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Nasal Swab and Pulmonary Tissue
for COVID-19 Diagnosis
Cheng Zhang1, Yi-Gang Feng2, Chiwing Tam1, Ning Wang1 and Yibin Feng1*

1 School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,
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Background: COVID-19, caused by SARS-CoV-2 virus, is a global pandemic with high
mortality and morbidity. Limited diagnostic methods hampered the infection control. Since
the direct detection of virus mainly by RT-PCR may cause false-negative outcome, host
response-dependent testing may serve as a complementary approach for improving
COVID-19 diagnosis.

Objective: Our study discovered a highly-preserved transcriptional profile of Type I
interferon (IFN-I)-dependent genes for COVID-19 complementary diagnosis.

Methods: Computational language R-dependent machine learning was adopted for
mining highly-conserved transcriptional profile (RNA-sequencing) across heterogeneous
samples infected by SARS-CoV-2 and other respiratory infections. The transcriptomics/
high-throughput sequencing data were retrieved from NCBI-GEO datasets (GSE32155,
GSE147507, GSE150316, GSE162835, GSE163151, GSE171668, GSE182569).
Mathematical approaches for homological analysis were as follows: adjusted rand
index-related similarity analysis, geometric and multi-dimensional data interpretation,
UpsetR, t-distributed Stochastic Neighbor Embedding (t-SNE), and Weighted Gene
Co-expression Network Analysis (WGCNA). Besides, Interferome Database was used
for predicting the transcriptional factors possessing IFN-I promoter-binding sites to the
key IFN-I genes for COVID-19 diagnosis.

Results: In this study, we identified a highly-preserved gene module between SARS-
CoV-2 infected nasal swab and postmortem lung tissue regulating IFN-I signaling for
COVID-19 complementary diagnosis, in which the following 14 IFN-I-stimulated genes are
highly-conserved, including BST2, IFIT1, IFIT2, IFIT3, IFITM1, ISG15, MX1, MX2, OAS1,
OAS2, OAS3, OASL, RSAD2, and STAT1. The stratified severity of COVID-19 may also be
identified by the transcriptional level of these 14 IFN-I genes.
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Conclusion: Using transcriptional and computational analysis on RNA-seq data retrieved
from NCBI-GEO, we identified a highly-preserved 14-gene transcriptional profile
regulating IFN-I signaling in nasal swab and postmortem lung tissue infected by SARS-
CoV-2. Such a conserved biosignature involved in IFN-I-related host response may be
leveraged for COVID-19 diagnosis.
Keywords: COVID-19, SARS-CoV-2, type I interferon, diagnosis, machine learning
INTRODUCTION

The novel coronavirus disease 2019 (COVID-19) induced by
SARS-CoV-2 infection has resulted in a sustained threat to
human life and economic growth. As of September 2021,
around 4.6 million SARS-CoV-2-infected deaths have been
reported by WHO, showing an unprecedented challenge and
need for controlling the COVID-19 pandemic. Respiratory
dysfunction is the main complication of COVID-19, including
diffused alveolar damage and fulminant respiratory failure (1).
Notably, clinical manifestations of SARS-CoV-2 infection vary
from asymptomatic to severe symptoms (2). Such a wide range of
clinical features make it difficult to establish a highly-conserved
diagnostic profile of COVID-19. Although scientists have made
great progress on COVID-19 management, progress in the viral
diagnosis seems to be inferior to the development of therapy and
prevention for COVID-19. Till now, diagnostic measurement
of COVID-19 mainly relies on the reverse transcription
quantitative polymerase chain reaction (RT-PCR) due to
excellent sensitivity and specificity for detecting SARS-CoV-2
(3). However, using RT-PCR alone may yield false-negative
results due to fluctuated viral loads and evolution (4). This
adverse situation is detrimental for hampering COVID-19
outbreak. Improving the accuracy of viral testing remains
urgent demand. Apart from the direct recognition for SARS-
CoV-2, deciphering the host response, especially the virus-
related fluctuated genomic profile, may be pivotal for serving
as a supplementary approach for COVID-19 diagnosis.

For the genetic profile of host response for COVID-19,
multiple studies have reported various characteristics of
immune/inflammatory actions in response to COVID-19. For
example, activation of immune cells was observed in lung and
bronchoalveolar lavage fluid (5). Cytokine or chemokines-related
host inflammatory responses were involved in SARS-CoV-2
infected bronchoalveolar lavage and peripheral blood
mononuclear cells (PBMCs) (6). Besides, COVID-19
progression is driven by the populations of myeloid-lineage
cells with distinct inflammatory transcriptional features in
blood, lung, and airway (7). These findings suggested that
identification of a specific genomic profile of host response
may be served as a supplementary method for COVID-19
diagnosis. For discovering COVID-19 related genomic trait for
diagnosis, it may have three features. 1) It is representative for
COVID-19 diagnosis and different from other respiratory
diseases (such as Influenza, Measles, and Respiratory Syncytial
Viral). 2) The specific gene expression feature detected in body
org 2
substance is prefer to non-invasively collect for diagnosis, such as
nasal swab. Of note, although nasal swab was extensively used for
direct virus detection by RT-PCR, genomic profile of specific
genes in nasal fluid may also unveil the feature of host response
to COVID-19, such a molecular feature may be used as a
biological basis for reducing the false-negative diagnosis. 3)
Since lung is the main-affected organ in COVID-19, the
diagnostic feature in extrapulmonary substances (e.g., nasal
fluid) may be highly-preserved with that in pulmonary tissue.
Recently, scientists have engaged in discovering the COVID-19
immune landscape. Dramatic transcriptomic changes were
detected in virus-positive cells in severity-dependent manner.
These differential genes were enriched in specific pathways,
including “response to virus” and “response to type I
interferon” (8). SARS-CoV-2 induced transcriptomic changes
in the peripheral blood is varied with those detected in other
respiratory infections, including interferon-driven genes (9).
Besides, Nature News announced the top 10 awesome science
discoveries in 2020, including “Interferon deficiency can lead to
severe COVID-19, especially the IFN-I” (10, 11). These studies
suggested the strong correlation between “Type I interferon and
COVID-19”. As a first-line innate host defense mechanism,
human Type I interferons (IFN-I) are a large family of
interferon proteins (IFNa and IFNb, etc.) that regulate the
immune system, such as the inhibition of virus proliferation
and transmission (12, 13). Besides, it is documented that robust
cellular secretion of IFN-I is indispensable for suppressing SARS-
CoV-2 replication (14). Although anti-SARS-CoV-2 effect of
IFN-I has been widely reported, the potential diagnostic role of
IFN-I for COVID-19 is under investigation. Recently, several
reports have discussed IFN-I-related host defense in COVID-19
(15, 16). These valuable studies may potentially indicate
molecular clues that SARS-CoV-2 affected IFN-I-dependent
gene profile may be used as a complementary diagnosis of
COVID-19. Hereby, we listed the evidenced descriptions and
our own postulations are as below: 1) It was reported that high
density of receptors of ACE2 (an enter-receptor of SARS-CoV-2)
causes the high SARS-CoV-2 viral load in nasopharyngeal fluid
in the initial stage of COVID-19 but lowered during sustained
viral infection in nasal swab (17). It may suggest that testing
SARS-CoV-2 viral load alone in nasal swab is defective because
of the potentially low viral content and evolution. 2) Nasal swab
samples remain to be the main source of RT-PCR-based SARS-
CoV-2 nucleic acids testing due to the high viral load in
nasopharyngeal fluid before severe COVID-19 (18). Nasal
swab remains to be an easily handled and non-invasive reliable
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testing approach worldwide (19). Additionally, the time window
for virus detection via nasal swab lasts around 4 weeks and peaks
in the second week from the onset of infection (20). The 4-week
detectable cycle of genetic profile is not too transient and enables
us to timely conduct COVID-19 diagnosis. These reports
revealed that understanding the genetic host response in nasal
swab may be useful for improving COVID-19 diagnosis. 3) In
SARS-CoV-2 infected tissues, lung is the most vulnerable organ
responsible for the mortality of COVID-19, which includes
upper respiratory tract infections (in early stage) and acute
respiratory distress syndrome (in late-stage) (21), suggesting
that molecular profile in pulmonary host immune response is
vital for COVID-19 diagnosis. It is critical to clarify the
molecular correlation between nasal swab and lung tissue in
response to COVID-19, because COVID-19 diagnosis by nasal
swab may still be the common way due to the non-invasive
collection and relatively higher virus load. 4) Interferon is one of
the regulators of ACE2 receptor (22). Additionally, host IFN-I
possesses high sensitivity to both SARS-CoV-2 virus and ACE2
receptors, especially in COVID-19 patients with asymptomatic
manifestation (23), suggesting that understanding the genetic
signature of IFN-I-associated genes in SARS-CoV-2 infection
may serve as indicators of COVID-19 diagnosis. 5) Recent
reports suggested that detection of IFN-I gene expression may
be of great significance to measure the severity of COVID-19
(21), indicating that varied IFN-I-related gene profile may
stratify the severity of COVID-19. Taken together, these five
clues provide prerequisites for mining a molecular feature of
IFN-I-related host response for the diagnosis of COVID-19 and
its severity.

Global scientists have conducted a series of clinical trials not
only for COVID-19 diagnosis, but also the comparative analysis
between COVID-19 and other respiratory infectious diseases,
including SARS and MERS (24). Generally, these reported
outcomes have two features as follows: 1) Generally, the results
are independently generated from homogeneous samples. Due to
the complexity of body tissues, the correlation of genetic feature
among heterogeneous tissues needs to clarify. A highly-preserved
profile has diagnostic potential for COVID-19. 2) Gene
relationship in homogeneous or heterogeneous samples are
usually determined via geometric distance (commonly by
differential expression). Measuring adjacency-related similarity
in a scale-free network from heterogeneous samples may make
the results more biologically significant, since real-world
networks are often claimed to be scale free (25). Based on
these ideas, our study aims to identify a common diagnostic
host characteristic from nasal swabs and lung tissues that can
supplement the diagnostic strategy of COVID-19. Highly-
conserved functional genes modules are commonly related to
the central characteristic of a disease (26). Combined with RT-
PCR-based virus detection, the specific profile of host response
may provide additional information for distinguishing COVID-
19 from other respiratory diseases, in which we focused on IFN-I
related gene modules. Herein, eight independent RNA-
sequencing datasets were retrieved from NCBI-GEO, including
three nasal swabs (GSE163151, GSE162835, and GSE182569-
Frontiers in Immunology | www.frontiersin.org 3
nasal swab part); two lung tissues (GSE171668 and GSE150316),
one lung bronchioalveolar fluid (GSE182569— lung
bronchioalveolar fluid part), one lung bronchial epithelial cells
(GSE147507), and one lung bronchoalveolar carcinoma
cells (GSE32155).

For the analytic methods, we adopted computational
language R-based unsupervised analysis for clarifying the
genetic polymorphisms and highly-preserved functional gene
modules. As an analytical machine-learning language in
computer science, R language has a wide variety of statistical
techniques for life science, including WGCNA, homological and
high-dimensional multivariate analyses (27). Breakthroughs in
interdisciplinary technologies between computer technology and
life science may permit a holistic view of transcriptomic profile
and delineate gene modules with pathophysiologic relevance in
COVID-19 diagnosis. In this study, we made an attempt to
identify the highly-preserved genes/modules regulating IFN-I
signaling in SARS-CoV-2-infected heterogeneous samples (nasal
swab and lung tissue) using transcriptional and machine-
learning analysis. This intent is to complement current
diagnostic strategy of COVID-19. Accurate SARS-CoV-2
detection is a significant starting point to counter COVID-
19 pandemic.
METHODS

Data Acquisition, Normalization,
and Filtering
Seven independent clinical RNA-seq datasets (Homo sapiens)
were retrieved from the Gene Expression Omnibus (GEO)
database using RStudio (R Inc, USA) with R function
“GEOquery”, including GSE163151 (nasal swabs-COVID-19,
Respiratory syncytial viral, Influenza A, Influenza B,
GSE162835 (nasal swabs-COVID-19), GSE182569 (nasal swabs
or lung bronchioalveolar fluid-COVID-19), GSE171668 (lung
tissue-COVID-19), GSE150316 (lung tissue-COVID-19),
GSE147507 (lung bronchial epithelial cells-COVID-19), and
GSE32155 (lung bronchoalveolar carcinoma cells-Measles).
The genome-wide sequencing platforms were Illumina
NovaSeq 6000 (GSE163151, GSE162835), Illumina NextSeq
500 (GSE171668, GSE150316), Ion Torrent S5 (GSE182569),
Illumina Nextseq 500 (GSE147507), and Aglient human genome
microarray 014850 (GSE32155), respectively. DESeq2-based data
normalization was performed for a variance-stabilizing
transformation by R function “DESeq2”. Meanwhile, outliers
in datasets were eliminated by unsupervised hierarchical
clustering in a dendrogram using R function “hclust ()”, and
homogeneous data were grouped in a consensus branch site.
Finally, normalized RNA-sequencing data without outliers were
used for subsequent data filtering. As for GSE163151, this dataset
contains samples of nasal swab with several respiratory
infections: non-COVID-19 (n = 91), COVID-19 (n = 73),
Influenza A (n = 55), Influenza B (n = 15), and Respiratory
Syncytial Viral (RSV, n = 8). For GSE171668 (n = 16) and
GSE150316 (n = 5), these datasets contain postmortem lung
November 2021 | Volume 12 | Article 733171
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tissues from COVID-19 patients. GSE147507 (n = 3) stands for
SARS-CoV-2-infected lung bronchial epithelial cells. For
GSE162835, it contains nasal swabs in COVID-19 (n = 37).
For GSE32155, nasal swabs infected with Measles were further
used for differential diagnosis (n = 3) For GSE182569, it includes
SARS-CoV-2 infected samples from nasal swab (n = 3) and lung
bronchioalveolar fluid (n = 3). Among these datasets, both
GSE171668 (lung-COVID-19) and GSE163151 (nasal swab-
COVID-19) were used for WGCNA analysis (Supplementary
Material 3), while others were adopted for the 14 gene-related
proof-of-concept study. The normalized gene expressions
without batch effect were applied for the validation of gene
profile (Supplementary Material 4—COVID-19 vs COVID-19;
Supplementary Material 5—COVID-19 vs other respiratory
infectious diseases).

For data filtering, those gene expression variance greater than
90% of the whole genome were adopted as the influenced and
dominant genes. The missing values or zero-variance expression
genes with correlative strength less than 0.1 were removed
(minRelativeWeight = 0.1 in R). The function “apply()” in R
was used for calculating the gene expression variance. Finally, the
filtered data were further utilized for analyzing the consensus of
gene profile with machine learning approaches. The R codes are
available in Supplementary Material 10.

Construction of Co-Expression Modules
The consensus gene modules of nasopharyngeal pulmonary
specimens were constructed by WGCNA analysis. In brief, the
pairwise similarity of co-expression matrixes was discerned by
the coefficient resulted from Pearson’s correlation analysis for the
whole genome (equation: sij = cor(i, j)). A weighted adjacency
matrix was constructed for improving the consensus similarity of
gene modules by the equation as follows: aij = | (1 + cor(i, j))/2 |b,
in which “aij” pointed to the value of adjacency for evaluating the
strength of weighted connectivity. b was the soft-thresholding
power resulted from a scale-free topological analysis by the R
function “pickSoftThreshold ()” fromWGCNA package. Then, a
topological overlap matrix (TOM) was established in terms of
the adjacency matrix, which in-turn converted into a
dissimilarity TOM. Afterwards, gene clustering dendrogram
consisted of genes with hierarchical clustering and gene
modules with various colors upon adjacency-based
dissimilarity. All the modules were constructed by clustering
the close-distance modules according to the resulted Module
Eigengene (ME) values. MEs were based on the first principal
component of gene modules by PCA analysis using R function
“signedKME()” from WGCNA package. The higher absolute
value of ME represented the more intense relationship between
genes and their corresponding modules.

Relevance Analysis of
Co-Expression Modules
For determining the reliability and underlying correlations
among constructed gene modules, module eigengenes were
recruited to assign expression to gene modules for association
study. TOM-based topological overlap plot was performed in
Frontiers in Immunology | www.frontiersin.org 4
accordance with the dissimilarity of gene expressions, which was
visualized by R function “TOMplot()” in WGCNA package. In a
topological overlap plot, rows and columns were pointed to
genes. While at the top and left side were the colors related to
gene modules. Darker or lighter blocks in the figure represented
the low or high correlation, respectively. Besides, in terms of ME
value, the module interactions were multi-dimensionally
observed by both 3D scatter plot (R function “ScatterPlot3D”)
and t-SNE analysis (R function “Rtsne”), respectively. As an
intersective algorithm, R function UpsetR (R function “UpsetR”)
was used to detect the potential overlapping targets among
modules for evaluating the reliability of the constructed
modules, since intramodular genes cannot be the shared
intermodular targets in more than two different modules. In
addition, both intermodular Pearson’s R and p-value (one-way
ANOVA with Tukey’s multiple comparison) were given for
analyzing the correlation between modules. Highly connected
gene modules were identified if the p-value was no larger
than 0.05.

Functional Analysis For Gene Modules
Across Nasal and Lung Samples
To identify the gene modules characterized by regulating Type I
interferon signaling pathway, both gene ontology (GO) and
Kyoto Encyclopedia of genes and genomes (KEGG)
enrichment analysis were adopted to analyze the biological
function of each module. The annotation analysis was resulted
by the online database DAVID (https://david.ncifcrf.gov/tools.
jsp). When a p-value less than 0.05 was considered significant.
Those gene modules with enriched annotation of “Type I
interferon pathway” will be collected as the filtered ones for
further cross-specimens study. In particular, enriched annotation
associated with both “Defense response to virus” and “Type I
interferon signaling pathway” would be filtered with UpsetR
analysis and for further intensive study. The gene expression
atlases (3D view) of nasal and lung specimens would be
visualized by R function “plot3D”. Additionally, the key
interactive genes functionally representing both “Type I
interferon pathway” and “Defense response to virus” were
gathered and visualized by Sankey diagram using R function
“dplyr” and “networkD3”. Moreover, the QIAGEN Ingenuity
Pathway Analysis will be used for mining the pathophysiologic
relationship among targets based on reported experimental
evidence. The pathway figure was plotted by BioRender and
Adobe illustrator (Supplementary Material 6).

Adjusted Rand Index-Based Similarity
Analysis For Homogeneous Modules
The Rand index (RI) is an accuracy value for similarity analysis
between actual or predicted clusters using the Permutation
Model in terms of the following equation: RI = (a + b)=(n2),
Where “a” represents the number of genes in the identical
gene module, “b” points to those in the distinct modules, while
“n” is the entire number of sample groups. However, the
premises of the permutation model are violated in certain
clustering conditions, such as fixed cluster number with
November 2021 | Volume 12 | Article 733171
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various interpreted data. Thus, the Adjusted Rand Index (ARI)
may guarantee the random assignment of variables, which
symmetrically measures the similarity and co-expression
between assignments. The calculation of Adjusted Rand Index
is as follows:

ARI =
2Sij
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Where nij, ai, and bj are values from a contingency matrix with
two random sets created by R function “fossil”. The range of ARI
varies from −1 to 1, in which negative values represents the
independent modules and a positive ARI stands for the similar
modules (1 for an approximate perfect match between
two modules).

Transcriptional Factors For Identified Type
I Interferon-Related Genes
Transcriptional factor analysis offers sequence upstream of
transcriptional start site of interferon-regulated genes, which
were colored in the blocks for predicting the potential binding
transcription factor in the promoter. The procedure of prediction
was based on the MATCH algorithm by TRANSFAC 2012
matrices with minimum false positive cut-off. The transcriptional
factor analysis was performed on the Interferome Database V2.0
(www.interferome.org).
RESULTS

Constructing Weighted Co-Expression
Gene Modules in Nasal Specimen and
Pulmonary Tissue Infected by
SARS-CoV-2
Identification of highly correlated consensus gene could disclose
the regulatory mechanisms with biologically or pathologically
relevant genes that may be potentially mediated. Since WGCNA
can establish a scale-free gene network in terms of expression
correlation, it can detect interconnected genes and modules
characterized as co-expression functionally ones with specific
biological profile (28). Therefore, the hub genes and modules
may play a dominant role as the representative diagnostic or
therapeutic targets for COVID-19 management (Figure 1).

For the datasets acquisition, we adopted the available RNA-
sequencing data (H. sapiens) with SARS-CoV-2 infection from
GSE163151 (nasal swabs) and GSE171668 (lung tissue) in NCBI
GEO database. Of note, surviving or postmortem samples with
SARS-CoV-2 infection may also unveil the severity of COVID-
19 in patients. The nasal swab specimen (GSE163151) may
correspond to the early/moderate SARS-CoV-2 infection, while
the postmortem pulmonary tissues (GSE171668) probably point
to the late infective stage, suggesting the underlying specific gene/
module profiles may be demonstrated in a stage-dependent
manner across heterogeneous specimens. For data processing,
after DESeq2-based data normalization and outlier elimination
Frontiers in Immunology | www.frontiersin.org 5
as described in the method part, we consequently included
COVID-19-related nasopharyngeal swabs (n = 73 in
GSE163151) and lung autopsy tissues (n = 16 in GSE171668)
for WGCNA analysis as shown in black lines in Figures 2A, F.
The filtered genes (n = 2,649 in nasal swab; n = 2,369 in lung
tissue) with expression variance greater than 90% of the whole
genome were involved as well. For establishing a scale-free
network for clustering gene modules, weighted Pearson’s
correlation coefficient b (power value) was selected in
accordance with relatively high value of signed R2 resulted
from scale-free topological analysis. Therefore, b = 5 (nasal
swab) and b = 10 (lung tissue) were used for constructing the
scale-free clustering dendrograms (Figures 2B, G). The signed
R2 was shown in a log-log linear model for module connectivity
analysis is R2 = 0.94 (nasal swab) and R2 = 0.74 (lung tissue),
along with the mean connectivity close to 0 for both specimens,
suggesting the successful construction of scale-free correlation
for WGCNA analysis (Figures 2C, H). Thus, after hierarchical
clustering and merging the close-distance gene patterns, eight
gene modules for both nasopharyngeal specimens and lung
tissues were identified (Figures 2D, I). More specifically, eight
gene modules in nasopharyngeal dataset were as follows: ME-A
(191 genes), ME (module)-B (741 genes), ME-C (558 genes),
ME-D (208 genes), ME-E (23 genes), ME-F (145 genes), ME-G
(194 genes), and ME-H (589 genes), while eight gene modules in
postmortem lung tissue were shown as below: ME-A (165 genes),
ME-B (215 genes), ME-C (67 genes), ME-D (147 genes), ME-E
(161 genes), ME-F (403 genes), ME-G (177 genes), and ME-H
(1034 genes). The relationships among clustered gene modules
with high adjacency were visualized in the dendrograms
(Figures 2E, J). All the supporting data for gene module
classification were shown in the Supplementary Materials 1,
2. Herein, weighted co-expression gene modules in SARS-CoV-2
infected nasal specimen and pulmonary tissue were established
for further analysis.

Impact of SARS-CoV-2 Infection on the
Intramodular Correlation of
Co-Expression Gene Modules in Nasal
Swabs and Lung Tissues
COVID-19-induced host response in nasal and lung tissues may
share common regulated pathway with antiviral effects and
innate immunity. Highly correlated co-expression gene
modules may be pivotal in mediating pathological actions.
Thus, we measured the module relationship in accordance with
their Module Eigengene (ME) values as described in Methods
section. To begin with, it was straightforward to illustrate the
pairwise association of gene modules in a topological overlap plot
(Figures 3A, E). Co-expressed gene modules were colored with
yellow, which are widely shown in the topological plot. Notably,
intramodular genes cannot lie “intermediate” across distinct
modules, which would fai l to be strong connected
intramodular targets in either module. Taken advantage of
geometric data analysis in multiple dimensions, we adopted the
3D scattering approach (Figures 3B, C) and t-SNE dimension
reduction analysis (Figures 3F, G) to observe the distribution of
November 2021 | Volume 12 | Article 733171
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gene modules, indicating that the intramodular genes were
potentially spread separately. It was demonstrated that there
was no gene intersection across modules, suggesting the qualified
composition of heterogeneous gene modules (Supplementary
Materials 1, 2). Also, the intramodular genes may be potentially
dedicated together to a specific pathway. For examples, ME-H-
Lung is related to “GO:0016032 viral process (p = 4.95E−07) and
“hsa04330: Notch signaling pathway (p = 3.20E−04)”, while ME-
H-Nasal swab points to “GO: 0003341 cilium movement (p =
4.41E−17)” and “hsa05016: Huntington’s disease (p = 4.90E
−06)”. Besides, ME-B-Nasal swab stands for “GO:0001569
patterning blood vessels (p = 1.52E−04)” and “hsa04974:
Protein digestion and absorption (p = 1.51E−3)”. Before
conducting detailed functional analysis, we would like to
initially measure the correlation profile among gene modules,
which was further analyzed by ME-dependent Pearson’s R
shown in whole pairwise scatterplots in color with a p-value in
the lower panel (one-way ANOVA with Tukey’s multiple
comparisons) (Figures 3D, H). Surprisingly, in 28 times linear
regression calculation among eight modules in either nasal or
Frontiers in Immunology | www.frontiersin.org 6
lung specimens, the pairwise p-value lower than 0.05 were 24/28
for nasal swab and 28/28 for lung tissue, indicating the strong co-
expression correlations among modules in the same sample.
Taken together, our findings in this part were concluded as
follows: 1) The scale-free network of consensus modules may be
well-established without the noise of cross-module genes. 2)
Activation of a specific functional module may result in a
cascaded fluctuation of certain genomic functions regulated by
remaining dependent modules. 3) As a molecular strategy
against COVID-19, screening out a highly-preserved functional
module in a scale-free network from heterogeneous samples may
be meaningful for COVID-19 diagnosis.

High Preservation of Type I Interferon
Pathway Specific Gene Modules From
Nasal Swab and Postmortem Lung Tissue
Infected With SARS-CoV-2
To evaluate the similarity of specific co-expression gene modules
in nasal and lung specimens, we measured the intersective genes,
expression profile, biofunction, and reproducibility (adjusted
FIGURE 1 | Schematic of identifying the underlying the highly-preserved genes from heterogeneous samples for COVID-19 diagnosis.
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rand index) of modules across distinctive samples by R function
“Upset R”, “pheatmap”,”plot3D”, and “fossil”, respectively. A
two-dimensional matrix was plotted for showing the overlap
genes in modules from nasal swab or lung tissue (Figure 4A). It
indicated that “ME-H-Lung and ME-H-Nasal swab” (120 genes),
“ME-A-Lung and ME-F-Nasal swab” (48 genes), and “ME-H-
Lung and ME-B-Nasal swab” (47 genes) have the most
intersective genes (Top 3). However, only approximately one-
Frontiers in Immunology | www.frontiersin.org 7
ninth genes are overlapped in ME-H-Lung with either ME-H-
Nasal swab or ME-A-Lung, suggesting the limited functional
contribution of these intersection genes with “ME-H-Lung”.
Furthermore, the functional overlap is absent among these
three modules as shown in the functional analysis of above
paragraph. On the other hand, the overlapped genes (n = 48) in
“ME-A-Lung and ME-F-Nasal swab” (also shown in the Venn
diagram) has a large proportion in ME-F-Nasal swab (48/145,
A

D E

F

I J

G H

B C

FIGURE 2 | Constructing weighted co-expression gene modules from nasopharyngeal specimen and pulmonary tissue in COVID-19. (A, F) Hierarchical clustering of
genes in nasal swab and lung tissue. The coloring samples are the outliers due to the numerous missing or zero-variance expression genes. (B, G) Analysis of
network topology for various soft-thresholding powers. Left panel shows the index of scale-free topology fit (y-axis) as a function of the soft-thresholding power
(x-axis). Right panel shows the value of mean connectivity (y-axis) as a function of soft-thresholding power (x-axis). (C, H) A log-log plot of connectivity of signed
adjacency matrices. The x-axis stands for the logarithm of entire network connectivity, while y-axis is logarithm of related frequency distribution (D, I) Hierarchical
clustering and merging of close-distance gene patterns. (E, J) A dendrogram composed of relationships among clustered gene modules with high adjacency.
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GSE163151) and ME-A-Lung (48/165, GSE171668). showing
that approximately one-third of the whole genes are the
overlapped genes in either ME-F-Nasal swab or ME-A-Lung.
The gene names and normalized expression (gene atlas) were
shown in the right panel of Figure 4A. For measuring the
correlation between ME-F-Nasal swab or ME-A-Lung, linear
regression and adjusted rand index analysis were performed. As
a result, mean expression-based Pearson’s R2 (R2 = 0.995) and p-
value (p = 1.35E−7) indicated a significant correlation and
Frontiers in Immunology | www.frontiersin.org 8
similarity between these two modules from heterogeneous
samples (Figure 4B, left panel). The highly-preserved gene
profile is further validated by adjusted rand index-dependent
homogeneous analysis (adjusted rand index = 0.91616)
(Figure 4B, right panel). R function “SVA” was used to
eliminate the batch effects of normalized gene expression in
both datasets prior to conducting adjusted rand index analysis.
Both outcomes suggested the high preservation between ME-F-
Nasal swab and ME-A-Lung. Prompted by these findings, both
A D

E F

G

H

B

C

FIGURE 3 | Impact of SARS-CoV-2 infection on the intramodular correlation of co-expression gene modules in nasal swabs and lung tissues. (A, E) A pairwise
association of gene modules in a topological overlap plot. (B, F) Geometric data analysis in 3D scattering. (C, G) t-SNE dimension reduction analysis to observe the
distribution of gene modules. (D, H) Pairwise illustration of gene module correlation profile indicated by Pearson’s R shown in whole pairwise scatterplots in color
with p-value in the lower panel (one-way ANOVA with Tukey’s multiple comparison).
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GO and KEGG analyses were adopted for functional enrichment
analysis (Figures 4C, D). Strikingly, host responses for COVID-
19 in ME-F-Nasal swab are as follows:” GO:0051607 Defense
response to virus (p = 9.72E−31)”, “GO: 0060337 Type I
interferon signaling pathway (p = 7.58E−30)”, and “Hsa05164:
Frontiers in Immunology | www.frontiersin.org 9
Influenza A (p = 7.36E−08)”. For lung tissue, the enriched
pathways in ME-A-Lung are “GO: 0060337 Type I interferon
signaling pathway (p = 2.01E−30)”, “GO:0051607 Defense
response to virus (p = 2.32E−25)”, and “Hsa05164: Influenza A
(p = 9.29E−11)” suggesting the consistent functional gene
A

D

E

B

C

FIGURE 4 | High preservation of Type I interferon gene from nasal swab and postmortem lung tissue in COVID-19. (A) A two-dimensional matrix shows the overlap
genes in modules from nasal swab or lung tissue. The black rectangles represent the interesting gene module showing a large proportion of overlapped genes in
either ME-A-Lung or ME-F-Nasal swab. The detailed information of intersective genes with normalized expressions from ME-F-Nasal swab and ME-A-Lung are
shown in the right panel. (B) Linear relationship and adjusted rand index between ME-F (Nasal swab) and ME-A (Lung). (C, D) GO and KEGG functional enrichment
analysis for ME-F (nasal swab) and ME-A (lung tissue). (E) Functional genes for corresponding enrichment annotations shown in a Sankey diagram.
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modules between ME-F-Nasal swab and ME-A-Lung. Of note,
both host responses “Type I interferon signaling pathway” and
“Defense response to virus” were predicted as the two common
regulated pathways detected in SARS-CoV-2 infected nasal swab
and lung tissue, suggesting the high functional preservation of
Type I interferon-related genes between nasal and lung tissues in
response to COVID-19. Here was the summary of this section: 1)
SARS-CoV-2-stimulated “Type I interferon pathway” was an
underlying highly-preserved signaling in nasal and lung samples.
2) It may be beneficial for COVID-19 diagnosis and therapy by a
deep understanding of COVID-19-induced fluctuation of key co-
expression genes related to both “Type I interferon pathway” and
“Defense response to virus” in highly preserved modules (ME-F-
Nasal swab and ME-A-Lung) across heterogeneous samples.
Herein, GO/KEGG enrichment with Sankey diagram analysis
was adopted to functionally select the concordant genes
associated with “Type I Interferon signaling pathway” and at
least one of the two annotations, including “Defense response to
virus” and “Response to virus” (Figure 4E). As a result, 14
common genes were identified as the preserved co-expression
ones in nasal swab and lung tissue for mediating Type I
interferon signaling in COVID-19. The 14 of 48 genes were as
follows: BST2, IFIT1, IFIT2, IFIT3, IFITM1, ISG15, MX1, MX2,
OAS1, OAS2, OAS3, OASL, RSAD2, and STAT1, suggesting the
potential diagnostic role for COVID-19. Therefore, the
bioinformatic validation shows the high preservation of 14
IFN-I-related genes across nasal swab and lung tissue, showing
a concordant diagnostic biosignature for COVID-19 diagnosis.

Stratified Diagnose of COVID-19 Severity
in Terms of the 14 Type-I Interferon-
Inducible Genes
Using QIAGEN Ingenuity Pathway Analysis, we further
identified the pathophysiologic correlation among these 14
IFN-I-related genes. All the target connections are based on
the reported experimental evidence, showing that transcriptional
factor STAT1 may play a central role in the 14-gene network for
COVID-19 diagnosis (Supplementary Material 6). Moreover,
the multiple linear regression results indicated the strong
linkage among STAT1 and other 13 IFN-I-related genes in
heterogeneous samples (Figure 5A). All the p-value of pairwise
analysis (STAT1 vs other 13 genes) in nasal swab was lower than
0.05 (13/13), while the p-value for most of the STAT1-dependent
paired comparison in lung tissue was less than 0.05 (10/13).
Although 14 IFN-I-related genes as host response to COVID-19
were potentially preserved across nasal and lung specimens, the
differential transcriptional expression of genes in samples with or
without SARS-CoV-2 infection remains obscure. Understanding
the differential profile of genes is conductive to realize the
relationship between vulnerability of interferon activity and
COVID-19 severity. since GSE171668 (lung tissue) was absent
of negative control for COVID-19 study, we analyzed the
differential expression of 48 intersective genes in GSE163151
(nasal swab) and GSE150316 (lung tissue). As shown in the
volcano plots (COVID-19 vs non-COVID-19 in homogeneous
samples), 48 intersective genes were highlighted in red points, in
which gene names in red pointed to the 14 genes regulating
Frontiers in Immunology | www.frontiersin.org 10
IFN-I pathway. Interestingly, the volcano plot indicated a
significant increase of 48 intersective genes expressions
(including 14 IFN-I genes) in nasal swab (COVID-19 vs non-
COVID-19), but a decreased profile in postmortem lung tissue
(Figure 5B). More specifically, the transcriptional changes of 14
IFN-I-related gene with or without COVID19 infection were
further shown in Figure 5C, indicating that SARS-CoV-2
infection induced a robust IFN-I response in nasal swab (14/
14, p <0.05), but a decreased response in postmortem lung tissue
(0/14, p <0.05). The nasal swab specimen (GSE163151) may
relate to the early/moderate SARS-CoV-2 infection, while the
postmortem pulmonary tissues (GSE171668) probably point to
the late infective stage. For further addressing this issue,
GSE162835 was used to measure the “gene expression-severity”
relationship of these 14 genes (Figure 5D). GSE162835 contains
transcriptional data with disease severity. As a result, a 14-gene
based linear relationship was detected between mild and severe
COVID-19 (p = 0.038). Additionally, the expressions of genes (13/
14, except OASL) were negatively correlated with COVID-19
severity (areas below the diagonal line in Figure 5D). The
normalized expressions of 14 genes in the nasal swab of mild or
severe COVID-19 were further shown in a heatmap (Figure 5E).
Consistent with our result, scientists have reported that the
increasing level of IFN-I-related genes in the onset of COVID-
19 is reversed in the late stage due to the enhanced load of
SARS-CoV-2 virus (29). Taken together, the 14-gene profile
may be responsible for stratifying the COVID-19 severity.
Additionally, for in-depth understanding the regulatory role of
these 14 genes, we further investigated the potential transcriptional
factors capable of binding to the promoters of these 14 key genes
using Interferome database (30). The predicted transcriptional
factors mainly consisted of NF-kB, STAT, and IRF family
(Figure 5F). In sum, based on RT-PCR virus detection, the
highly-preserved 14 IFN-I-related genes between nasal swab
and pulmonary tissue may further complement diagnosis of
COVID19 with its severity.

Differential Diagnosis of COVID-19 With
Other Respiratory Diseases by a
14-Gene Expression Profile
Since the 14 IFN-I related genes are classical STAT-IRF-
associated genes, which can be triggered by other viruses
rather than SARS-CoV-2 alone, it is essential to conduct a
differential diagnosis between COVID-19 and other respiratory
infectious diseases. To address this issue, we further included the
RNA-sequencing data of Influenza A, Influenza B, Respiratory
syncytial viral (RSV), and Measles (GES32155, GSE163151, and
GSE171668) for the differential analysis. Firstly, the consistence
of 14-gene profile was determined in heterogeneous COVID-19
samples. Apart from previous used datasets (GSE171668-lung
tissue and GSE150316-lung tissue), additional four datasets were
further included for pairwise analysis. The other COVID-19-
related four datasets include GSE147507 (lung bronchial
epithelial cells), GSE163151 (nasal swab), GSE162835 (nasal
swab), and GSE182569 (lung bronchioalveolar fluid and nasal
swab). As a result, the minimum and maximum value for
Pearson’s R-square and p-value for all paired tests are
November 2021 | Volume 12 | Article 733171
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R2= 0.952 and p = 2.6E−9 respectively, suggesting the highly-
conserved transcriptional profile of the 14 IFN-related genes in
heterogeneous samples (nasal swab, lung tissue, bronchioalveolar
fluid) (Figures 6A, B). For the establishment of a molecular
Frontiers in Immunology | www.frontiersin.org 11
reference for COVID-19 diagnosis, we quantitatively mapped a
trendgram by Z-score quantification of 14-gene expression for
COVID-19 specific diagnosis. In Figure 6C, the Z-score values of
MX1 (2.058 ± 0.07), OASL (−2.426 ± 0.15), and STAT1 (1.521 ±
A

D E F

B

C

FIGURE 5 | Stratified diagnose of COVID-19 severity in term s of 14 Type-I interferon-inducible genes. (A) Linear relationship between STAT1 and other 13 IFN-
related genes. (B) Volcano plots of differential gene profile in GSE163151 (nasal swab) and GSE150316 (lung tissue) (COVID-19 vs non-COVID-19). Red points
shown in the volcano plots stand for the intersective genes across nasal swab and lung tissue. (C) Differential transcriptional expression of 14 IFN-I-related genes
with or without SARS-CoV-2 infection (D) Comparative analysis of the 14-gene transcriptional profile (GSE162835) between mild and severe COVID-19. A diagonal
line divides two different expression trends. The upper panel (pink background) indicates the positive correlation between disease severity and gene expression, while
the negative correlation (blue background) is shown in the lower panel. (E) A heatmap showing the values of normalized expression of 14 genes in either mild or
severe COVID-19. (F) Potential transcriptional factors binding to the promoter sits of 14 key genes analyzed by Interferome database.
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0.19) shown in black rectangles exhibit large variance from the
baseline (Top 3). The data resource for plotting 14-gene Z-score
trendgram was retrieved from COVID-19 datasets as shown in
Figure 6A. Besides,trendgrams of 14-gene normalized expression
in various diseases, including COVID-19, Measles, Respiratory
Syncytial Viral (RSV), and Influenza A/B, were plotted for
detecting the expression difference. Red circles indicate the
distinct peak trend when compared with that of COVID-19,
suggesting the existence of expression distinction between
COVID-19 and other infections Figure 6D. For deepen
understanding of differential diagnosis, linear regression analysis
was used for further distinguishing the type of viral infection. In
Figure 6E, firstly, the genetic profile of 14 genes in Measles is
linearly irrelevant with that of COVID-19 (R2 = 0.35, Pearson’s p =
0.52), suggesting the feasibility of 14-gene based differential
diagnosis between COVID-19 and Measles. For COVID-19 in
comparison with other respiratory infections (Influenza A/B or
RSV), it was resulted that the R2 between COVID-19 samples is
higher (R2 >0.9) than that of COVID-19 vsMeasles/RSV/Influenza
A/B (all R2 <0.9). Besides, the Pearson’s p-value for COVID-19 vs
COVID-19 samples (p = 6.5E−10) is at least 1,000 times lower than
that of COVID-19 vs Influenza A/B and RSV (all p ≤4.9E−7),
suggesting the high-preservation of 14 genes among COVID-19
samples. However, although the Pearson’s correlation of “COVID-
19 vs COVID-19” is much stronger than that of “COVID-19 vs
Influenza A/B or RSV”, the correlative level is still significant in
“COVID-19 vs Influenza A/B or RSV” (P <0.05). It is therefore
essential to discover a diagnostic host classifier that can distinguish
among COVID-19 and Influenza A/B/RSV. Notably, although the
Z-scores ofOASL, STAT1 andMX1were far away from theZ-score
baseline within a 14-gene profile, their relative expression
(locations) in linear models are approximately similar, showing
the invalid potential for differential diagnosis (Figure 6E).
However, among the IFN-I related 14 genes, OAS1 may play a
complementary role in the differential diagnosis of COVID-19 and
Influenza A/B/RSV. The reason is that the expression value (point
location) ofOAS1 is on the linear regression line in the comparison
of “COVID-19vsCOVID-19” inheterogeneous samples, but it is an
outlier of the regression line and 95% confidence interval in
comparison of “COVID-19 vs InfluenzaA/B/RSV” (Figure 6E),
indicating an underlying diagnostic classifier of OAS1 in a 14-gene
regression model. The normalized expression of representative
genes, including OAS1, OASL, STAT1, and MX1, were shown in
the violin plots Figure 6F, which aims to visualize the
transcriptional expression of characteristic genes from 14-gene
regression models and a Z-score trendgram. In sum, it is
prospected that based on the direct determination of SARS-CoV-
2 virus by RT-PCR, the detection of transcriptional profile of these
14 IFN-I related genes may be a promising molecular reference for
COVID-19 diagnosis.

DISCUSSION
Accumulating evidence has indicated that direct testing of SARS-
CoV-2 virus may cause false-negative results by RT-PCR due to
unstable viral loads and evolution. Besides, genetic profiles of
Frontiers in Immunology | www.frontiersin.org 12
host defense have been demonstrated to be able to recognize the
specific bacterial or viral infection (31). Thus, discovering the
unique transcriptional feature of COVID-19 may supplement
the diagnostic strategy of COVID-19, especially the signature of
host response. Notably, SARS-CoV-2-induced changes of gene
expressions has reported to potentially distinguish COVID-19
from other infections (e.g., MERS-CoV and SARS-CoV), in
which IFN-I genes is involved in the unique biosignature in
response to SARS-CoV-2 infection (32). However, ISGs can be
triggered by various stimulators. Thus, even used as a
supplementary molecular reference, the diagnostic signature of
specific ISGs should be representative for COVID-19. In this
study, using transcriptional data RNA-Seq from GEO datasets,
we identified highly-preserved genes/modules regulating IFN-I
pathway in SARS-CoV-2-infected nasal swab and lung tissue by
R-dependent machine-learning analysis. It intends to provide a
complementary understanding of IFN-I-related host response as
a diagnostic indicator of COVID-19 and its severity.

For explicitly recapitulating our findings, firstly, we
constructed a scale-free co-expression gene network without
any preliminary assumption in terms of the normalized
transcriptional data (RNA-seq datasets from GEO database) by
WGCNA, since the real-world biological relevance commonly
represents scale-free behaviors. After establishing the gene
modules shown in the gene clustering dendrograms from
either nasal or lung samples, the scale-free network was well-
established with the absence of cross-module genes. Almost all
the constructed pairwise modules in nasal swab (24/28) and lung
tissue (28/28) were significantly correlated, indicating that
screening out a predominant functional module may play a
representative role in a genomic network. In homology
research, highly-preserved genes/modules in heterogeneous
specimens usually possess significant biological functions with
similar drivers or regulators. It may be meaningful for
demonstrating susceptible gene targets in an identical disorder.
Using adjusted rand index-related similarity analysis and
UpsetR, we identified a highly-preserved genetic profile (n =
48) across the nasal swab and lung samples infected by SARS-
CoV-2. Coincidently, biological function of the 48 intersective
genes pointed to both “Type I interferon signaling pathway” and
“Defense response to virus”, suggesting that “regulating IFN-I-
related signaling pathway against virus”may be highly conserved
in nasal swab and lung tissue. Based on these findings, we
identified 14 IFN-I-related genes as the most dominant
functional genes among these 48 genes, which were resulted
from highly-enriched annotations including “Type I Interferon
signaling pathway” and at least one of the two annotations,
including “Defense response to virus” and “Response to virus”.
The highly preserved IFN-I related 14 genes are as follows: BST2,
IFIT1, IFIT2, IFIT3, IFITM1, ISG15, MX1, MX2, OAS1, OAS2,
OAS3, OASL, RSAD2, and STAT1. These 14 genes are also
documented to involve in the host response to COVID-19 (29).
The potential interaction between these 14 genes and virus have
been reported as follows: BST2 was found to inhibit viral egress
antagonized by SARS-CoV-2 accessory protein Orf7a (33);
IFIT1/2/3 may inhibit the translation and replication of virus
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FIGURE 6 | Differential diagnosis of COVID-19 with other respiratory infectious diseases by a 14-gene expression profile. (A) Pairwise analysis of gene
profile in heterogeneous samples in COVID-19, including four nasal swabs (GSE163151, GSE162835, and GSE162835); two lung tissues (GSE171668 and
GSE150316), and one lung bronchial epithelial cells (GSE147507). Pearson’s correlation coefficient R and P-value are shown in red. (B) Trendgram of
normalized 14-gene expression in heterogeneous samples infected by SARS-CoV-2. (C) Representative trendgram from SARS-CoV-2 infected samples. It is
quantitatively mapped by Z-score normalization of gene expression from databases shown in panel (A). The three rectangles represent the absolute value of
Z-score with large variations from the baseline (Top 3). (D) Representative Trendgram of COVID-19 and other respiratory diseases (Influenza A, Influenza B,
RSV, and Measles). Red circles indicate the distinct peak trend when compared with that of COVID-19. (E) The linear relationship between COVID-19 and
other respiratory infections, in which the outlier genes are shown in red. In particular, the point of OAS1 is highlighted in black. The value of Pearson’s R-
square and P value between datasets are indicated in the right bottom panel. (F) Violin plots shown the normalized expression of OAS1, OASL, STAT1, and
MX1 from various datasets.
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(34); IFITM1 possibly block membrane fusion of diverse
enveloped virus (35); ISG15 conjugated with virus is vital for
IFN-related host antiviral responses regulated by the viral RNA
sensors, including MDA5 (36); MX1 has a potential suppressive
effect on the activity of viral ribonucleoprotein complex and its
GTPase (37). MX2 may be effective in repressing viral
replication, transcription, and nucleocapsid shuttling (38);
OAS1/2/3 potentially focused on inhibiting viral replication,
while OASL is associated with viral translation (39). RSAD2
has underlying anti-viral egress and replication effect (40). IFN-
related STAT1 nuclear translocation is the indispensable process
for antiviral transduction (41). Additionally, SARS-CoV-2 is
documented to suppress interferon and STAT activity,
resulting in the clinical manifestation of COVID-19. In our
findings, STAT may be the central role of this 14-gene network
for COVID-19 diagnosis (Supplementary Material 6).

On the other hand, using seven independent RNA-
sequenc ing datase t s f rom NCBI-GEO, we fur ther
mathematically validated the high preservation of this 14-gene
profile in homogeneous and heterogeneous samples infected by
SARS-CoV-2, supporting the diagnostic role of 14-gene profile
for COVID-19. Besides, consistent with previous results, based
on GSE162835 (RNA sequencing data with labeled COVID-19
severity), our study suggested that sufficient expression of
these14 IFN-I genes is in an early stage of COVID-19, while it
is decreased in a severe period (Figure 5D). Moreover, it is
further reported in a clinical trial that the expression of 8/14
genes: BST2, MX1, OAS1, IFIT1, IFITM1, ISG15, RSAD2, and
STAT1, were relatively decreased in patients with advanced stage
of COVID-19 when compared with that in the early stage, which
further evidence the diagnostic feature of this 14-gene profile for
COVID-19 severity (42). Apart from these findings, we reviewed
the transcriptional factors binding to 14 IFN-I gene-related
promoter sites in the Interferome Database, showing that a
series of NF-kB, STAT, and IRF family members have
potential regulatory capability for these 14-IFN genes. For
biological interpretation, the activity of NF-kB is a double-
edged sword. Normal binding between NF-kB and IFN is
functioned by regulating cell survival and innate/adaptive
immune responses, while aberrant NF-kB may contribute to
inflammation (43). IFN activity is linked with JAK/STAT-
dependent innate antimicrobial immunity (44). All types of
IFNs are able to produce STAT by JAK-induced tyrosine
phosphorylation (45). STAT1 mutations can result in IFN-
related infections and inflammation (46). Nevertheless, IFN-
dependent anti-pathogen effect is potentially associated with
the absence of STAT1 (47). STAT1 and STAT2 are both
regarded as the primordial signal regulators of IFN-I as
functioned by genetic ablation, hypomorphic mutation or
abnormal function of impaired antiviral IFN-related genes
(48). IRF9 form ISGF3 complex can transactivate IFN-related
genes for antiviral response as well (49). STAT3 can be activated
by IFN-I stimulation in numerous cell types (50). An anti-
inflammation role has been reported in IFN and Toll-like
receptor response. Both IRF3 and IRF7 serve as a critical role
in IFN-I for combating viral infection if adequate IRF3 and IRF7
Frontiers in Immunology | www.frontiersin.org 14
bind to thepromoter sitesof IFN-I genes. IRF3degradation ishighly
relatedwith the repressionof IFN-b (51). ISG15 expression ishighly
related with IFN stimulation. Overexpression of ISG15 can
accelerate DNA replication fork progression followed by
abundant DNA damage and chromosomal breakage (52). Apart
from these findings, we further provided additional information for
differential diagnosis between COVID-19 and other respiratory
infections such as COVID-19 vs Influenza A/B, RSV, and Measles.
As the results, the distinction of COVID-19 and Measles can be
performed according to the IFN-I related 14-gene expression.
Moreover, the expression value (point location) of OAS1 in a 14-
gene linear regression model can be used as a diagnostic classifier
between COVID-19 and Influenza A/B/RSV, since the expression
of OAS1 is on the regression line in the comparison of “COVID-19
vs COVID-19” in heterogeneous samples, but it is an outlier of the
regression line and 95% confidence interval in comparison of
“COVID-19 vs InfluenzaA/B/RSV. Taken together, these
biological and statistical interpretations for the results may
further suggest a potential molecular strategy for COVID-19
diagnosis in terms of IFN-I associated 14-gene profile.

For the current COVID-19 diagnosis, the most definitive and
accurate approach for measuring genetic profile and virus may be
the high-throughput sequencing. However, this method is
relatively disadvantage to large-scale application due to the
expensive equipment and skillsets required. Moreover,
identification of too many differential expression genes may not
be representative and precisive enough to COVID-19 diagnosis.
Thus, the 14-gene-based transcriptional profile may significantly
cut down on manpower and equipment expenditure to the
diagnosis. On the other hand, as a sensitive and precise
approach widely used in hospitals and laboratories, RT-PCR
remains the gold standard for COVID-19 diagnosis (53). Since
February 2020, the US Food and Drug Administration (FDA)
approved licensed laboratory to detect SARS-CoV-2 virus (20).
The procedure includes the isolation and conversion of virus RNA
to cDNA followed by the amplification of cDNA using Taq DNA
polymerase. Afterwards, RT-PCR using primers will quantitively
detect genome parts of SARS-CoV-2 virus. Such a procedure can
be used for detecting transcriptional level of interesting genes as
well.Notably, in asymptomaticCOVID-19patients, 38%ofwhom
arePCRnegative for virus detection (54, 55), suggesting the urgent
need for supplementary diagnosis by other biological reference.
Because RT-PCR is still effective and sensitive to monitor the
transcriptional alterations of IFN-I related genes in asymptomatic
COVID-19 patients (23), it indicates the clinical significance of
detecting these gene candidates by RT-PCR for supplementary
diagnosis. In this paper, for a strict view, we recommended a
diagnostic strategy of COVID-19 by simultaneously detecting the
genetic profile of both 14 IFN-I related genes (Figure 6C) and
SARS-CoV-2 viral load. Meanwhile, the severity of COVID-19 is
inversely proportional to the transcriptional level of these IFN-I
related 14 genes. Taken together, our study may provide a
molecular reference for COVID-19 supplementary diagnosis,
which is consisted of 14 highly-preserved genes regulating IFN-
I-dependent host response in heterogeneous specimens, including
nasal swab and lung tissues.
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CONCLUSION

As noted above, the main merits of this study are as follows: 1)
Using transcriptional and computational analysis on RNA-
sequencing data retrieved from NCBI-GEO, we identified 14
highly-preserved genes in nasal swab and lung tissues regulating
IFN-I-dependent host response for COVID-19. The 14 genes
include BST2, IFIT1, IFIT2, IFIT3, IFITM1, ISG15, MX1, MX2,
OAS1, OAS2, OAS3, OASL, RSAD2, and STAT1, which may be
leveraged for COVID-19 diagnosis with direct virus detection by
RT-PCR. The highly-conserved genetic profiles of these 14 genes
were validated in SARS-CoV-2-infected homogeneous and
heterogeneous specimens, including bronchioalveolar fluid and
bronchial epithelial cells. 2) The stratified severity of COVID-19
may also be identified by the transcriptional level of these 14
IFN-I genes. Sufficient transcriptional expression of these 14
genes were peaked in early stage while insufficient in the
advanced stage of COVID-19. However, for the limitation of
this study, more evidence from clinical trials should be provided
for further supporting the 14 gene-based transcriptional profile
for COVID-19 supplementary diagnosis
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