x)= -x’+ ε 
without additional losses as Fig. 8(a) showed. G(x) could be the common 
parts of 96 channels data (ground-truth) and 32 channels data (x’) if we 
add response and overlay losses. The common parts of 96 channels and 
x′ are the object, which causes G(x) can learn the object only using 96 
channels. Therefore, the target could be separated better if we explore a 
more advanced processing method for G(x), which will be developed in 
future work. For synthetic data, we have initial pressure distribution 
even though we do not use it in this task. Namely, we could calculate 
structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and 
root mean square error (RMSE) to quantitatively compare these results. 
We list all results in Table 1, and we only calculate processed G(x) since 
superposed G(x) is an opposite image. For average of SSIM, the pro
cessed G(x) has 0.667 and the full-view DAS (the ground-truth in our 
work) only has 0.283. Similarly, for the average of PSNR, the processed 

Fig. 5. Two examples of performance comparison of different results. (a,b) Limited-view DAS results. (c,d) Full-view DAS results. (e,f) y0 results in JEEF-Net. (g,h) ŷ 
results in JEEF-Net. (i,j) G(x) superposed along channel dimension in JEEF-Net. (k,l) G(x) superposed along channel dimension with the thresholding operation. (m,n) 
TV results with limited-view data (100 iterations). (o,p) end-to-end U-Net results. 

Table 1 
The quantitative evaluations of simulated test data. G(x) indicates processed G 
(x); FV DAS: full-view DAS.   

SSIM PSNR RMSE 

x’ 0.051 ± 0.008 8.233 ± 0.579 0.397 ± 0.037 
y0 0.294 ± 0.031 14.848 ± 1.195 0.182 ± 0.044 
ŷ 0.318 ± 0.035 15.418 ± 1.044 0.178 ± 0.025 
G(x) 0.667 ± 0.057 14.269 ± 0.966 0.067 ± 0.053 
FV DAS 0.263 ± 0.078 12.484 ± 1.303 0.170 ± 0.020 
TV 0.489 ± 0.046 13.127 ± 1.015 0.125 ± 0.032 
U-Net 0.327 ± 0.030 14.348 ± 1.052 0.180 ± 0.021 

* Small RMSE value indicates high performance 
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G(x) has 15.469 dB and the full-view DAS only has 14.284 dB. It shows a 
significant superiority of our method from Table 1, which outperforms 
ground-truth (full-view DAS) in this work. Noting that a small RMSE 
value also indicates a high performance from Table 1. 

5.2. Evaluation of sub-networks 

Firstly, we validate the original idea of compensating limited-view 
position-wise data. We only use a G(⋅) in Fig. 4 to compensate the 
view of PA data and plot different channel’s data. In Fig. 6, we show 
different channel of output data and the superposed final image. Every 
channel of the outputs is the sensor’s position-wise data at different 
position as shown in Fig. 6(a)-(c), and the final image (Fig. 6(d)) can be 
reconstructed by summing input and output 128 channels’ data. 

Moreover, one key component of our proposed method is the 
different feature fusion. Fig. 7 shows the output of RGC-Net, which in
dicates the image post-processing scheme. Noting that some prevailing 
end-to-end deep learning solutions for reconstruction are often imple
mented by arbitrarily changing this backbone [15,17,37,38], which is 
also a comparative experiment. Fig. 7(a) shows an obvious texture of the 
object, which decreases the weight of the object in the output 
position-wise data. 

5.3. Ablation study results 

The superposed G(x) of four ablation studies have been shown in 
Fig. 8. G(x) contains both objects and artifacts with small overall value if 
we do not supervise G(x) as Fig. 8(a) shows, which can be regarded as a 
supplement to y0. G(x) will be closer to y with only one loss shown in 
Fig. 8(b) and (c). These two losses are designed to focus on different 
characteristics of position-wise data (overlay loss focuses on the relation 
of each channel data; response loss focuses on the common area doj of 
each channel data). We further compare the quantitative results of these 
methods in Table 2. The overlay loss is proposed to constrain the 
contribution of each channel to the final image, which could emphasize 
the common parts of different channel (the object). On the other hands, 
the response loss can surpass the small values after overlaying, and the 
big value will become bigger. Therefore, the result of only using 
response loss has a higher contrast compared with that only using 
overlay loss. Obviously, the object and artifact can be separated into 
different ranges only when we use two losses simultaneously (negative 
objects and positive artifacts). 

Fig. 6. The different channel of output data and the superposed data of G(⋅) without residual structure. (a) The 1st channel output data. (b) The 48th channel output 
data. (c) The 96th channel output data. (d) The sum of superposed input data and superposed output data. 
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Fig. 7. Results of different sub-network. (a) The result of RGC-Net, the input is a limited-view PA image; (b). The result of superposed G(x).  

Fig. 8. The G(x) results of ablation study for two novel losses. (a) The result without response loss and overlay loss. (b) The result with overlay loss. (c) The result 
with response loss. (d) The result with both response loss and overlay loss. 
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5.4. Different inputs for U-Net 

We further compare two U-Nets trained on different inputs. Fig. 9 
shows a typical result of three different methods, U-Net1 denotes the 
input is 32 position-wise data and U-Net2 denotes the input is a limited- 
view image with 32 channels. Our approach shows a higher quality after 
processing. Two different input types do not show significant difference 
from Fig. 9. Therefore, we also compute the quantitative results of U- 
Net1 for test set: 0.331 ± 0.027 (SSIM), 14.738 ± 1.113 (PSNR), 0.184 
± 0.022 (RMSE). By comparing with Table 1, it maintains a slight dif
ference no matter what input types are for U-Net. Therefore, we only 
compare U-Net2 in other comparison studies. 

5.5. In-vivo results 

Lastly, we demonstrated an in-vivo imaging result in Fig. 10, which is 
the abdomen of a mouse. We also show the limited-view result with 32 
detectors, the full-view result with 128 detectors, three results of JEFF- 
Net and the processed G(x). 

Only a minor structure can be found in the limited-view result, and 
we even cannot recognize the outline of the object from Fig. 10(a). 
However, an explicit outline can be recognized from the full-view DAS 
result as Fig. 10(b) shows. All results from JEFF-Net show higher 
contrast in Fig. 10(c)-(f). The complexity of the in-vivo experimental 
condition leads to the interference of imaging objects and artifacts 
compared with synthetic data before, which could cause a little differ
ence between y0 andŷas shown in Fig. 10(c) and (d). It is interesting that 
the artifacts of G(x) are relieved due to the residual structure in Fig. 10 
(e). Similarly, we further enhance Fig. 10(e) by threshold processing 
shown in Fig. 10 (f), which clearly shows the profile of the mouse 
abdomen with a high contrast. Fig. 10(g) shows TV can remove most 
artifacts and remain similar structure as Fig. 10 (a). U-Net also shows a 
similar structure in Fig. 10(h). 

We can compare all learning-based results with contrast-to-noise 
ratio (CNR) in Fig. 11, and it shows the best performance for our 
method. Finally, we select three regions where foreground and 

background can be clearly distinguished from outline to inside. We 
further compute generalized contrast-to-noise ratio (gCNR) of Fig. 11 in 
region 1 and 3 as Table 3 shown. The expressions of CNR and gCNR can 
be found in [39]. G(x) has a higher value of gCNR, although y and y0 
could be better in some regions, which could be caused by incomplete 
artifacts reconstruction in y and y0. 

6. Discussions 

For some clinical applications, full-view detection is impossible, and 
limited view issue is inevitable, such as imaging of thyroid nodule or 
sentinel lymph node detection. So, it is a major significance from the 
application perspective. Although, more sensors can provide more in
formation of image in limited-view condition, we still think high-quality 
image reconstruction with fewer sensors is meaningful for such limited- 
view application. 

U-Net is an appropriate framework for most image-to-image tasks, 
which also shows a superior performance compared with other models. 
Therefore, we chose U-Net to generate the other views’ data by feeding 
90◦ view’ position-wise data, then modified it more suitable for our task. 

For a 2D PA data, we individually compute the position-wise data 
and concatenate them on a new dimension, which causes a 3D position- 
wise data with 128 × 128 × 128 size. And then we divide this 3D 
position-wise data into two partitions (32 ×128 ×128 and 
96 ×128 ×128) along channel dimension. For the 3D input 
(32 ×128 ×128) from 2D PA data, input data need 
32 × 128 × 128 × 4 = 2097152 Byte = 2 MB memory (float32 type). 
The 3D output (96 ×128 ×128) need 96 × 128 × 128 × 4 = 6291456 
Byte = 6 MB memory. For single patch data, the forward path should 
cost about 1266.7 MB GPU memory. We further consider a 3D PA data, 
and we do same operation and obtain a 4D data, the consumption is 
linearly increasing with the number of elevation detectors for cylindrical 
transducer. Therefore, it could be a problem for GPU memory if we have 
a dense 3D data. 

In numerical experiment, we used k-Wave to generate dataset, which 
indicate the initial PA pressure distribution can be obtained. However, 
we assumed a practical circumstance that we cannot obtain better image 
than full-view image. Therefore, in numerical experiment, we used full- 
view image as ground-truth to simulate the experimental circumstance. 

7. Conclusion 

The limited-view is a non-negligible issue in PACT system for many 
applications (e.g. carotid artery, breast), which usually causes artifacts 
in the PA image reconstruction. In this paper, we introduce a novel 

Table 2 
The quantitative evaluations of different losses.   

SSIM PSNR RMSE 

w/o Lre , Lov 0.203 ± 0.016 12.070 ± 1.169 0.251 ± 0.033 
Lov 0.245 ± 0.019 12.630 ± 1.053 0.235 ± 0.028 
Lre 0.258 ± 0.038 12.243 ± 1.002 0.246 ± 0.028 

* Small RMSE value indicates high performance 

Fig. 9. Imaging results for U-Net with different inputs. (a) Our processed G(x). (b) U-Net with 32 position-wise data as input. (c) U-Net with 32 channels image 
as input. 
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framework to reconstruct the limited-view PA image: limited position- 
wise data are used as input of deep learning model, and generate the 
position-wise data of lost view. We use two different data to fuse the 
jointed feature for object and artifacts. To further fuse these features, a 
backtracked supervision is proposed, which adds redundant supervi
sions before and after G(x). This method may inspire more research 
fields such as image de-noising, and foreground separation. Further
more, we proposed two novel losses to constrain the position-wise 
output. Therefore, we can remove the artifacts by a simple threshold 
processing. In our work, we propose JEFF-Net implement the proposed 
framework. A quarter view data is fed into the model, which outputs a 
group of full-view data. The numerical and in-vivo imaging results show 

that our methods have good performance compared with other models, 
even to ground-truth. Finally, we have also published our data and codes 
to facilitate other researchers for further research. It is worth noting that 
G(x) can be further used to extract more information, although we only 
use a threshold processing in this paper, which will be explored in future 
work. 
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