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Simple Summary: Robust methods for modelling and estimation of cancer survival could be relevant
in understanding and limiting the impact of cancer. This study was aimed at developing an efficient
Machine learning (ML) pipeline that could model survival in Lung Adenocarcinoma (LUAD) patients.
Image transformations of multi omics data were employed for training a machine vision-based
model capable of segregating patients into high-risk and low-risk subgroups. The performance was
evaluated using concordance index, Brier score, and other similar metrices. The proposed model was
able to outperform similar methods with a high degree of confidence. Furthermore, critical modules
in cell cycle and pathways were also identified.

Abstract: The utility of multi-omics in personalized therapy and cancer survival analysis has been
debated and demonstrated extensively in the recent past. Most of the current methods still suffer from
data constraints such as high-dimensionality, unexplained interdependence, and subpar integration
methods. Here, we propose SurvCNN, an alternative approach to process multi-omics data with
robust computer vision architectures, to predict cancer prognosis for Lung Adenocarcinoma patients.
Numerical multi-omics data were transformed into their image representations and fed into a
Convolutional Neural network with a discrete-time model to predict survival probabilities. The
framework also dichotomized patients into risk subgroups based on their survival probabilities over
time. SurvCNN was evaluated on multiple performance metrics and outperformed existing methods
with a high degree of confidence. Moreover, comprehensive insights into the relative performance of
various combinations of omics datasets were probed. Critical biological processes, pathways and cell
types identified from downstream processing of differentially expressed genes suggested that the
framework could elucidate elements detrimental to a patient’s survival. Such integrative models
with high predictive power would have a significant impact and utility in precision oncology.

Keywords: multiomics; survival; lung adenocarcinoma; machine learning; CNN

1. Introduction

Molecular biology and high-throughput technology have significantly advanced in
the past few decades, resulting in novel solutions for diagnostic and prognostic chal-
lenges in the way of personalized cancer therapy [1–3]. It has led to quantifying diverse
omics-biomarkers in a clinically and economically feasible manner for an individual. This
flexibility has allowed scientists to build robust personalized, predictive models using
the generated data to evaluate prognostic dependencies such as clinical outcomes and
probability of relapse [4–7]. Resources such as The Cancer Genome Atlas (TCGA), the
International Cancer Genomics Consortium (ICGC), and the Cancer Cell Line Encyclopedia
(CCLE), among others, have standardized the process of curating and hosting data from
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multiple studies, making them easily accessible [8–10]. These studies included cancers
such as Lung Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), which are
known for their low survival rates and high chances of relapse [11]. A study suggested
that most LUAD patients tend to be non-smokers, contrary to the general perception of a
smoking-related basis to lung cancers [12].

Though multi-omics data can reveal significant insights into the mechanism of a
disease like cancer, the form in which it is fed to a model is a decisive hyperparameter
for its performance [13,14]. The good-old ‘Garbage-in, Garbage-out’ adage significantly
reinforces itself when using multi-omics datasets [15]. While models try to resolve differen-
tial survival signatures from multi-omics data, understanding the relative importance of
individual omics is equally important to improve cancer prognosis in a precision oncology
setting. Initial attempts in this direction included Exploratory data analysis (EDA), where
characterization and summarization of data are performed to detect any possible artifacts
and outliers [16]. While latent variable methods in EDA aimed to identify significant con-
tributors to variance globally, cluster analysis looked into pairwise Euclidean or any other
metric to quantify delicate relationships within and among data [17]. Feature selection and
extraction tend to be critical for the analysis to bear any concrete results owing to the high
dimensionality of omics datasets. Principle component analysis (PCA), with its extensions
including variable selection via L-1 penalized regularization, tends to be a go-to approach
to mitigate the effects of such bottlenecks [18].

Apart from these conventional data-integration approaches, bright ideas like iCluster,
CoxPath, and CNAmet have tried to mitigate the issue of high dimensionality and hetero-
geneity in omics to an extent, by consolidating the principles of mathematics and statistics
in an effective manner [19–22]. However, the features derived from these methods are in
the form of a feature vector (i.e., a vector of size p × n) and generally fed into machine
learning algorithms with an assumption of mutual independence. In context with omics
datasets, the local dependence of different features (genes) among themselves in such high
dimensional feature space cannot be ignored. Machine learning setups work by learning
the relationships among data that explain a given outcome, i.e., survival in our case. They
are bound to perform poorly if the given data does not provide any information about the
association among the covariates. Although modeling this dependence is not a naïve task,
efforts like Seeded Bayesian Networks, Boolean Network models, and Copula methods
have tried explaining these associations [23,24].

With a similar goal in mind, we intended to provide machine learning algorithms
with some prior knowledge about the local interactions among the features (genes). Here,
a simple yet efficient way to transform omics datasets into their image representations
has been presented. Such images try to represent gene-associations, in addition to the
numeric values already provided by omics datasets (gene expression, methylation, or
miRNA). Further, these image representations of omics data types can be plugged in state
of the art computer vision architecture such as Convolutional Neural Networks (CNN),
which are tailor-made for learning such data and estimate the survival prognosis of a
cancer patient [25]. The novelty of our method lies in the process of creating efficient
representations of omics datasets, rather than being focused completely on the modelling
strategy. Also, even though the datasets used are retrieved from public datasets, they have
not been used in the proposed form for estimating survival, to the best of our knowledge.
In summary, we have developed an ML-based workflow that is capable of estimating
survival using image representations of omics data.

2. Materials and Methods

The underlying idea behind SurvCNN was to transform numeric omics data into
an image form and feed it into a CNN with a custom loss function to predict survival
probabilities for different time intervals. The calculated survival probabilities were used to
fit a Kaplan–Meier curve for segregating patients in risk groups based on their conditional
probabilities at different time intervals. The relative effectiveness of different combinations
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of omics data in estimating survival prognosis was also probed. The proposed workflow’s
modular nature enabled the incorporation of multiple combinations of omics data types
without drastically altering the underlying framework. For clarity, a detailed description
of the twelve omics combinations analyzed is summarized in Table 1.

Table 1. Reference table for the twelve combinations of omics data analyzed in the study. For every
omics set denoted by roman numerals, the ‘+’ sign implies the inclusion of the corresponding omics
data type.

I II III IV V VI VII VIII IX X XI XII

mRNA + + + + + + + +
meth + + + + + +
miRNA + + + + + +
Clinical + + + + + +

2.1. Datasets and Study Design

Semi-parametric proportional hazards regression (Cox-PH) is considered to be the
most common strategy for generating survival estimates, where the relative risks of the
patients (hazard ratios) are explained by the model covariates [26]. However, the model
assumes a linear relationship between log-risk of failure and patient’s covariates, also
referred to as the proportional hazard (PH) assumption. The PH assumption breaks quickly
with high-dimensional multi-omics data with non-linear associations. Deep learning-based
approaches mitigate this drawback due to their ability to effectively model non-linear
relationships [27]. In tandem with deep learning models, Cox-PH models tend to perform
well, given that the feature set is sufficiently small. Here an alternative approach has been
employed that is described in the following sections.

2.2. Data Retrieval and Preprocessing

We employed three omics data types of LUAD, along with their clinical informa-
tion in this study. All three data types, namely, mRNA-seq (illuminahiseq_rnaseqv2-
RSEM_genes_normalized), methylation and miRNA-seq (illuminahiseq_mirnaseq-miR
_gene_expression) were retrieved from firebrowse utility (http://firebrowse.org/ access
date: 17 February 2020) of The Cancer Genome Atlas (TCGA) database. While firebrowse
provided z-scaled RSEM values of mRNA expression, log2-RPM values for miRNA were
retrieved and z-scaled. Common patients from the three datasets were extracted and the
necessary processing (discard, impute) was done. While patients with more than 20 percent
missing features were discarded, missing values (if any) in the rest were filled using R
package impute [28]. In terms of the clinical dataset, TNM status (T: Tumor size and spread
in tissue, N: spread in lymph nodes, M: metastasis) of the patients was included along with
their age and gender. Survival data for the common patients were available in the form
of Overall survival (OS) and clinical outcome (Binary). All data combinations and their
general statistics are summarized in Table 2.

http://firebrowse.org/
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Table 2. Overall statistics for all the omics data-type combinations for SurvCNN.

Omics Type * Total Cases Living Deceased
Features
Before

Processing
Features After Processing

Age (yrs.) Survival (yrs.)

Median Range Median Range

I 515 328 187 20,172 123 × 123

66.0 38–88

1.803

0–2

II 458 293 165 17,052 123 × 123 1.786
III 450 286 164 477 42 × 42 1.789
IV 454 290 164 37,224 (123 × 123) × 2 1.785
V 446 283 163 20,649 (123 × 123) × 2 1.788
VI 446 283 163 37,701 (123 × 123) + (42 × 42) 1.788
VII 515 328 187 20,192 (123 × 123) + 20 1.802
VIII 458 293 165 17,072 (123 × 123) + 20 1.786
IX 450 286 164 497 (42 × 42) + 20 1.789
X 454 290 164 37,244 (123 × 123) × 2 + 20 1.784
XI 446 283 163 20,669 (123 × 123) + (42 × 42) + 20 1.787
XII 446 283 163 37,721 (123 × 123) × 2 + (42 × 42) + 20 1.787

*Note: I (mRNA), II (methylation), III (miRNA), IV (mRNA, methylation), V (mRNA, miRNA), VI (mRNA, methylation, miRNA), VII
(mRNA, clinical), VIII (methylation, clinical), IX (miRNA, clinical), X (mRNA, methylation, clinical), XI (mRNA, miRNA, clinical), XII
(mRNA, methylation, miRNA, clinical).

2.3. Feature Transformation

Omics datasets, which are inherently in numerical form, were transformed to an image
for them to be compatible with CNN architectures. A general illustration is available in
Figure 1A,B, where a feature vector corresponding to a datapoint is converted into a 2D fea-
ture matrix (Figure 1B). The location of every feature in the transformed image is dependent
on the local relationships of genes in the original feature vector. In order to generate the
2D feature matrices, t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP) were employed [29,30]. These non-linear
dimensionality reduction algorithms try to preserve the local relationships among features
(genes) by calculating a similarity measure among features in high-dimensional space and
optimizing the measures using a cost function.

Figure 1. Schematic depicting the general workflow for SurvCNN. (A) Multi-omics data retrieval, (B) feature transformation,
(C) building, training, and optimizing a deep neural network and (D) downstream analysis and inference.

Once the location of every feature was determined on the 2D feature matrix, grayscale
intensities (0–255) corresponding to every gene/feature value in the original dataset
(mRNA, methylation, and miRNA) were assigned to every element on the 2D feature
matrix. For example, to build a survival prediction model using two omics data types
and n patients, n × 2 images were generated (two images per patient) using the proposed
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methodology. These images can be directly plugged into a deep learning architecture
optimized for predicting survival probabilities. Similar attempts to transform non-image
datasets into their image representations have been previously attempted [31]. Averaged
image representation of the three omics data types for 446 patients are depicted in Figure 2.
The effect of using different projection algorithms (t-SNE and UMAP) is evident from the
differences in both sets.

Figure 2. Graphical representations of omics datasets generated via t-SNE and UMAP. Every pixel in the image can be
attributed to a gene, while its intensity quantifies the corresponding expression levels.

Many hyperparameters such as perplexity, number of neighbors, distant metrics,
and minimum distance were associated and needed to be optimized for these feature
transformation methods. As an indirect measure of evaluating the goodness of projections,
few genes involved in pathways reported to be dysregulated in cancer were mapped on
the projections. t-SNE and UMAP plots mapped with 83 cancer-associated genes were
analyzed with silhouette analysis and parameters that led to significant clustering were
selected (Figure S11). The list of cancer-associated genes used to optimize the projections
can be found in Supplementary File 1 (S1). Also, additional explanation of the feature
transformation protocol is described in Supplementary File 2, Section 3, Supplementary
notes (Feature transformation).

2.4. CNN Designs, Architecture, and Evaluation

Aiming for a modular framework, a parallel network architecture where different
omics types can be simultaneously plugged into the model was constructed. This modu-
larity allowed us to test for various combinations of omics datasets without altering the
underlying architecture drastically. For each omics set the training and testing datasets
were split in an 80:20 ratio. For example, the omics set I has 515 samples, so the training
set and testing set contains 412 samples and 103 samples, respectively. Each convolution
block contains one convolution layer with 256 nodes with a 3 × 3 kernel. It is followed
by a batch normalization layer, ReLU activation layer, and a max-pooling layer with a
2 × 2 kernel. Batch normalization helps accelerate the training of large networks while
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max-pooling down-samples of the image at every layer [32]. The outputs of all the parallel
layers were flattened, concatenated, and fed into a fully connected (FC) neural network
Figure 1C. Additionally a detailed graphical illustration of a model architecture is depicted
in Figure S1. As a measure to reduce overfitting, FC layers were regularized using dropout
and early-stopping [33,34]. While dropout works by randomly turning off nodes from a
given network layer with a given probability such that the model cannot rely upon the
training data entirely and overfit, early-stopping halts the model training as soon as the
generalization error starts increasing [33,34]. Pictorial representations of all the model
architectures are compiled in Figures S2–S7.

The proposed model provides flexibility in opting for the proportional hazards as-
sumption versus its violation. For instance, with the proportional hazard assumption, the
final dense layer was setup as a single neuron with no bias. Then it was connected to the
n-dimensional model output where ‘n’ is the number of time intervals. On the other hand,
in the case of large datasets where the proportional hazard assumption may get violated,
the single node proportional hazard layer is skipped and the output of the fully connected
dense layers is directly connected to an n-dimensional output layer. Every model has an
n-dimensional output where n is the number of time intervals, in which total survival time
(5 years, 10 years) is split. We opted for a bin width of 3 months for a 10-year survival
analysis that gave us a 39-dimensional output layer.

2.5. Survival Analysis

The Cox-PH model is usually incorporated into deep neural networks as a final layer
to give survival estimates [35–37]. However, as previously discussed, the assumption
of proportionality is doubtful when the number of covariates is large. Also, stochastic
gradient descent requires a single data point per epoch to run efficiently, whereas due
to the PH assumption, the model output of all the data points having a higher survival
duration than the given data point needs to be included for the calculation. These factors
ultimately lead to memory bottlenecks, delayed convergence, and the possibility of loss
function not reaching its global minima.

To mitigate these issues, a discrete-time survival method for modeling omics data and
estimation of survival prognosis was employed. For the approach to work, a custom loss
function was based on the negative partial likelihood, assuming the PH criteria had to be
defined (Equation (1)). It was critical as major deep learning frameworks like TensorFlow
did not have the required loss function built in. The discrete-time survival models are
flexible as they do not assume the validity of the PH assumption. These models could
easily be trained with SGD, which was attractive as this enabled rapid experimentation for
optimizing the model hyperparameters. In discrete-time survival models, the total time
frame (e.g., one year/five years/ten years) was divided into a set of intervals with a fixed
duration (e.g., three months/six months). For each interval, the conditional probability of
survival was estimated, given that an individual has survived up to the beginning of an
interval. It was later used to classify the given patient into a high/low-risk class.

2.6. Loss Function

Negative log-likelihood was adapted as a loss function for the survival model [38].
For each time interval j, the neural network loss function was defined as:

loss = −
(
∑

dj
i=1 ln

(
1 − hi

j

)
+ ∑

rj
dj+1

ln
(

hi
j

))
(1)

where hi
j was the hazard probability for individual i for the jth time interval, there were

rj individuals in observation during the jth time interval (these individuals had survived
before the jth time interval) and the first dj of them suffered a failure during this interval.
Ideally, the model should assign a higher and lower hazard value for failure and survival
events, respectively. The defined loss function makes sure that the objective function
is penalized in the event of the model giving low hazard for failure and high hazard
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for survival. The sum of each time interval’s losses gave us the overall loss, which was
propagated back to the network such that the model weights were iteratively altered
to reduce the overall loss after each iteration and hence, ‘train’ itself. For the observed
data, total log-likelihood is the sum of the log-likelihoods for every individual. Formally
stating, for the neural network-based survival prediction model’s training, the goal was to
maximize the likelihood; hence, minimization of the negative log-likelihood was performed
using the SGD algorithm.

2.7. Hazard Probability

The proposed survival prediction model, with the custom loss function, naturally
integrated non-proportional hazards and time-varying baseline hazard rates. The baseline
hazard probability is allowed to vary freely with a time interval, but the effect of input data
on hazard rate does not vary with follow-up time. In other words, if a specific combination
of input data results in a high rate of death in the early follow-up period, it will also result
in a high rate of death in the late follow-up period. This was implemented by setting the
final hidden layer to have a single neuron and densely connecting the prior hidden layer
to the final hidden layer without any bias weights. The neural network gave a separate
hazard rate for each time interval J as output and had dimension t x 1, where t was the
number of time intervals. Given a set of time intervals, SurvCNN predicted the conditional
probability of survival at every interval, i.e., P(T > tj

∣∣T > tj−1) for j = 1, 2, . . . , J. The
marginal probability (effective probability of survival at a particular time point) was also
calculated by the product of all the conditional probabilities up to the jth time interval:

P
(
T > tj

)
= ∏j

k=1 P(T > tk

∣∣∣T > tk−1) (2)

2.8. Dichotomizing Patient Groups Using Kaplan Meier Estimates

The Kaplan Meier (KM) survival curve estimated the survival rates and hazard for
a given time interval (Figure 1D). The survival rate for any given time intervals was
calculated as follows.

St =
number o f individuals survived longer than t

total number o f individuals under study
(3)

The KM survival curves were generated by segregating patients into two risk groups
based on the median survival probability after a definite amount of time (one year, five
years, or ten years). The two survival populations were statistically compared by testing the
null hypotheses and calculating the associated p-values. In survival statistics, the log-rank
p-value was calculated to estimate the statistical significance among the segregated risk
groups [39].

2.9. Performance Metrics

Three performance metrics were employed to quantify the goodness of the proposed
survival models. The first metric used was Harrel’s concordance index (C-index) that
evaluates the relative ordering of events in time-series data [40]. C-index ranges between 0
and 1 (higher the better). It is a generalized version of area under the ROC curve and in
survival analysis a higher C-index would suggest that the model’s ability to distinguish
between high-risk and low-risk subgroups. A model with c-index > 0.7 indicates a good
model performance. It has been extensively used in the literature to evaluate the effective-
ness of survival prognosis models [36,37]. Lifelines python package was employed for
implementing C-index as a performance metric. Secondly, the Brier score, which calculates
the mean squared error between calculated survival probabilities and the actual survival
status at every time point, was used with the help of scikit-learn package [41,42]. It ranges
between 0 and 1 (lower the better). However, other methods have reported a 1-Brier score
instead, hence in our case the Brier values should be read as higher the better. Additionally,
the Inverse Probability of Censoring Weights (C-IPCW) was also employed to evaluate
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the models’ performance [43]. This metric takes into account the effect of censoring on the
model estimates. It reweights the individuals that do not drop out by the inverse of their
probability of not dropping out given covariates. Its range lies between 0 and 1 (higher
the better.)

2.10. Functional Enrichment and Gene Ontology Analysis for Identified Biomarkers

Differentially expressed gene clusters among the two classes of patients were identified
and exported for functional analysis. Enrichr, a web-based open-source enrichment toolbox,
was employed for the analysis [44,45]. Statistically significant enrichments in KEGG 2019
Human pathways, GO Biological processes (2018), and Cell types (Human gene atlas) for
the aberrated gene sets in the two prognostic subclasses were targeted [46–48]. The gene
list for each of the classes is provided in Supplementary File 1 (S2–S3).

3. Results

To generate robust representations of omics datasets with predictive ability, we pro-
posed a workflow that transforms numerical omics datasets into an image form while
retaining critical information about feature dependencies. Multiple CNNs with different
omics combinations were trained to predict survival statistics of LUAD cancer patients
effectively. Irrespective of the omics data types included, the performance of all the exper-
iments was evaluated by three metrics C-index, Brier score, and IPCW. To minimize the
chances of over-fitting, five-fold cross-validation was performed for every run. Ultimately,
differentially expressed genes were derived among the two risk groups and used for further
analysis (Figure 3A).

Figure 3. Differential analysis and survival classes. (A) Image representations for all the omics types for the two patient risk
groups depicting the differential genes (marked with colors). Kaplan–Meier plots for (B) train and (C) test sets showing that
SurvCNN can segregate patients into two risk groups with a high degree of confidence (log-rank p-value).
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3.1. Image Representations of Omics-Data Have Predictive Ability

Contrary to the conventional practice of feeding numerical omics data into machine
learning frameworks, the independent values were converted into well-organized im-
ages. These images performed exceedingly well in predicting the patient-specific survival
probabilities with a high degree of concordance. The complete set of performance met-
rics evaluating twelve omics-combinations each for two methods (t-SNE and UMAP) are
compiled in Table S1. With these results in hand, it can be hypothesized that such represen-
tations effectively culminate the local interactions among genetic features, which assists
the machine learning algorithm in learning these relationships. This worked as it is much
easier for the ML algorithm to capture and learn the associations in omics data if some
prior information is provided. As an added bonus, the method also reduced the amount of
hardware requirements to store the omics datasets by almost 90%.

3.2. Identification of Prognostic Subtypes in Lung Adenocarcinoma

To stratify Lung adenocarcinoma patients into two subclasses, the conditional proba-
bility of survival was calculated for each individual at every time point. Kaplan–Meier esti-
mates were employed to segregate patients into high-risk (C1) and low-risk (C2) subgroups
based on these probabilities. The two risk groups were stringently checked for significance
and any experiment with log-rank p-value < 0.005 was not considered for the results.
Though most omics combinations did well to segregate prognostic subtypes significantly,
a combination of mRNA-seq and methylation performed exceedingly well (Figure 3B,C).
Moreover, both internal and external validation further reinforced the robustness of the
models as the two subclasses indeed had stark outcomes (Figure S8).

3.3. Integrating Omics-Types Affects the Performance of Prognostic Models

Among all the multi-omics combinations tested, an upward trend for mean-concordance
values was observed as more omics-types were included. However, for the instances where
miRNA-seq data were included, the performance dipped significantly (Table 3). The exact
reason for this behavior can be attributed to the lower-dimensional character of miRNA-
seq data. However, it is evident from the results that other multi-omics combinations
outperformed single-omics models consistently. To verify if the performance of the tested
omics combinations is indeed significantly different, we performed a pairwise t-test for
C-indices. Looking at the t-statistics (Table 3), it can be safely eluded that the combination
of mRNA-seq and methylation data, along with their clinical information, serves as the
best predictor of survival than most of the combinations tested.

Table 3. Performances comparison with different combinations of multi-omics data by pairwise paired t-test, according
to C-index among five-fold cross-validation results. Note: Negative t-statistic indicates that Set1 is better than Set2.
p-value < 0.05.

Omics Type * (Set 1)

II III IV V VI VII VIII IX X XI XII

O
m

ic
s

ty
pe

*
(S

et
2)

I 1.56 18.23 −5.21 2.32 0.021 −3.73 1.18 32.72 −4.50 4.50 0.80
II - 20.99 −3.64 −0.28 −3.78 −2.25 −1.00 17.19 −4.09 −0.36 −1.20
III - - −15.78 −14.89 −38.86 −15.70 −36.67 1.49 −19.84 −16.03 −49.08
IV - - - 6.50 2.15 4.29 3.90 23.57 1.40 6.33 3.13
V - - - - −1.05 −5.56 −0.56 30.39 −7.21 −0.23 −0.73
VI - - - - - 0.87 1.34 22.37 −2.31 0.97 0.91
VII - - - - - - 2.14 28.09 −2.42 8.36 1.72
VIII - - - - - - - 40.89 −5.17 0.46 −0.84
IX - - - - - - - - −30.35 −35.70 −43.84
X - - - - - - - - - 5.88 3.55
XI - - - - - - - - - - −0.74

*Note 1: t-test statistics of the best omics combination are indicated in bold. Note 2: I (mRNA), II (methylation), III (miRNA), IV (mRNA,
methylation), V (mRNA, miRNA), VI (mRNA, methylation, miRNA), VII (mRNA, clinical), VIII (methylation, clinical), IX (miRNA, clinical),
X (mRNA, methylation, clinical), XI (mRNA, miRNA, clinical), XII (mRNA, methylation, miRNA, clinical).
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3.4. Transformation Based Multi-Omics Integration Outperforms Alternative Approaches

Our approach was compared with existing methods such as Cox-PH, RF-S, and Cox-
nnet [26,36,49]. For each omics dataset (or datasets), the model was trained on 80% of
randomly selected samples. The remaining 20% of the data (holdout set) was utilized to
evaluate the model’s performance. Again, it is emphasized that each run of the model
was replicated five times (five-fold cross-validation) to minimize the chances of generat-
ing an overfitted model. Also, no datapoint from the holdout set is ever shown to the
training algorithm.

The comparison of performance in terms of the C-index of omics data among the four
methods over twelve omics datasets is shown in Figure 4. SurvCNN was able to outperform
other methods in nine out of the twelve omics sets tested. The combination of mRNA
and methylation data, with (omics set X) and without (omics set IV) clinical information,
proved to be the best predictor of survival. It must be noted that while SurvCNN performed
relatively well than the competition, it lagged on instances where the primary dataset was
miRNA-seq. This might be attributed to the low dimensionality of the miRNA-seq dataset,
which might not have been captured efficiently by the feature transformation algorithm.
In addition to Cox-PH and RF-S, our results were also compared with Cox- nnet, wherein
they analyzed the prognosis prediction performance among omics-data sets using similar
metrics as ours.

Figure 4. Comparison of performance measure (C-index) with existing methods. The effectiveness of SurvCNN’s novel
feature transformation approach is highlighted with the fact that it outperforms the competition in nine out of twelve omics
sets tested.

While our best model (including mRNA-seq, methylation and clinical) registered a
C-IPCW in the range of 0.68–0.73, Cox-nnet stayed in the 0.58–0.65 range throughout the
omics combinations tested. This was in line with a previous work wherein it was around
0.6 (range: 0.55–0.59) for the LUAD dataset [36]. Similar trends were observed for the Brier
score (Cox-nnet: 0.81–0.83; SurvCNN: 0.84–0.85) [36].
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It should be noted that while C-indices for Cox-PH, RF-S and Cox-nnet were computed
on LUAD data in-house, the Brier score (as 1-Brier score for compatibility with other
performance metrics) for Cox-nnet was adapted from its original publication as both used
the same (LUAD) dataset. Moreover, to verify if the performance improvement depicted
by SurvCNN is statistically significant, a paired t-test was performed on every omics
combination. As tabulated in Table 4, it can be asserted that SurvCNN outperforms the
competition with a high degree of confidence in the majority of omics combinations. It only
lags in two sets where miRNA-seq data is in abundance for the probable reasons mentioned
earlier. Further, the choice of feature representation did not affect the performance of the
models significantly. As evident from Figure 5A, selecting t-SNE over UMAP or vice-versa
did not alter the outcome marginally. However, t-SNE was reported to be marginally better
in terms of the Brier score.

Table 4. Pairwise t-test to validate the statistical significance of improved performance by SurvCNN. A positive test metric
(t) denotes the superiority of SurvCNN. Annotations in bold mark the instances where SurvCNN significantly (p < 0.005)
outperforms the competition.

Omics Type *

I II III IV V VI VII VIII IX X XI XII

RF 13.52 1.78 −22.69 2.29 11.36 4.84 28.40 2.71 −15.36 8.46 5.66 9.16
Cox-PH 18.81 1.63 −10.23 23.75 25.03 12.15 13.61 - - - - -

Cox-nnet 3.96 −1.10 −12.68 5.23 11.59 2.02 3.64 0.44 −26.87 6.61 19.10 1.97

*Note 1: Statistically significant values (p < 0.005) are marked in bold. Note 2: I (mRNA), II (methylation), III (miRNA), IV (mRNA,
methylation), V (mRNA, miRNA), VI (mRNA, methylation, miRNA), VII (mRNA, clinical), VIII (methylation, clinical), IX (miRNA, clinical),
X (mRNA, methylation, clinical), XI (mRNA, miRNA, clinical), XII (mRNA, methylation, miRNA, clinical).

Figure 5. Overall performance of proposed workflow on different metrics of performance and projection algorithm.
(A) Performance in terms of C-Index, Brier score and ICPCW (B) SurvCNN outperforms competing methods on nine out of
twelve omics combinations tested.
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3.5. SurvCNN Identifies LUAD Associated Pathways, GO Terms, and Cell Types

Differential expression levels among the two prognostic subtypes were quantified
by averaging out the images corresponding to the two subclasses and filtering out the
common pixel locations. As depicted in Figure 3A, genes associated with differential pixel
intensities in the first and fourth quartile were selected as enrichment candidates for further
analysis and 236 downregulated and 173 upregulated genes from images corresponding to
the mRNA-seq data were obtained by the described method. Figure 6 shows the top ten
significantly (p-value < 0.005, odds-ratio > 4.0) enriched terms associated with Pathway,
Biological process, and cell type. More cell cycle and DNA replication-associated genes
like CDK1, MCM4, CHEK1, and RFC5 were upregulated in C1 than in C2 [50–53]. We
also identified genes corresponding to CD105+, CD71+, and CD34 endothelial such as
RAD51, KIAA0101, PRC1, POLE2, CDK2, CDK1, CKS2, CENPN, and TAF5. Interestingly,
anti-angiogenetic treatment targeting such tumor endothelial cells provides a survival
advantage in the treatment of NSCLC [54]. On the other hand, the downregulated genes
were mapped to Purine metabolism pathways, Oxytocin signaling pathway, among others
(Figure S9). Also, genes associated with lung were mapped while enriching cell types
(Human Gene Atlas) for the downregulated genes.

Figure 6. Enriched terms from KEGG 2019 Human pathways, GO Biological processes, and Cell type (Human gene atlas)
for (A–C) overexpressed gene-set.
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4. Discussion

The proposed SurvCNN method produced promising results and cemented the utility
of multi-omics data in the lung cancer survival prognosis. Unlike other algorithms, it
integrates Cox-PH regression and CNN models seamlessly into a single package. It not
only makes the pipeline robust but also adds a modular aspect to it. This modularity has
been exploited to test for various combinations of multi-omics datasets without drastically
altering the underline architecture. Although most of the omics combinations tested
outperformed the competition, the combination of mRNA-seq, miRNA-seq, and their
clinical features proved to be the most effective omics-combination among the twelve sets
tested. It also reinforced the utility of multi-omics in cancer research instead of a more
traditional single-omics approach. Though only PH models were considered for the final
comparison, model performances for PH and non-PH models are summarized in Table S1.

It should be noted that creating image representations of omics-datasets was one
of the fundamental requirements for this approach to work. The effectiveness of these
representations is reflected in above-average prognosis results quantified by the C-index
and log-rank test. It should be emphasized that all the performance metrics results are
reported for the test-set only. The detailed record of all the training and testing results,
along with comparative analysis, are compiled in Supplementary File 1 (Sheet4–Sheet7).
Apart from identifying related pathways, the enrichment analysis also revealed critical bio-
logical functions and associated cell-types. DNA replication (GO:0006260), DNA metabolic
processes (GO:0006259), DNA-dependent DNA replication (GO:0006261), mitotic cell cycle
phase transition (GO:0044772), and G1/S transition of the mitotic cell cycle (GO:0000082)
were among the top-ten associated functions (p-value < 0.005, odds-ratio > 6) for the over-
expressed genes in C1. On the other hand, regulation of histone acetylation (GO:0090240),
chemical homeostasis within a tissue (GO:0048875) and amino-acid transport (GO:0089718)
were found to be downregulated in C1. These observations underline the cancerous char-
acteristics that differentiate C1 from C2. It also reinforces the criticality of these processes
that lead to aggressive cancer metastasis, tumor development, and possibly the ultimate
fate of an individual [55].

Though most of the multi-omics combinations tested in the study were found to
have above-average predictive ability, a few combinations did not perform as expected
(Figure 5A,B. The principal component of these under-performing sets was miRNA-seq
data. Contrasting feature dimensions (mRNA-seq:miRNA-seq: 500:1) and incompatibility
with image transformations could be the two reasons for the same. It would be safe to say
that very high dimensional datasets such as mRNA-seq and methylation may gain from
our suggested methodology while low dimensional datasets are better off in their original
numerical state. However, refinement of our transformation algorithm might also improve
the predictability of the miRNA-seq dataset. In totality, it can be confidently asserted that
image representations of omics data not only have a better survival prognosis predictive
ability but also simplify the various aspects of managing omics datasets.

5. Conclusions

This work successfully demonstrated that numerical multi-omics data, transformed
into their image representations, could extract meaningful information about the individ-
ual’s genomic profile. These representations of genomic information also simplify the
process of identifying genetic clusters that are coregulated in a diseased individual and
predict its likelihood of survival in terms of hazard ratios. SurvCNN also fared well against
other machine learning-assisted survival prognosis models. Though we have primarily
focused on its application on cancer prognosis detection, one can extrapolate the algorithms
for use in a wide variety of applications.

As an immediate follow-up, given the encouraging results with LUAD datasets, we
propose to scale this method into a holistic cancer prognosis prediction system in a future
study. It would include data for a variety of cancer subtypes as opposed to the current
single cancer multi-omics. The system would provide prognostic predictions to cancer
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patients based on their genomic profile and disease history. With more sophisticated CNN
architectures and powerful hardware, our method and its derivatives can harness the full
potential of recent advances in computer vision and prove to be a stepping-stone in the
development of personalized therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13133106/s1. Supplementary File 1: Excel workbook with seven sheets (Sheet1–Sheet7),
Supplementary File 2: Supplementary tables and figures. Table S1: Performance of the survival
models for multiple combinations of omics datasets and different ways to represent the data. The
total performance of 48 models is depicted using three metrics: C-index, Brier score, and IPCW score.
Table S2: Reference table for the twelve combinations of omics data analyzed in the study. For every
omics set denoted by Roman numerals, the ‘+’ sign implies the inclusion of the corresponding omics
data type. Table S3: Details of hyperparameters used for training the ML model. Figure S1: Detailed
methodology with CNN architecture for survival prediction model. Figure S2: Model architecture
for mRNA as an input. Figure S3: Model architecture for miRNA as an input. Figure S4: Model
architecture for methylation as an input. Figure S5: Model architecture for mRNA and methylation as
inputs. Figure S6: Model architecture for mRNA and miRNA as inputs. Figure S7: Model architecture
for mRNA, miRNA, methylation as inputs. Figure S8: A stacked plot representing the number of
patients that actually had an event that was predicted by the model. For the testing set, about 85%
people in the low-risk set were found to be living while, about 61% of high-risk patients died during
the given time period. Figure S9: Enriched terms from KEGG 2019 Human pathways, GO Biological
processes and Cell type (Human gene atlas) for (A–C) under-expressed gene-set. Figure S3: Model
architecture for mRNA as an input. Figure S10: (A) Generate lower dimensional representations
of data. (B) Find a minimum bounding rectangle and re-orient. (C) Label each point in the image
according to the value in omics data. For pixels with multiple genes, take an average and replace
the value. Figure S11: Silhouette analysis on the clustered cancer genes for both the approaches
(t-SNE and UMAP) helped us to optimize the parameters used for the generation of images. For
t-SNE, perplexity was optimized, while number of neighbors and minimum distance were optimized
for UMAP.
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