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Abstract

In 2013, the World Health Organization (WHO) recognized mycetoma as one of the neglected tropical conditions due to the
efforts of the mycetoma consortium. This same consortium formulated knowledge gaps that require further research. One
of these gaps was that very few data are available on the epidemiology and transmission cycle of the causative agents.
Previous work suggested a soil-borne or Acacia thorn-prick-mediated origin of mycetoma infections, but no studies have
investigated effects of soil type and Acacia geographic distribution on mycetoma case distributions. Here, we map risk of
mycetoma infection across Sudan and South Sudan using ecological niche modeling (ENM). For this study, records of
mycetoma cases were obtained from the scientific literature and GIDEON; Acacia records were obtained from the Global
Biodiversity Information Facility. We developed ENMs based on digital GIS data layers summarizing soil characteristics, land-
surface temperature, and greenness indices to provide a rich picture of environmental variation across Sudan and South
Sudan. ENMs were calibrated in known endemic districts and transferred countrywide; model results suggested that risk is
greatest in an east-west belt across central Sudan. Visualizing ENMs in environmental dimensions, mycetoma occurs under
diverse environmental conditions. We compared niches of mycetoma and Acacia trees, and could not reject the null
hypothesis of niche similarity. This study revealed contributions of different environmental factors to mycetoma infection
risk, identified suitable environments and regions for transmission, signaled a potential mycetoma-Acacia association, and
provided steps towards a robust risk map for the disease.
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Introduction

Mycetoma is a chronic, devastating, inflammatory disease of the

subcutaneous tissues that spread to involve the skin, deep

structures and bones, and is characterized by deformity, destruc-

tion and disability especially in late stages [1–3]. Etiological agents

are identified by culturing their characteristic compact mycelial

grains [4,5]. The infection most often affects the lower extremities

of individuals living in developing tropical and subtropical

countries [6]. Two forms of mycetoma have been identified

[3,7]: actinomycetoma caused by a group of filamentous bacteria,

and eumycetoma caused by any of 30–50 species of hyaline and

pigmented fungi [4,8–11].

The organisms causing mycetoma are geographically distribut-

ed worldwide, but are particularly common in tropical and

subtropical areas, in the so-called ‘mycetoma belt,’ which includes

Mexico, Venezuela, Mauritania, Senegal, Chad, Ethiopia, Sudan,

Somalia, Yemen, and India [11]. The incidence and geographic

distribution of mycetoma are underestimated, as the disease is

usually painless and slowly progressive, such that it is presented to

health centers only in late disease stages by most of patients; it is

not a reportable disease [12–14]. Mycetoma is a socioeconomi-

cally biased disease, and typically appears in low-income

communities with poor hygiene; for example, agricultural laborers

and herdsmen appear worst affected [15,16]. Studies revealed that

minor traumas can allow pathogens to enter the skin from the soil

[7], or through Acacia thorns, to the point that Acacia thorns have

been found embedded in mycetoma lesions during surgery [4,17].

Fungal infections responsible for eumycetoma in Sudan are

predominantly caused by Madurella mycetomatis [4].

Studies to date suggest a soil-borne or thorn-prick-mediated

origin of mycetoma infections [4], having demonstrated M.
mycetomatis DNA on Acacia thorns and in soil samples [4].

Although prevailing thought is that the soil is the ultimate reservoir

for mycetoma infections, attempts to culture the fungus from soil

samples have failed [4,14]. A more recent study suggested that

cattle dung may play a significant role in the ecology of Madurella,

based on the observation that M. mycetomatis is phylogentically

closely related to dung-inhabiting fungi [18].
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Mycetoma ranks among the most neglected diseases worldwide,

to the point that it was omitted even by major neglected tropical

disease (NTD) initiatives across the globe [19–21]. Recently,

mycetoma was added to the WHO’s list of NTD priorities [11].

The known geographic distribution of mycetoma etiological agents

shows intriguing variation with respect to environmental factors

[22]: they occur in arid areas with a short rainy season, and

extreme conditions have been suggested as a prerequisite for

survival of the causative organisms [22]. Still, the geographic

distribution of the disease remains in large part uncharacterized.

In this paper, we report explorations using ecological niche

modeling to (1) estimate the current niche and potential

distribution of mycetoma in an important endemic region (Sudan),

(2) investigate risk factors associated with mycetoma infections in

Sudan and South Sudan as reflected in distributional associations

with environmental features, and (3) test Acacia-mycetoma

associations based on overlap of the ecological niche of mycetoma

infections with that of trees of the genus Acacia.

Materials and Methods

Occurrence records for mycetoma cases were obtained from

published scientific literature via the PubMed database (www.ncbi.

nlm.nih.gov/); we also used mycetoma data deposited in the

GIDEON database (http://www.gideononline.com/). Studies

were selected if they described positive mycetoma cases, and were

referred to specific geographic locations that could be georefer-

enced precisely. When geographic references were textual in

nature, latitude-longitude coordinates were assigned via reference

to electronic gazetteers (e.g., http://www.fallingrain.com; [23]),

and Google Earth (www.earth.google.com/); 11 records were

obtained by georectification and georeferencing of Figure 1 from

Ahmed et al. 2002 [4,17,24]. We eliminated duplicate records and

records presenting obvious errors of identification prior to any

further analysis.

Occurrence records were obtained for Acacia from the Global

Biodiversity Information Facility (www.gbif.org) to test contribu-

tions of the trees to a robust mycetoma model for Sudan and

South Sudan [4,17,24]. We filtered Acacia occurrences to include

only Sudan and South Sudan. All duplicate records and records

lacking georeferences were excluded from analysis.

To characterize environmental variation across Sudan and

South Sudan, 8-day composite Land Surface Temperature and

monthly Normalized Difference Vegetation Index (NDVI) data

were drawn from Moderate Resolution Imaging Spectroradiometer

(MODIS) satellite imagery at 1 km spatial resolution. We also used

10 variables from the World Soil Information site (http://www.isric.

org) to summarize chemical and physical soil characteristics

(Supplementary file S-1). Soil data were obtained for each of 2

depths for each variable: 0–5 cm and 5–15 cm. Soil variables

Author Summary

WHO has recognized mycetoma as one of the neglected
tropical diseases (NTDs) worldwide. Studies indicate
infections from soil or possibly mediated by thorn pricks,
but no detailed studies have investigated effects of soil
type and Acacia distributions on mycetoma in Sudan. Here,
we investigated risk factors associated with mycetoma
infections in Sudan using ecological niche modeling
(ENM), integrating mycetoma case records, Acacia records,
and geospatial data summarizing soil, land-surface tem-
perature, and greenness. ENMs calibrated in endemic
districts were transferred across Sudan, and suggested that
greatest risk was in a belt across central Sudan. Mycetoma
infections occur under diverse environmental conditions;
we found significant niche similarity between Acacia and
mycetoma. Model predictions were amply corroborated by
a preliminary assessment of a much larger mycetoma case-
occurrence data base. Our results revealed contributions of
different environmental factors to mycetoma risk, raised
hypotheses of a causal mycetoma-Acacia association, and
provide steps towards a robust predictive risk map for the
disease in Sudan.

Figure 1. Geographic distribution of mycetoma cases and Acacia trees across Sudan and South Sudan (crosses and dotted circles,
respectively). Some areas across the region (in white) were not included in some analyses for lack of data on soil characteristics.
doi:10.1371/journal.pntd.0003250.g001
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represented a collection of updatable soil property and class maps of

the world at 1 km resolution produced using model-based statistical

methods, including 3D regressions with splines for continuous

properties and multinomial logistic regression for classes [25].

LST and NDVI data were downloaded for 2005–2011 from the

Land Processes Distributed Active Archive Center data holdings,

using the NASA Reverb Echo data portal (https://reverb.echo.

nasa.gov/reverb/) as described in greater detail elsewhere [26].

The LST product has been validated via several ground-truth and

validation efforts over widely distributed locations and time

periods [27]. The NDVI product has been used broadly for

monitoring vegetation conditions and land cover change [28]. We

calculated grids for the minimum, maximum, median, and ranges

of values for LST and NDVI across the entire time sequence for all

of Sudan and South Sudan to provide a rich characterization of

environments across the country.

The Grinnellian fundamental ecological niche is defined by the

set of coarse-grained, non-interactive environmental conditions

under which a species is able to maintain populations without

immigrational subsidy [29]. ENM attempts to estimate these

niches from incomplete information by relating known occurrence

locations and the environmental values that they present to the

broader environmental landscape. This approach was used to

relate known mycetoma occurrences to raster environmental data

Figure 2. Potential mycetoma distribution based on occurrences in endemic districts. Potential distributions of mycetoma were based on
different environmental variables; models were calibrated in mycetoma-endemic districts, and transferred across all of Sudan and South Sudan. White
areas have no soils data, and therefore have no model predictions.
doi:10.1371/journal.pntd.0003250.g002

Table 1. Partial AUC ratios of mycetoma ecological niche models based on different environmental data sets, showing median.

Environmental variables AUC ratio

LST+NDVI 1.2923 (1.2917–1.8373)

LST+NDVI+soil 1.6864 (1.5179–1.9600)

LST+NDVI+Acacia (based on LST and NDVI) 1.3878 (1.3203–1.9011)

LST+NDVI+Acacia (based on LST, NDVI, and soil) 1.6518 (1.5767–1.8618)

LST+NDVI+soil+Acacia (based on LST and NDVI) 1.8402 (1.7683–1.9924)

LST+NDVI+soil+Acacia (based on LST, NDVI, and soil) 1.6365 (1.6012–1.8077)

doi:10.1371/journal.pntd.0003250.t001
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in an evolutionary-computing environment; in this case, a

maximum entropy algorithm (MaxEnt v.3.3 [30]) was used to

estimate ecological niches both for Acacia spp. collectively and for

mycetoma. Niche model outputs for Acacia were in turn used as

input in calibrating models for mycetoma; in the end, we

developed models based on LST/NDVI and all combinations of

soil and Acacia information, and the Acacia models were

calibrated with and without soil information. Accessible areas

(M) for mycetoma and Acacia were assumed to include all of

Sudan and South Sudan, based on their wide geographic

distributions. We calibrated ENMs across a subset of the study

region corresponding to known endemic districts; models were

then transferred across all of Sudan and South Sudan for

interpretation; for comparison, we also calibrated models across

all of Sudan and South Sudan (i.e., not just known endemic

districts), although the model transfer approach should be more

rigorous [31]. ENMs outputs were converted to binary maps using

a least training presence thresholding approach adjusted to admit

5% (E = 5%) error rates [32].

To test the ability of the ENM algorithm to predict occurrences

accurately across unsampled areas of Sudan and South Sudan, we

used a partial receiver operating characteristic (ROC) approach

[32]. This approach evaluates models only over a range of relevant

predictions, and potentially allows differential weighting of omission

and commission errors, and therefore is preferable to traditional

ROC approaches [32]. Models were evaluated by calibrating

models with a random 50% of occurrences, and comparing the

threshold-independent area under the curve (AUC) to null

expectations. To compare partial ROC AUC ratios of each model

with null expectations, the dataset was bootstrapped, and proba-

bilities obtained by direct count, with AUC ratios calculated using a

Visual Basic script developed by N. Barve (University of Kansas),

based on 100 iterations and an E = 5% omission threshold.

As a further, and more rigorous, test of model predictivity, we

derived a preliminary view of mycetoma case data archived in the

Mycetoma Research Center, in Sudan, based on cases from 1991–

2014. In view of the large scale of this data resource, we selected

and georeferenced ,10% of the overall data archive at random;

we eliminated cases lacking geographic references and removed

records from duplicate localities, which left 158 localities for this

preliminary analysis. We assessed the relationship of these data to

the best of our model predictions via a one-tailed cumulative

binomial probability calculation that assessed the probability of

obtaining the observed level of correct prediction by chance alone,

given the background expectation of correct prediction based on

the proportional coverage of the region by the prediction [29].

Background similarity tests [33] were used to assess similarity

between models of niches of Acacia and mycetoma. We first

reassessed the accessible area (M) for both species [34]:

mycetoma is limited approximately to the belt between the

latitudes of 15uS and 30uN [7,20], and Acacia is widely

distributed and grows in a wide range of habitats [35], so we

can set M as all of Sudan and South Sudan, or alternatively as

only the known mycetoma-endemic districts (Figure 1). To test

the null hypothesis of niche similarity between mycetoma and

Acacia against the backgrounds of their respective M hypotheses

[34] as described above, we used D-statistics and Hellinger’s I
implemented in ENMTools [33]. We tested niche similarity with

respect to two environmental data sets: (1) LST and NDVI; and

Figure 3. Visualization of mycetoma ecological niches (i.e., the
set of environmental values under which the species can
potentially maintain populations) in two-dimensional environ-
mental spaces based on different environmental variables. The
diagram shows the entire environmental availability across Sudan and

South Sudan (light gray color), and conditions identified as suitable
across Sudan and South Sudan (black color) and across endemic
districts (pink).
doi:10.1371/journal.pntd.0003250.g003

Mapping Mycetoma Risk in Sudan
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(2) LST, NDVI, and soil characteristics. The background

similarity test is based on models of random points from across

the accessible area in numbers equal to numbers of real

occurrence data available for each species in the study, with

100 replicate samples. The null hypothesis of niche similarity was

rejected if the observed D or I values fell below the 5th percentile

in the random-replicate distribution for comparison of the ENMs

for the pair of species in question [33].

Results

We assembled a total of 44 records of mycetoma cases from sites

across Sudan (Figure 1). Cases were from North Darfur (14),

Gezira (8), North Kordufan (6), South Darfur (4), Sennar (3), and

White Nile (3), Khartoum (2), River Nile (2), Kassala (1), and

Northern (1) states. Sampling for mycetoma was focused in these

regions, which can be considered as endemic districts for

mycetoma. Mycetoma cases concentrated in a belt between 12uS
and 19uN latitude, with only a few cases outside this area in

Sudan. Records for Acacia trees were obtained from 59 localities

across Sudan and South Sudan (Figure 1). Acacia records were not

limited to any particular sub-region, but rather were distributed

across much of the country. The geographic distributions of

Acacia trees and mycetoma cases appeared to overlap only in

central Sudan. However, Acacia is also present in South Sudan,

where no records were available for mycetoma.

Figure 4. Background similarity test of similarity between mycetoma and Acacia ecological niches across Sudan and South Sudan.
Niche overlap values were based on Hellinger’s I, and Schoener’s D metrics of similarity. Observed values are shown as black line with a blue arrow;
null distribution is shown as a histogram.
doi:10.1371/journal.pntd.0003250.g004

Mapping Mycetoma Risk in Sudan
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We developed models of mycetoma cases based on (1) ENMs

calibrated in endemic districts, then transferred to all of Sudan and

South Sudan (Figure 2), and (2) ENMs calibrated directly across

all of Sudan and South Sudan; these latter models are not depicted

in this publication, but are presented in the supplementary

materials (S-2). ENMs for mycetoma based on different environ-

mental scenarios were all statistically robust (all AUC ratios

uniformly above 1.0 so all P,0.01; see Table 1). The model based

on all environmental data (LST, NDVI, soils, and Acacia
distribution) had the highest partial AUC ratios, and thus appeared

to perform best. Mycetoma ENM predictions indicated a band of

highest environmental suitability in central Sudan between 11uS
and 17uN latitude (Figure 2). However, distinct areas were

predicted as suitable for mycetoma occurrence elsewhere in Sudan

and South Sudan: ENMs based on LST, NDVI, and soil identified a

more southerly version of the ‘‘mycetoma belt.’’ High-risk states

identified by the ENMs included Kassala, Gedarif, Gezira,

Khartoum, Sennar, White Nile, North Kordufan, West Kordufan,

South Darfur, North Darfur, and West Darfur. To visualize

ecological niches for mycetoma, we linked ENM predictions to

characteristic of the environmental landscape (Figure 3): mycetoma

occurs on diverse landscapes under wide ranges of environmental

conditions, which is to say that no clear and distinctive environ-

mental correlates could be discerned.

Neither of the tests comparing niches of mycetoma and Acacia
was able to reject the null hypothesis of niche similarity (P.0.05 in

both cases; Figure 4) which is to say that models for mycetoma and

Acacia were not more different from one another than either was

from models based on the background (i.e., across M) of the other

species. Acacia is distributed broadly across Sudan and South

Sudan, whereas mycetoma infections were found only in central

Sudan, but these results suggest that range difference does not

reflect niche differentiation between the two (sampling, diagnostic,

and reporting biases may affect the mycetoma data).

Figure 5. Coincidence between ecological niche model predictions based on LST, NDVI, soils, and Acacia (the latter based on LST
and NDVI only) with the independent additional case data from the Mycetoma Research Center.
doi:10.1371/journal.pntd.0003250.g005

Mapping Mycetoma Risk in Sudan
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The coincidence between model predictions and the indepen-

dent additional case data from the Mycetoma Research Center

was impressive (Figure 5), such that 149 of 158 of those additional

occurrence points were successfully predicted by the model. Model

success in anticipating these independent data was statistically

significantly much better than random expectations (one-tailed

cumulative binomial test; P,,0.05).

Discussion

Known since the 1600s [36] and described more formally in

1842, mycetoma was initially called Madura foot [37]. Mycetoma

was subsequently reported in countries presenting diverse envi-

ronments: Mexico, Venezuela, Mauritania, Senegal, Chad,

Ethiopia, Sudan, Somalia, Yemen, and India [11,14]. Although

thousands of cases have been recognized annually, risk factors

remain poorly characterized [14], and the mode of transmission

remains unknown [14]. Research on mycetoma leaves several

hypotheses untested; improved understanding in each respect

could reduce numbers of case, improve case outcomes, and offer

possibilities for better disease control. Here, we used a new

approach, termed ecological niche modeling, which relates case

occurrences to environmental characteristics across a relevant

region to create a model of the environmental ‘envelope’

(analogous to a coarse-grained definition of the ecological niche)

for the species; this niche model allows, in turn, identification of

potentially suitable areas for the species to be distributed.

Ecological niche modeling has been used previously to understand

geographic dimensions of a number of neglected tropical diseases

[26,38,39], including fungal pathogens [40,41].

We used ENM to identify suitable sites for mycetoma infections

based on environmental predictors, including dimensions thought

to be associated with mycetoma cases in previous studies in Sudan

[4,20]. All ENMs indicated high suitability across central Sudan,

which appears consistent with cases reported subsequently

[17,42,43]. It is worth noting that numerous cases reported by

the Mycetoma Research Center (MRC) [4] came from the same

belt identified by ENMs developed here, and yet had no

involvement in our model calibration, providing important

corroboration of the model predictions.

Several recent studies have attempted to understand modes of

entry and transmission of mycetoma [4,44,45], but how people

become infected with the causative agents remains unclear [14].

These studies have proposed that the primary reservoir of the

causative agents is soil or Acacia thorns [4], and that transmission

occurs by contact with the causative agent [4,15], based on

observations that mycetoma infections occurred under poor

conditions, in agriculturalists and villagers in endemic districts

[46,47]. Our ENMs used soil data, but the causative agent has

been identified from areas signaled unsuitable in the soil-based

ENMs [4]. Incorporating Acacia distributions in models improved

predictions, indicating possible relevance of an Acacia-mycetoma

association.

Acacia may thus prove to play some role as a determinant of

mycetoma distributional patterns across Sudan and South Sudan,

although our results are correlational only and do not provide a

direct test of this association. Our background similarity tests

between ENMs for Acacia and mycetoma could not reject the

hypothesis of similarity of the niches of the two species, thus at

least not providing evidence against an association, and our

models had greatest predictive power regarding mycetoma cases

when Acacia distributions were included as environmental

predictors. The important question remaining, however, is how

the causative agent contacts humans, penetrates the skin, and

initiates infections.

Previous studies confirmed presence of Madurella mycetomatis
DNA in 17 of 74 soil samples and in one of 22 thorn samples [4].

Interestingly, attempts at culturing the fungi from these samples

failed [4]. Hence, that the study found DNA of M. mycetomatis in

both soil and thorn samples is of unclear importance, although

perhaps culture methods are relatively insensitive or ineffective. In

sum, then, our results revealed contributions of different environ-

mental factors to mycetoma risk, identified areas suitable for

mycetoma emergence, farther raised the possibility of a myceto-

ma-Acacia association, and provided steps towards a robust

predictive risk map for the disease.

Supporting Information

Text S1 The variables of the soil characteristics used in
model calibration for mycetoma and Acacia spp. in
Sudan. Data downloaded from the World Soil Information

(http://www.isric.org). Each variable is available in 2 depths (0–

5 cm and 5–15 cm).

(DOC)

Text S2 Potential mycetoma distribution based on
occurrences across all of Sudan. These models were

calibrated across all of Sudan directly based on all records

collected from scientific literature and environmental variables for

all of Sudan.

(DOC)
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